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Preface

The algebraic L-theory of quadratic forms relates the topology of manifolds

to their homotopy types. This tract provides a reasonably self-contained ac-
count of this relationship in dimensions ≥ 5, which was established over 20
years ago by the Browder–Novikov–Sullivan–Wall surgery theory for com-

pact differentiable and PL manifolds, and extended to topological manifolds
by Kirby and Siebenmann.

The term ‘algebraic L-theory’ was coined by Wall, to mean the algebraic
K-theory of quadratic forms, alias hermitian K-theory. In the classical

theory of quadratic forms the ground ring is a field, or a ring of integers in an
algebraic number field, and quadratic forms are classified up to isomorphism.
In algebraic L-theory it is necessary to consider quadratic forms over more

general rings, but only up to stable isomorphism. In the applications to
topology the ground ring is the group ring Z[π] of the fundamental group
π of a manifold.

The structure theory of high-dimensional compact differentiable and PL
manifolds can be expressed in terms of the combinatorial topology of finite
simplicial complexes. By contrast, the structure theory of high-dimensional
compact topological manifolds involves deep geometric properties of Eu-

clidean spaces and demands more prerequisites. For example, compare
Thom’s proof of the combinatorial invariance of the rational Pontrjagin
classes with Novikov’s proof of topological invariance. The current devel-

opment of the controlled and bounded surgery theory of non-compact man-
ifolds promises a better combinatorial understanding of these foundations,
using the algebraic methods of this book and its companion on lower K-

and L-theory, Ranicki [146]. The material in Appendix C is an indication
of the techniques this will entail.

The book is divided into two parts, called Algebra and Topology. In
principle, it is possible to start with the Introduction, and go on to the

topology in Part II, referring back to Part I for novel algebraic concepts. The
reader does not have to be familiar with the previous texts on surgery theory:
Browder [16], Wall [178], Ranicki [145], let alone the research literature*.

This book is not a replacement for any of these. Books and papers need not
be read in the order in which they were written.

The text was typeset in TEX, and the diagrams in LAMS-TEX.

* ‘The literature on this subject is voluminous but mostly makes difficult
reading’. This was Watson on integral quadratic forms, but it applies also

to surgery theory.
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Introduction

An n-dimensional manifold M is a paracompact Hausdorff topological space
such that each point x ∈ M has a neighbourhood homeomorphic to the

Euclidean n-space Rn. The homology and cohomology of a compact n-
dimensional manifold M are related by the Poincaré duality isomorphisms

Hn−∗(M) ∼= H∗(M) ,

using twisted coefficients in the nonorientable case.
An n-dimensional Poincaré space X is a topological space such that

Hn−∗(X) ∼= H∗(X) with arbitrary coefficients. A Poincaré space is finite if

it has the homotopy type of a finite CW complex. A compact n-dimensional
manifold M is a finite n-dimensional Poincaré space, as is any space homo-
topy equivalent to M . However, a finite Poincaré space need not be homo-
topy equivalent to a compact manifold. The manifold structure existence

problem is to decide if a finite Poincaré space is homotopy equivalent to a
compact manifold.

A homotopy equivalence of compact manifolds need not be homotopic

to a homeomorphism. The manifold structure uniqueness problem is to
decide if a homotopy equivalence of compact manifolds is homotopic to a
homeomorphism, or at least h-cobordant to one. The mapping cylinder of a

homotopy equivalence of compact manifolds is a finite Poincaré h-cobordism
with manifold boundary, which is homotopy equivalent rel ∂ to a compact
manifold h-cobordism if and only if the homotopy equivalence is h-cobordant
to a homeomorphism. The uniqueness problem is thus a relative version of

the existence problem.
The Browder–Novikov–Sullivan–Wall surgery theory provides computable

obstructions for deciding the manifold structure existence and uniqueness

problems in dimensions ≥ 5. The obstructions use a mixture of the topo-
logical K-theory of vector bundles and the algebraic L-theory of quadratic
forms. A finite Poincaré space is homotopy equivalent to a compact mani-
fold if and only if the Spivak normal fibration admits a topological bundle

reduction such that a corresponding normal map from a manifold to the
Poincaré space has zero surgery obstruction. A homotopy equivalence of
compact manifolds is h-cobordant to a homeomorphism if and only if it is

