
Intrinsic Geometry

The Fundamental Form of a Surface

Properties of a curve or surface which depend on the coordinate space that
curve or surface is embedded in are called extrinsic properties of the curve. For
example, the slope of a tangent line is an extrinsic property since it depends on
the coordinate system in which rises and runs are measured.

In contrast, intrinsic properties of surfaces are properties that can be measured
within the surface itself without any reference to a larger space.
For example, the length of a curve is an intrinsic property of the curve, and

thus, the length of a curve � (t) = r (u (t) ; v (t)) ; t in [a; b] ; on a surface r (u; v)
is an intrinsic property of both the curve itself and the surface that contains it.
As we saw in the last section, the square of the speed of � (t) is�

ds

dt

�2
= g11

�
du

dt

�2
+ 2g12

�
du

dt

��
dv

dt

�
+ g22

�
dv

dt

�2
in terms of the metric coe¢ cients

g11 = ru � ru; g12 = rv � ru; and g22 = rv � rv

Thus, very short distances ds on the surface can be approximated by

(ds)
2
= g11 (du)

2
+ 2g12dudv + g22 (dv)

2 (1)

That is, if du and dv are su¢ ciently small, then ds is the length of an in�nites-

1



imally short curve on the surface itself.

Equation (1) is the fundamental form of the surface, which intrinsic to a surface
because it is related to distances on the surface itself. Moreover, any properties
which can be derived solely from a surface�s fundamental form are also intrinsic
to the surface.

EXAMPLE 1 Find the fundamental form of the right circular cylin-
der of radius R; which can be parameterized by

r (u; v) = hR cos (u) ; R sin (u) ; vi

Solution: Since ru = h�R sin (u) ; R cos (u) ; 0i and rv = h0; 0; 1i ;
the metric coe¢ cients are

g11 = ru � ru = R2 sin2 (u) +R2 cos2 (u) + 02 = R2

g12 = ru � rv = 0 + 0 + 0 = 0
g22 = rv � rv = 02 + 02 + 12 = 1

Thus, ds2 = R2du2 + dv2:

If the parameterization is orthogonal, then g12 = ru � rv = 0; so that

ds2 = g11du
2 + g22dv

2

For example, the xy-plane is parameterized by r (u; v) = hu; v; 0i ;which implies
that ru = i and rv = j and that g11 = g22 = 1; g12 = 0: The fundamental form
for the plane is

ds2 = du2 + dv2
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which is, in fact, the Pythagorean theorem. Moreover, distances are not altered
when a �sheet of paper�is rolled up into a cylinder, which means that a cylinder
should have the same fundamental form as the plane.

Indeed, if R = 1 in example 1, then ds2 = du2 + dv2:

EXAMPLE 2 Find the fundamental form of the sphere of radius
R centered at the origin in the spherical coordinate parametrization

r (�; �) = hR sin (�) cos (�) ; R sin (�) sin (�) ; R cos (�)i

Solution: To do so, we �rst compute the derivatives r� and r�:

r� = hR cos (�) cos (�) ; R cos (�) sin (�) ;�R sin (�)i
r� = h�R sin (�) sin (�) ; R sin (�) cos (�) ; 0i

It then follows that

r� � r� = R2 cos2 (�) cos2 (�) +R2 cos2 (�) sin2 (�) +R2 sin2 (�)

= R2 cos2 (�) +R2 sin2 (�)

= R2

and thus, g11 = R2:Moreover, spherical coordinates is an orthogonal
parameterization, which means that r� � r� = 0: Thus, g12 = 0:
Finally, g22 is given by

g22 = r� � r� = R2 sin2 (�) sin2 (�) +R2 sin2 (�) cos2 (�) = R2 sin2 (�)

As a result, the fundamental form of the sphere of radius R is given
by

ds2 = R2d�2 +R2 sin2 (�) d�2 (2)
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That is, the �hypotenuse�of a spherical �right triangle�corresponds
to a �horizontal� arc of length R sin (�) d� and a �vertical� arc of
length Rd�:

Check Your Reading: Is the Pythagorean theorem intrinsic to the xy-plane?