normal bordant to the identity by a normal bordism with zero rel ∂ surgery
obstruction. The theory applies in general only in dimensions ≥ 5 because
it relies on the Whitney trick for removing singularities, just like the h- and

s-cobordism theorems.
The algebraic theory of surgery of Ranicki [143]–[149] is extended here to a

combinatorial treatment of the manifold structure existence and uniqueness
problems, providing an intrinsic characterization of the manifold structures
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in a homotopy type in terms of algebraic transversality properties on the
chain level. The Poincaré duality theorem is shown to have a converse: a
homotopy type contains a compact topological manifold if and only if it
has sufficient local Poincaré duality. A homotopy equivalence of compact

manifolds is homotopic to a homeomorphism if and only if the point inverses
are algebraic Poincaré null-cobordant. The bundles and normal maps in the
traditional approach are relegated from the statements of the results to the

proofs.
An n-dimensional algebraic Poincaré complex is a chain complex C with

a Poincaré duality chain equivalence Cn−∗ ' C. Algebraic Poincaré com-
plexes are used here to define the structure groups S∗(X) of a space X. The

structure groups are the value groups for the obstructions to the existence
and uniqueness problems. The total surgery obstruction s(X) ∈ Sn(X)
of an n-dimensional Poincaré space X is a homotopy invariant such that

s(X) = 0 if (and for n ≥ 5 only if) X is homotopy equivalent to a com-
pact n-dimensional manifold. The structure invariant s(f) ∈ Sn+1(M) of
a homotopy equivalence f :N−−→M of compact n-dimensional manifolds is

a homotopy invariant such that s(f) = 0 if (and for n ≥ 5 only if) f is
h-cobordant to a homeomorphism.

Chain homotopy theory can be used to decide if a map of spaces is
a homotopy equivalence: by Whitehead’s theorem a map of connected

CW complexes f :X−−→Y is a homotopy equivalence if and only if f in-
duces an isomorphism of the fundamental groups f∗:π1(X)−−→π1(Y ) and a
chain equivalence f̃ :C(X̃)−−→C(Ỹ ) of the cellular Z[π1(X)]-module chain

complexes of the universal covers X̃, Ỹ of X,Y . It will be shown here
that the cobordism theory of algebraic Poincaré complexes can be simi-
larly used to decide the existence and uniqueness problems in dimensions
≥ 5. A finite Poincaré space X is homotopy equivalent to a compact mani-

fold if and only if the Poincaré duality Z[π1(X)]-module chain equivalence
[X] ∩ −:C(X̃)n−∗−−→C(X̃) of the universal cover X̃ is induced up to al-
gebraic Poincaré cobordism by a Poincaré duality of a local system of Z-

module chain complexes. A homotopy equivalence of compact manifolds f
is h-cobordant to a homeomorphism if and only if the chain equivalence f̃
is induced up to algebraic Poincaré cobordism by an equivalence of local

systems of Z-module chain complexes. Such results are direct descendants
of the h- and s-cobordism theorems, which provided necessary and suffi-
cient cobordism-theoretic and Whitehead torsion conditions for compact
manifolds of dimension ≥ 5 to be homeomorphic.

Generically, assembly is the passage from a local input to a global output.
The input is usually topologically invariant and the output is homotopy
invariant. This is the case in the original geometric assembly map of Quinn,
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and the algebraic L-theory assembly map defined here.
The passage from the topology of compact manifolds to the homotopy

theory of finite Poincaré spaces is the assembly of particular interest here.
In general, it is not possible to reverse the assembly process without some

extra geometric hypotheses. Manifolds of a certain type are said to be rigid
if every homotopy equivalence is homotopic to a homeomorphism, that is
if the uniqueness problem has a unique affirmative solution. The classifi-

cation of surfaces and their homotopy equivalences shows that compact 2-
dimensional manifolds are rigid. Haken 3-dimensional manifolds are rigid,
by the result of Waldhausen. The Mostow rigidity theorem for symmetric
spaces and related results in hyperbolic geometry give the classic instances

of higher dimensional manifolds with rigidity. The Borel conjecture is that
every aspherical Poincaré space Bπ is homotopy equivalent to a compact
aspherical topological manifold, and that any homotopy equivalence of such

manifolds is homotopic to a homeomorphism. Surgery theory has provided
many examples of groups π with sufficient geometry to verify both this
conjecture and the closely related Novikov conjecture on the homotopy in-

variance of the higher signatures. The rigidity of aspherical manifolds with
fundamental group π is equivalent to the algebraic L-theory assembly map
for the classifying space Bπ being an isomorphism. The more complicated
homotopy theory of manifolds with non-trivial higher homotopy groups is

reflected in non-rigidity, with a corresponding deviation from isomorphism
in the algebraic L-theory assembly map.