Normal Curvature

If P is a point on an orientable surface � and if r (u; v) is an orthogonal para-
meterization of a coordinate patch on � containing P; then there is (p; q) such
that r (p; q) = P: Thus, for each � in [0; 2�] ; the curves

�� (t) = r (p+ t cos (�) ; q + t sin (�))

pass through P (i.e., �� (0) = r (p; q) = P ) and the tangent vectors �0� (0)
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point in a di¤erent direction in the tangent plane to � at P:

Indeed, every direction in the tangent plane is parallel to �0� (0) for some �:
Consequently, the curvatures of �� (t) at P represent all the di¤erent ways

that the surface "curves away" from the tangent plane at P: Correspondingly,
we de�ne �n (�) to be the component of the curvature of �� (t) at P in the
direction of the unit normal

n =
ru � rv
kru � rvk

In particular, the normal curvature satis�es v2 �n (�) = �00� (0) � n; so that

�n (�) =
�00� (0) � n
k�0� (0)k

2 (3)

The unit surface normal n is not necessarily the same as the unit normal N
for the curve. They may point in opposite directions or even be orthogonal �
e.g., the normal N to a curve in the xy-plane is in the xy-plane itself yet n = k
for the xy-plane. Thus, the normal curvature �n (�) is a measure of how much
the surface is curving rather than how much the curve is curving.

5



That means that �n (�) may be positive, negative, or even 0 �e.g., the normal
curvature of the xy-plane is 0 even though there are curves in the xy-plane with
nonzero curvature.

EXAMPLE 3 Use (??) to �nd the normal curvature �n (�) for the
cylinder

r (u; v) = hcos (u) ; sin (u) ; vi

at the point r (0; 0) = (1; 0; 0) :

Solution: The curves �� (t) = r (t cos (�) ; t sin (�)) are given by

�� (t) = hcos (t cos (�)) ; sin (t cos (�)) ; t sin (�)i

Di¤erentiation with respect to t leads to

�0� = h� sin (t cos (�)) cos (�) ; cos (t cos (�)) cos (�) ; sin (�)i
�00� =



� cos (t cos (�)) cos2 (�) ;� sin (t cos (�)) cos2 (�) ; 0

�
so that at t = 0 we have

�0� (0) = h� sin (0) cos (�) ; cos (0) cos (�) ; sin (�)i = h0; cos (�) ; sin (�)i
�00� (0) =



� cos (0) cos2 (�) ;� sin (0) cos2 (�) ; 0

�
=


� cos2 (�) ; 0; 0

�
The partial derivatives of r (u; v) are

ru = h� sin (u) ; cos (u) ; 0i ; rv = h0; 0; 1i

which are both unit vectors. It follows that ru (0; 0) = h0; 1; 0i = j
and rv = h0; 1; 0i = k: Thus,

n = ru (0; 0)� rv (0; 0) = j� k = i

Since �0� (0) is a unit vector, we have

�n (�) =
�00� (0) � n
k�0� (0)k

2 =



� cos2 (�) ; 0; 0

�
� i

1
= � cos2 (�)

Because the normal curvature �n (�) is a real-valued continuous function over �
in [0; 2�] ; there is a largest �1 and a smallest �2 curvature at each point. The
numbers �1 and �2 are known as the principle curvatures of the surface r (u; v) :
In example 3, the largest possible curvature is �1 = � cos2 (�=2) = 0 in the

vertical direction, and the smallest possible curvature is �2 = � cos2 (0) = �1
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in the horizontal direction.

The average of the principal curvatures is called the Mean curvature of the
surface and is denoted by H: It can be shown that if C is a su¢ ciently smooth
closed curve, then the surface with C as its boundary curve that has the smallest
possible area must have a mean curvature of H = 0:
For example, consider two parallel circles in 3 dimensional space.
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The catenoid is the surface connecting the two circles that has the least surface
area, and a catenoid also has a mean curvature of H = 0.
Surfaces with a mean curvature of H = 0 are called minimal surfaces because

they also have the least surface area for their given boundary. For example,
a soap �lm spanning a wire loop is a minimal surface. Moreover, minimal
surfaces have a large number of applications in architecture, mathematics, and
engineering.

Check your Reading: Is the normal curvature of the cylinder ever posi-
tive?

Gaussian Curvature

In contrast to the mean curvature of a surface, the product of the principal
curvatures is known as the Gaussian curvature of the surface, which is denoted
by K. For example, the Gaussian curvature of the cylinder in example 2 is
K = �1 � 0 = 0 and the Gaussian curvature of the Enneper minimal surface is

K =
�2

(u2 + v2 + 1)
2 �

2

(u2 + v2 + 1)
2 =

�4
(u2 + v2 + 1)

4

As another example, consider that since the geodesics of a sphere with radius
R are great circles of the sphere, they each have a curvature of � = 1=R: Thus,
the principal curvatures must be �1 = 1=R and �2 = 1=R; so that the curvature
of a sphere of radius R is

K =
1

R2

Curvature is in general an extrinsic property of a surface. For example, mean
curvatureH is extrinsic because it depends on how the surface is embedded in a 3
(or higher) dimensional coordinate system. In contrast, the Gaussian curvature
K is an intrinsic property of the surface. This is a truly remarkable theorem,
one that was proven by the mathematician Karl Gauss in 1827.
In particular, if we use the comma derivative notation to denote partial

derivatives of metric coe¢ cients with respect to u and v

g11;u =
@g11
@u

and g22;v =
@g22
@v

then we can state Gauss�remarkable theorem as follows:

Theorem Egregium: Let r (u; v) be an orthogonal parameteriza-
tion of a surface and let g = (g11g22)

1=2 be the metric discrimanent
of the fundamental form of r (u; v). Then K is an instrinsic prop-
erty of the surface since can be expressed in terms of the metric
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coe¢ cients by

K =
�1
2g

�
@

@v

�
g11;v
g

�
+
@

@u

�
g22;u
g

��
(4)

Since K is given in terms of the metric coe¢ cients of the fundamental form, it
is an intrinsic property of the surface.

blueEXAMPLE 4 blackIn example 2, we showed that the funda-
mental form of a sphere of radius R is given by

ds2 = R2d�2 +R2 sin2 (�) d�2

Use the Theorem Egregium to calculate the curvature of the sphere.

Solution: Since g11 = R2 and g22 = R2 sin2 (�) ; the comma deriv-
atives are

g11;� = 0 and g22;� = 2R
2 sin (�) cos (�)

The metric discriminant is given by

g =
q
R2
�
R2 sin2 �

�
= R2 sin (�)

so that

K =
�1

2R2 sin (�)

�
@

@�

�
0

R2 sin (�)

�
+
@

@�

�
2R2 sin� cos (�)

R2 sin (�)

��
=

�1
2R2 sin (�)

�
0 +

@

@�
(2 cos (�))

�
=

�1
2R2 sin (�)

[�2 sin (�)]

=
1

R2

The Theorem Egregium is simpler still �and also more easily interpreted �for
a parameterization r (u; v) that is conformal. Speci�cally, a conformal parame-
terization is orthogonal and has kruk = krvk ; which in turn implies that

g = g11 = g22
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The formula for K reduces in this case to

K =
�1
2g

�
@

@v

�
gv
g

�
+
@

@u

�
gu
g

��
=

�1
2g

�
@

@v

�
@

@v
ln (g)

�
+
@

@u

�
@

@u
ln (g)

��
since @v ln (g) = gv=g and @u ln (g) = gu=g. That is,

K =
�1
2g

�
@2 ln (g)

@u2
+
@2 ln (g)

@v2

�
(5)

for a conformal surface.