The Leray homology spectral sequence for a map f :Y−−→X can be viewed

as an assembly process, with input the E2-terms

E2
p,q = Hp(X; {Hq(f

−1(x))})
and output the E∞-terms associated to H∗(Y ). The spectral sequence

can be used to prove the Vietoris–Begle mapping theorem: if f is a map
between reasonable spaces (such as paracompact polyhedra) with acyclic
point inverses f−1(x) (x ∈ X) then f is a homology equivalence. The
topologically invariant local condition of f inducing isomorphisms

(f |)∗ : H∗(f
−1(x))

'−−→ H∗({x}) (x ∈ X)

assembles to the homotopy invariant global condition of f inducing isomor-
phisms

f∗ : H∗(Y )
'−−→ H∗(X) .

There is also a cohomology version, with input

Ep,q2 = Hp(X; {Hq(f−1(x))})
and output H∗(Y ). The dihomology spectral sequences of Zeeman [192] can
be similarly viewed as assembly processes, piecing together the homology



4 Algebraic L-theory and topological manifolds

(resp. cohomology) of a space X from the cohomology (resp. homology)
with coefficients in the local homology (resp. cohomology). The homology
version has input

Ep,q2 = Hp(X; {Hn−q(X,X\{x})})
and output Hn−∗(X), for any n ∈ Z. The cohomology version has input

E2
p,q = Hp(X; {Hn−q(X,X\{x})})

and output Hn−∗(X).
An n-dimensional homology manifold X is a topological space such that

the local homology groups at each point x ∈ X are the local homology

groups of Rn

H∗(X,X\{x}) = H∗(Rn,Rn\{0}) =

{
Z if ∗ = n

0 if ∗ 6= n .

For compact X the local fundamental classes [X]x ∈ Hn(X,X\{x}) assem-

ble to a global fundamental class [X] ∈ Hn(X), using twisted coefficients in
the nonorientable case. The dihomology spectral sequences collapse for a
compact homology manifold X, assembling the local Poincaré duality iso-

morphisms

[X]x ∩ − : Hn−∗({x}) '−−→ H∗(X,X\{x}) (x ∈ X)

to the global Poincaré duality isomorphisms

[X] ∩ − : Hn−∗(X)
'−−→ H∗(X) .

The topologically invariant property of the local homology at each point
being that of Rn is assembled to the homotopy invariant property of n-
dimensional Poincaré duality.

The quadratic L-groups Ln(R) (n ≥ 0) of Wall [180] were expressed in
Ranicki [144] as the cobordism groups of quadratic Poincaré complexes
(C,ψ) over a ring with involution R, with C a f.g. free R-module chain com-
plex and ψ a quadratic structure inducing Poincaré duality isomorphisms

(1 + T )ψ0:Hn−∗(C) ∼= H∗(C).
The algebraic L-theory assembly map

A : H∗(X;L.) −−→ L∗(Z[π1(X)])

is a central feature of the combinatorial theory of surgery, with H∗(X;L.)

the generalized homology groups of X with coefficients in the 1-connective
quadratic L-theory spectrum L. of Z . By construction, the structure groups
S∗(X) of a space X are the relative homotopy groups of A, designed to fit

into the algebraic surgery exact sequence

. . . −−→ Hn(X;L.)
A
−−→ Ln(Z[π1(X)])

∂
−−→ Sn(X)

−−→ Hn−1(X;L.) −−→ . . . .
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The structure groups S∗(X) measure the extent to which the surgery ob-
struction groups L∗(Z[π1(X)]) fail to be a generalized homology theory, or
equivalently the extent to which the algebraic L-theory assembly maps A
fail to be isomorphisms. The algebraic surgery exact sequence for a com-

pact manifold M is identified in §18 with the Sullivan–Wall surgery exact
sequence for the manifold structure set of M .

The total surgery obstruction s(X) ∈ Sn(X) of an n-dimensional Poincaré

space X is expressed in §17 in terms of a combinatorial formula measuring
the failure on the chain level of the local homology groups H∗(X,X\{x})
(x ∈ X) to be isomorphic to Hn−∗({x}) = H∗(Rn,Rn\{0}). The condition

s(X) = 0 is equivalent to the cellular Z[π1(X)]-module chain complex C(X̃)
of the universal cover X̃ being algebraic Poincaré cobordant to the assem-
bly of a local system over X of Z-module chain complexes with Poincaré
duality. The structure invariant s(f) ∈ Sn+1(M) of a homotopy equiva-

lence f :N−−→M of compact n-dimensional manifolds is expressed in §18 in
terms of a combinatorial formula measuring the failure on the chain level
of the local homology groups H∗(f−1(x)) (x ∈ M) to be isomorphic to

H∗({x}). The condition s(f) = 0 is equivalent to the algebraic mapping

cone C(f̃ :C(Ñ)−−→C(M̃))∗+1 being algebraic Poincaré cobordant to the
assembly of a local system over M of contractible Z-module chain com-
plexes.

The algebraic L-theory assembly map is constructed in §9 as a forgetful
map between two algebraic Poincaré bordism theories, in which the underly-
ing chain complexes are the same, but which differ in the duality conditions

required. There is a strong ‘local’ condition and a weak ‘global’ condition,
corresponding to the difference between a manifold and a Poincaré space,
and between a homeomorphism and a homotopy equivalence. The assembly

of a local algebraic Poincaré complex is a global algebraic Poincaré complex,
by analogy with the passage from integral to rational quadratic forms in al-
gebra, and from manifolds to Poincaré spaces in topology. The algebraic
L-theory assembly maps have the advantage over the analogous topologi-

cal assembly maps in that their fibres can be expressed in terms of local
algebraic Poincaré complexes such that the underlying chain complexes are
globally contractible.

The generalized homology groups of a simplicial complex K with L-theory
coefficients are identified in §13 with the cobordism groups of local algebraic
Poincaré complexes, where local means that there is a simply connected

Poincaré duality condition at each simplex in K. The cobordism groups
of global algebraic Poincaré complexes are the surgery obstruction groups
or some symmetric analogues, where global means that there is a single
non-simply connected Poincaré duality condition over the universal cover
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K̃. Surgery theory identifies the fibre of the assembly map from compact
manifolds to finite Poincaré spaces in dimensions ≥ 5 with the fibre of
the algebraic L-theory assembly map. Picture this identification as a fibre
square

6 Algebraic L-theory and topological manifolds

K̃. Surgery theory identifies the fibre of the assembly map from compact

manifolds to finite Poincaré spaces in dimensions ≥ 5 with the fibre of
the algebraic L-theory assembly map. Picture this identification as a fibre
square

{ topological manifolds} w

u

assembly

{ local algebraic Poincaré complexes}

u

assembly

{Poincaré spaces} w { global algebraic Poincaré complexes}
allowing the homotopy types of compact manifolds to be created out of the

homotopy types of finite Poincaré spaces and some extra chain level Poincaré
duality. The assembly maps forget the local structure, and the fibres of
the assembly maps measure the difference between the local and global

structures. The fibre square substantiates the suggestion of Siebenmann
[160, §14] that ‘topological manifolds bear the simplest possible relation to
their underlying homotopy types’.

The surgery obstruction of a normal map (f, b):M−−→X from a compact
n-dimensional manifold M to a finite n-dimensional Poincaré space X

σ∗(f, b) ∈ Ln(Z[π1(X)])

is such that σ∗(f, b) = 0 if (and for n ≥ 5 only if) (f, b) is normal bor-

dant to a homotopy equivalence. In the original construction of Wall [180]
σ∗(f, b) was defined after preliminary geometric surgeries to make (f, b)
[n/2]-connected. In Ranicki [145] the surgery obstruction was interpreted

as the cobordism class of an n-dimensional quadratic Poincaré complex
(C(f !), ψ) over Z[π1(X)] associated directly to (f, b), with

f ! : C(X̃) ≃ C(X̃)n−∗ f̃∗

−−→ C(M̃)n−∗ ≃ C(M̃)

the Umkehr chain map.

The algebraic Poincaré cobordism approach to the quadratic L-groups
L∗(R) extends to n-ads, and hence to the definition of a quadratic L-
spectrum L.(R) with homotopy groups

π∗(L.(R)) = L∗(R) .