EXAMPLE 5 A coordinate patch on a right circular cone is para-
meterized by

r (u; v) =
D
eu cos

�p
2v
�
; eu sin

�p
2v
�
; eu
E

Find its fundamental form and use the Theorem Egregium to calcu-
late the curvature of the surface.

Solution: Since ru =


eu cos

�p
2v
�
; eu sin

�p
2v
�
; eu
�
and

rv =
D
�eu

p
2 sin

�p
2v
�
; eu
p
2 cos

�p
2v
�
; 0
E

the metric coe¢ cients are

g11 = ru � ru = e2u cos2 (v) + e2u sin2 (v) + e2u = 2e2u

g22 = rv � rv = 2e2u sin2 (v) + 2e2u cos2 (v) = 2e2u

Thus, the fundamental form is conformal

ds2 = 2e2u
�
du2 + dv2

�
and g = e2u: Thus,

K =
�1
2e2u

"
@2 ln

�
e2u
�

@u2
+
@2 ln

�
e2u
�

@v2

#

=
�1
2e2u

�
@2 (2u)

@u2
+
@2 (2u)

@v2

�
= 0
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Because K is intrinsic, the Gaussian curvature of a surface can be measured by
�inhabitants� of the surface without regard to the larger space the surface is
embedded in. For example, a person could measure the curvature of the earth�s
surface even if he was blind and could not see that the earth was situated in a
larger cosmos.
Similarly, if one surface is mapped to another without changing distances,

then the two surfaces are said to be isometric. Intrinsic properties, such as
Gaussian curvature, are invariant over isometries. For example, a plane has a
Gaussian curvature of 0 and a cylinder likewise has a Gaussian curvature of 0,
which follows from the fact that a plane can be rolled up into a cylinder without
"stretching" or "tearing" �that is, without changing distances between points.

Check your Reading: What is the Mean curvature of a sphere of radius
R?

The Poincare�Half-Plane

Intrinsic geometry also means that we can de�ne and study abstract surfaces
that cannot be embedded in 3-dimensional space; or similarly, that we can de-
termine the intrinsic geometric properties of space-time without having "space-
time" embedded in a larger space.
For example, we can de�ne a new geometry on the plane by giving it a non-

Euclidean fundamental form. How would we know that it was truly di¤erent?
This is exactly what Henri�Poincare�did when he introduced the fundamental
form

ds2 =
du2 + dv2

v2
(6)

to the upper half of the uv-plane. The result is called the Poincare half-plane
and is a model of hyperbolic geometry.
If we use (6) to measure distances, then the geodesics are the vertical lines

and semicircles parameterized by

u = R tanh (t) + p; v = R sech (t) ; t in (�1;1)

for R and p constant. For example, because distances become shorter as v
increases under the Poincare metric (6), the distance from (�1; 1) to (1; 1) along
a semi-circle of radius

p
2 centered at the origin is 1:7627; which is shorter than
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the distance of 2 from (�1; 1) to (1; 1) along the line v = 1:

Thus, vertical lines and semi-circles centered on the u-axis are the "straight
lines" in the Poincare half-plane. Through a point P not on a semi-circle, there
are in�nitely many other semi-circles centered on the x-axis that pass through
P:

Thus, in the Poincare half plane, there are in�nitely many �parallel lines�to a
given �line� l through a point P not on l:

Finally, we can use the Theorem Egregium to calculuate the curvature of
the Poincare half-plane. In particular, since ds2 = v�2du2+ v�2dv2; the metric
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coe¢ cients are g11 = g22 = v�2: Thus,

g11;v = �2v�3; g22;u = 0; and g = g11g22 = v
�4

The theorem Egregium thus yields

K =
�1

2
p
v�4

�
@

@v

�
�2v�3p
v�4

�
+
@

@u

�
0p
v�4

��
=

�1
2v�2

�
@

@v

�
�2v�1

�
+
@

@u
(0)

�
=

�1
2v�2

�
2v�2

�
= �1

Thus, the curvature of the hyperbolic plane is K = �1: That is, the hyperbolic
plane is a surface of constant negative curvature, and as a result, it cannot be
studied as a surface in ordinary 3 dimensional space. Instead, all information
about the hyperbolic plane must come from the intrinsic properties derived from
its fundamental form.