In Ranicki [148] the quadratic L-groups Ln(A) (n ≥ 0) of n-dimensional
quadratic Poincaré complexes were defined for any additive category with
involution A, with

L∗(R) = L∗(A (R)) , A (R) = { f.g. free R-modules} .
In §1 the quadratic L-groups L∗(A) are defined still more generally, for any
additive category A with a chain duality, that is a duality involution on the

allowing the homotopy types of compact manifolds to be created out of the

homotopy types of finite Poincaré spaces and some extra chain level Poincaré
duality. The assembly maps forget the local structure, and the fibres of
the assembly maps measure the difference between the local and global

structures. The fibre square substantiates the suggestion of Siebenmann
[160, §14] that ‘topological manifolds bear the simplest possible relation to
their underlying homotopy types’.

The surgery obstruction of a normal map (f, b):M−−→X from a compact

n-dimensional manifold M to a finite n-dimensional Poincaré space X

σ∗(f, b) ∈ Ln(Z[π1(X)])

is such that σ∗(f, b) = 0 if (and for n ≥ 5 only if) (f, b) is normal bor-

dant to a homotopy equivalence. In the original construction of Wall [180]
σ∗(f, b) was defined after preliminary geometric surgeries to make (f, b)
[n/2]-connected. In Ranicki [145] the surgery obstruction was interpreted
as the cobordism class of an n-dimensional quadratic Poincaré complex

(C(f !), ψ) over Z[π1(X)] associated directly to (f, b), with

f ! : C(X̃) ' C(X̃)n−∗
f̃∗

−−→ C(M̃)n−∗ ' C(M̃)

the Umkehr chain map.
The algebraic Poincaré cobordism approach to the quadratic L-groups

L∗(R) extends to n-ads, and hence to the definition of a quadratic L-

spectrum L.(R) with homotopy groups

π∗(L.(R)) = L∗(R) .

In Ranicki [148] the quadratic L-groups Ln(A) (n ≥ 0) of n-dimensional

quadratic Poincaré complexes were defined for any additive category with
involution A, with

L∗(R) = L∗(A (R)) , A (R) = { f.g. free R-modules} .
In §1 the quadratic L-groups L∗(A) are defined still more generally, for any
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additive category A with a chain duality, that is a duality involution on the
chain homotopy category.

The chain complex assembly of Ranicki and Weiss [150] provides a con-
venient framework for dealing with the algebraic L-theory assembly over a

simplicial complex K. The method can be extended to arbitrary topological
spaces using nerves of open covers.

An (R,K)-module M is a f.g. free R-module with a direct sum decompo-

sition

M =
∑

σ∈K
M(σ)

with R a commutative ring. An (R,K)-module morphism f :M−−→N is an
R-module morphism such that

f(M(σ)) ⊆
∑

τ≥σ
N(τ) (σ ∈ K) .

An (R,K)-module chain complex C is locally contractible if it is contractible

in the (R,K)-module category, or equivalently if each C(σ) (σ ∈ K) is a
contractible f.g. R-module chain complex. The assembly of an (R,K)-
module M is the f.g. free R[π1(K)]-module

M(K̃) =
∑

σ̃∈K̃

M(p(σ̃)) ,

with p : K̃−−→K the universal covering projection. An (R,K)-module chain
complex C is globally contractible if the assembly C(K̃) is a contractible
R[π1(K)]-module chain complex. A locally contractible complex is glob-
ally contractible, but a globally contractible complex need not be locally

contractible.
An n-dimensional quadratic complex (C,ψ) in A (R,K) is locally Poincaré

if the algebraic mapping cone of the (R,K)-module chain map (1 + T )ψ0:

Cn−∗−−→C is locally contractible, with each

(1 + T )ψ0(σ) : C(σ)n−|σ|−∗ −−→ C(σ)/∂C(σ) (σ ∈ K)

an R-module chain equivalence. (See §5 for the construction of the chain du-
ality on A (R,K).) An n-dimensional quadratic complex (C,ψ) in A (R,K)
is globally Poincaré if the algebraic mapping cone of (1 + T )ψ0:Cn−∗−−→C
is globally contractible, with

(1 + T )ψ0 : Cn−∗(K̃) ' C(K̃)n−∗ −−→ C(K̃)

an R[π1(K)]-module chain equivalence. Chain complexes with local (resp.
global) Poincaré duality correspond to manifolds (resp. Poincaré spaces).

The generalized homology groups H∗(K;L.(R)) are the cobordism groups

of quadratic locally Poincaré complexes in A (R,K). The algebraic L-theory
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assembly map

A : Hn(K;L.(R)) −−→ Ln(R[π1(K)]) ; (C,ψ) −−→ (C(K̃), ψ(K̃))

is defined by forgetting the locally Poincaré structure. The geometric assem-
bly map of Quinn [130], [131], [137] pieces together the non-simply connected

surgery obstruction of a normal map of closed manifolds from the simply
connected pieces. Similarly, the algebraic L-theory assembly map A pieces
together a globally Poincaré complex over R[π1(K)] from a locally Poincaré

complex in A (R,K).
The main algebraic construction of the text is the algebraic surgery exact

sequence of §14

. . . −−→ Hn(K;L.(R))
A
−−→ Ln(R[π1(K)])

∂
−−→ Sn(R,K)

−−→ Hn−1(K;L.(R)) −−→ . . . .

The quadratic structure groups S∗(R,K) are the cobordism groups of quad-

ratic complexes in A (R,K) which are locally Poincaré and globally con-
tractible.

The algebraic surgery exact sequence is a generalization of the quadratic
L-theory localization exact sequence of Ranicki [146, §3]

. . . −−→ Ln(R) −−→ Ln(S−1R) −−→ Ln(R,S) −−→ Ln−1(R) −−→ . . . ,

for the localization R−−→S−1R of a ring with involution R inverting a mul-
tiplicative subset S ⊂ R of central non-zero divisors invariant under the

involution. The relative L-groups L∗(R,S) are the cobordism groups of
quadratic Poincaré complexes (C,ψ) over R such that C is an R-module
chain complex with localization S−1C = S−1R⊗R C a contractible S−1R-

module chain complex. In the classic case

R = Z , S = Z\{0} , S−1R = Q

the relative L-groups L2i(R,S) are the Witt groups of Q/Z-valued (−)i-
quadratic forms on finite abelian groups, and L2i+1(R,S) = 0.

The quadratic structure groups S∗(K) are defined in §15 as the 1-connective
versions of S∗(Z,K), to fit into the algebraic surgery exact sequence

. . . −−→ Hn(K;L.)
A
−−→ Ln(Z[π1(K)])

∂
−−→ Sn(K)

−−→ Hn−1(K;L.) −−→ . . .

with L. the 1-connective cover of L.(Z). The 0th space L0 of L. is ho-
motopy equivalent to the homotopy fibre G/TOP of the forgetful map
BTOP−−→BG from the classifying space for stable topological bundles to
the classifying space for stable spherical fibrations. The homotopy groups
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of L. are the simply connected surgery obstruction groups

πn(L.) = πn(G/TOP ) = Ln(Z) =





Z
0

Z2

0

if n ≡





0

1

2

3

(mod 4) .

The dual cells of a simplicial complex K are the subcomplexes of the
barycentric subdivision K ′ defined by

D(σ,K) = { σ̂0σ̂1 . . . σ̂r ∈ K ′ |σ ≤ σ0 < σ1 < . . . < σr } ,
with boundary

∂D(σ,K) =
⋃

τ>σ

D(τ,K) .

Transversality is functorial in the PL category: Cohen [38] proved that for
a simplicial map f :M−−→K ′ from a compact n-dimensional PL manifold
M the inverse images of the dual cells

(M(σ), ∂M(σ)) = f−1(D(σ,K), ∂D(σ,K)) (σ ∈ K)

are (n−|σ|)-dimensional PL manifolds with boundary. An abstract version
of this transversality is used in §12 to express the groups h∗(K) for any

generalized homology theory h as the cobordism groups of ‘h-cycles in K’,
which are compatible assignations at each simplex σ ∈ K of a piece of the
coefficient group h∗({pt.}). This is the combinatorial analogue of the result
that every generalized homology theory is the cobordism of compact man-

ifolds with singularities of a prescribed type (Sullivan [170], Buoncristiano,
Rourke and Sanderson [22]).