Exercises
Find the �rst fundamental form of the given surfaces. Explain the relationship
of the fundamental form to the given surface.

1. r = hu; v; ui 2. r = hu; v; u+ vi
3. r = hv sin (u) ; v cos (u) ; vi 4. r = hv sin (u) ; v; v cos (u)i
5. r = hsin (u) cos (v) ; cos (u) ; sin (u) sin (v)i 6. r = hsin (v) sin (u) ; cos (v) sin (u) ; cos (u)i
7. r = hsin (u) cosh (v) ; sinh (v) ; cos (u) cosh (v)i 8. r = hsin (u) cosh (v) ; sin (u) sinh (v) ; cos (u)i

Show that each parameterization is orthogonal and then determine the normal
curvature of the surface. Then determine the principal curvatures, the Mean
curvature, and the Gaussian curvature of the surface. Which surfaces are min-
imal surfaces? Which are Gaussian �at (i.e, K = 0)?

9. r (u; v) = hv; sin (u) ; cos (u)i 10. r (u; v) = hcos (u) ; v; sin (u)i
11. r (u; v) = hu; v; ui 12. r (u; v) =



u; v2; u

�
13. r (u; v) = hu cos (v) ; u sin (v) ; ui 14. r (u; v) =



u2 cos (v) ; u2 sin (v) ; u

�
15. r (u; v) = heu; e�u; vi 16. r (u; v) =



eu; e�u; v2

�
17. r (u; v) = hev sin (u) ; ev cos (u) ; e�vi 18. r (u; v) = heu cos (v) ; eu sin (v) ; ui

Use the theorem Egregium to determine the Gaussian curvature of a surface
with the given fundamental form.

19. ds2 = du2 + e4udv2 20. ds2 = v2du2 + v2dv2

21. ds2 = v2du2 + dv2 22. ds2 = 4u2du2 + 8v2dv2

23. ds2 = v4du2 +
�
4v2 + 1

�
dv2 24. ds2 = du2 + sec2 (v) dv2
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25. Find the normal curvature and principle curvatures of z = x2 � y2 at
(0; 0; 0) : Does the function have an extremum or a saddle point at (0; 0; 0)?
26. Suppose a surface has a fundamental form of

ds2 = du2 + e2kudv2

where k is a constant. What is the Gaussian curvature of the surface?
27. In latitude-longitude coordinates, a sphere of radius R centered at the

origin has a fundamental form of

ds2 = R2d'2 +R2 cos2 (') d�2

Apply the Theorem Egregium to this form to determine the curvature of the
sphere intrinsically.
28. Show that the surface of revolution

r (u; v) =
D
u;
p
R2 � u2 cos (v) ;

p
R2 � x2 sin (v)

E
is a sphere of radius R: Determine the fundamental form of the surface and use
it to �nd K:
29. The helicoid is the surface parametrized by

r (u; v) = hsinh (v) cos (u) ; sinh (v) sin (u) ; ui

What is its fundamental form?
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30. A catenoid is the surface parametrized by

r (u; v) = hcosh (v) cos (u) ; cosh (v) sin (u) ; vi

Show that it has the same fundamental form as the helicoid (exercise 29). What
does this mean?
31. Show that the helicoid is a minimal surface.
32. Show that the catenoid is a minimal surface.
33. The surface of revolution of y = f (x) about the x-axis can be parame-

terized by
r (u; v) = hv; f (v) cos (u) ; f (v) sin (u)i

Find the fundamental form and then use the Theorem Egregium to show that
the curvature of a surface of revolution is given by