A finite n-dimensional geometric Poincaré complex X is a finite simplicial

complex such that the polyhedron is an n-dimensional Poincaré space. The
total surgery obstruction of X is defined in §17 to be the cobordism class

s(X) = (Γ, ψ) ∈ Sn(X)

of an (n − 1)-dimensional quadratic locally Poincaré globally contractible
complex (Γ, ψ) in A (Z, X) with

H∗(Γ(σ))

= H∗+1(φ(σ) :C(D(σ,X))n−|σ|−∗−−→C(D(σ,X), ∂D(σ,X)))

= H∗+|σ|+1([X]x ∩ −:C({x})n−∗−−→C(X,X\{x}))
measuring the failure of local Poincaré duality at the barycentre x = σ̂ ∈ X
of each simplex σ ∈ X. The assembly (n−1)-dimensional quadratic Poincaré

complex (Γ(X̃), ψ(X̃)) over Z[π1(X)] is contractible, with

Γ(X̃) = C([X] ∩ −:C(X̃)n−∗−−→C(X̃))∗+1 ' 0 .

The structure invariant s(f) ∈ Sn+1(M) of a homotopy equivalence f :N

−−→M of closed n-dimensional manifolds is defined in §18, measuring the ex-
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tent up to algebraic Poincaré cobordism to which the point inverses f−1(x)
are contractible. The invariant is such that s(f) = 0 if (and for n ≥ 5 only
if) f is h-cobordant to a homeomorphism. The total surgery obstruction has
the following interpretation: for n ≥ 5 a finite n-dimensional Poincaré space

X is homotopy equivalent to a compact topological manifold if and only if
the Poincaré duality chain equivalence has ‘contractible point-inverses’ up
to an appropriate cobordism relation.

The structure set STOP (X) of an n-dimensional Poincaré space X is the
set (possibly empty) of h-cobordism classes of pairs

(compact n-dimensional topological manifold M ,

homotopy equivalence f :M−−→X) .

The structure set of a compact manifold M is non-empty, with base point
(M, 1) ∈ STOP (M).

The structure invariant s(f) ∈ Sn+1(M) of a homotopy equivalence of
compact n-dimensional manifolds f :N−−→M is defined in §18 to be the
cobordism class

s(f) = (Γ, ψ) ∈ Sn+1(M)

of an n-dimensional quadratic locally Poincaré complex (Γ, ψ) in A (Z,M)

with contractible assembly

Γ(M̃) = C(f̃ :C(Ñ)−−→C(M̃)) ' 0 .

The Z-module chain complexes Γ(σ) (σ ∈ M) are the quadratic Poincaré
kernels of the normal maps of (n−|σ|)-dimensional manifolds with boundary

f | : (gf)−1D(σ,M) −−→ g−1D(σ,M) (σ ∈M) .

(For the sake of convenience it is assumed here that M is the polyhedron
of a finite simplicial complex, but this assumption is avoided in §18). The
structure invariant can also be viewed as the rel ∂ total surgery obstruction

s(f) = s∂(W,N t −M) ∈ Sn+1(W ) = Sn+1(M)

with (W,Nt−M) the finite (n+1)-dimensional Poincaré pair with manifold

boundary defined by the mapping cylinder W = N × I ∪f M .
The Sullivan–Wall geometric surgery exact sequence of pointed sets for a

compact n-dimensional manifold M with n ≥ 5

. . . −−→ Ln+1(Z[π1(M)]) −−→ STOP (M)

−−→ [M,G/TOP ] −−→ Ln(Z[π1(M)])

is shown in §18 to be isomorphic to the 1-connective algebraic surgery exact

sequence of abelian groups

. . . −−→ Ln+1(Z[π1(M)])
∂
−−→ Sn+1(M)

−−→ Hn(M ;L.)
A
−−→ Ln(Z[π1(M)]) .
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The function sending a homotopy equivalence of manifolds to its quadratic
structure invariant defines a bijection

s : STOP (M) −−→ Sn+1(M) ; f −−→ s(f)

between the manifold structure set and the quadratic structure group.

The total surgery obstruction theory also has a version involving White-
head torsion. A Poincaré space X is simple if it has a finite simplicial
complex structure in its homotopy type with respect to which

τ([X] ∩ −:C(X̃)n−∗−−→C(X̃)) = 0 ∈Wh(π) (π = π1(X)) .