K =
�f 00 (v)

f (v)
�
1 + [f 0 (v)]

2
�

34. The pseudosphere is a surface of revolution parameterized by

r (u; v) =
D
sin (u) cos (v) ; sin (u) sin (v) ; cos (u) + ln

h
tan

�u
2

�iE
Determine the fundamental form and then use the Theorem Egregium to show
that K = �1:
35. Euler�s Formula: Show that if �1 occurs along ru (as it does along

the cylinder, for instance), then

�n (�) = �1 cos
2 (�) + �2 sin

2 (�)

36. Write to Learn: Write an essay in which you prove mathematically
that a minimal surface that is Gaussian �at must be a region in a plane. Then
use sketches and concepts to explain in your own words why Gaussian �at
minimal surfaces must be planar.
37. Write to Learn: Write a short essay in which you use the following

steps to prove that the Gaussian curvature K satis�es

(nu � nv) � n = K kru � rvk

1. (a) Explain why ru � n = 0, and then show that this implies that

ruu � n = �ru � nu; and ruv � n = �ru � nv

Also, show that rv � n = 0 implies that rvu � n = �rv � nu and
rvv � n = �rv � nv:

(b) A cross product identity says that if A; B; C; and D are vectors,
then

(A�B) � (C�D) = (A �C) (B �D)� (B �C) (A �D)

Apply this identity to the quantity (nu � nv) � (ru � rv)

15



(c) Use (a) and (b) to show that

(nu � nv) � (ru � rv) = (ruu � n) (rvv � n)� (ruv � n)2

and that (ru � rv) � (ru � rv) = kruk2 krvk2 � (ru � rv)2 :
(d) Conclude by explaining why

(nu � nv) � (ru � rv)
kru � rvk2

= K

and then derive the desired result.

38. Show that if we de�ne K to satisfy the relationship

nu � nv = K (ru � rv)

then K is the Gaussian Curvature of the surface. You may assume that r (u; v)
is orthogonal, and you may want to use the steps (b) and (c) in exercise 35.
39. (Extends Exercise 41 in section 3-2). Stereographic projecton of a

sphere of radius R leads to a parameterization of the form

r (u; v) =

*
2Ru

u2 + v2 + 1
;

2Rv

u2 + v2 + 1
;
R
�
u2 + v2 � 1

�
u2 + v2 + 1

+
(7)

Show that kr (u; v)k = R for all (u; v) : Then show that the fundamental form
is conformal, and calculate the curvature of the surface.
40. Find the principle curvatures of the Enneper Minimal Surface, which is

parameterized by

r (u; v) =

�
u� 1

3
u3 + uv2;

1

3
v3 � v � u2v; u2 � v2

�
Show that it is in fact a minimal surface. Also, show that the parameterization
is conformal and use the result to calculate the Gaussian curvature.
41. Any su¢ ciently di¤erentiable parameterization of a surface can be trans-

formed into a conformal parameterization. Let�s explore this idea for surfaces
of revolution with parameterizations of the form

r (u; v) = hv; f (v) cos (u) ; f (v) sin (u)i

In particular, show that if y (v) satis�es the di¤erential equation

dy

dv
=

f (y)q
1 + [f 0 (y)]

2

then the parameterization

r (u; y (v)) = hy (v) ; f (y (v)) cos (u) ; f (y (v)) sin (u)i
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is a parameterization of the original surface that is also conformal.
42. Use the result in exercise 41 to �nd a conformal parameterization of the

right circular cone, which is a surface of revolution of the form

r (u; v) = hv; v cos (u) ; v sin (u)i

Then use the result in exercise 39 to compute the Gaussian curvature of the
right circular cone.
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