Compact manifolds are simple Poincaré spaces, with respect to the finite
structure given by the handle decomposition. The simple structure groups
Ss∗(X) are defined to fit into the exact sequence

. . . −−→ Hn(X;L.)
A
−−→ Lsn(Z[π])

∂
−−→ Ssn(X)

−−→ Hn−1(X;L.) −−→ . . .

with Ls∗(Z[π]) the simple surgery obstruction groups of Wall [180]. The

simple structure groups Ss∗(X) are related to the finite structure groups
S∗(X) by an exact sequence

. . . −−→ Ssn(X) −−→ Sn(X) −−→ Ĥn(Z2 ;Wh(π)) −−→ Ssn−1(X) −−→ . . .

analogous to the Rothenberg exact sequence

. . . −−→Lsn(Z[π])−−→Ln(Z[π])−−→ Ĥn(Z2 ;Wh(π))−−→Lsn−1(Z[π])−−→ . . . .

The total simple surgery obstruction s(X) ∈ Ssn(X) of a simple n-dimensional
Poincaré space X is such that s(X) = 0 if (and for n ≥ 5 only if) X is simple
homotopy equivalent to a compact n-dimensional topological manifold. The

simple structure invariant s(f) ∈ Ssn+1(M) of a simple homotopy equiva-
lence f :N−−→M of n-dimensional manifolds is such that s(f) = 0 if (and
for n ≥ 5 only if) f is s-cobordant to a homeomorphism. For n ≥ 5 ‘s-

cobordant’ can be replaced by ‘homotopic to’, by virtue of the s-cobordism
theorem.

The quadratic structure group Sn(K) of a simplicial complex K is iden-
tified in §19 with the bordism group of finite n-dimensional Poincaré pairs

(X, ∂X) with a reference map (f, ∂f): (X, ∂X)−−→K such that ∂f : ∂X−−→K
is Poincaré transverse across the dual cell decomposition of the barycentric
subdivision K ′ of K. From this point of view, the total surgery obstruction

of an n-dimensional Poincaré space X is the bordism class

s(X) = (X, ∅) ∈ Sn(X)

with the identity reference map X−−→X. The quadratic structure group
Sn(X) can also be identified with the bordism group of homotopy equiva-

lences f :N−−→M of compact (n−1)-dimensional manifolds, with a reference
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map M−−→X. The mapping cylinder W of f defines a finite n-dimensional
Poincaré h-cobordism (W,Nt−M) with Nt−M−−→X Poincaré transverse
by manifold transversality.

The symmetric L-groups Ln(R) (n ≥ 0) of Mishchenko [115] and Ran-

icki [144] are the cobordism groups of n-dimensional symmetric Poincaré
complexes (C, φ) over R, with duality isomorphisms φ0:Hn−∗(C) ∼= H∗(C).
The quadratic L-groups are 4-periodic L∗(R) = L∗+4(R). The symmet-

ric L-groups are not 4-periodic in general, with symmetrization maps 1 +
T :L∗(R)−−→L∗(R) which are isomorphisms modulo 8-torsion.

An n-dimensional Poincaré space X has a symmetric signature

σ∗(X) = (C(X̃), φ) ∈ Ln(Z[π1(X)])

which is homotopy invariant, with

φ0 = [X] ∩ − : C(X̃)n−∗ −−→ C(X̃)

the Poincaré duality chain equivalence (Mishchenko [115], Ranicki [145]).
The surgery obstruction σ∗(f, b) of a normal map (f, b):M−−→X has sym-

metrization the difference of the symmetric signatures

(1 + T )σ∗(f, b) = σ∗(M)− σ∗(X) ∈ Ln(Z[π1(X)]) .

The symmetric L-groups are the homotopy groups of an Ω-spectrum L.(R)
of symmetric Poincaré n-ads over R

π∗(L.(R)) = L∗(R) .

The 0-connective simply connected symmetric L-spectrum L.
= L.〈0〉(Z) is

a ring spectrum with homotopy groups

πn(L.) = Ln(Z) =





Z
Z2

0

0

if n ≡





0

1

2

3

(mod 4) ,

the 4-periodic symmetric L-groups of Z. The quadratic L-spectrum L. is a

module spectrum over the symmetric L-spectrum L.
.

The symmetrization maps 1 + T :L∗(R)−−→L∗(R) fit into an exact se-
quence

. . . −−→ Ln(R)
1+T
−−→ Ln(R)

J
−−→ L̂n(R)

∂
−−→ Ln−1(R) −−→ . . .

with L̂∗(R) the exponent 8 hyperquadratic L-groups of Ranicki [146]. The 4-

periodic versions of the hyperquadratic L-groups are here called the normal
L-groups of R

NL∗(R) = lim−→
k
L̂∗+4k(R) ,

in accordance with the geometric theory of normal spaces of Quinn [132]

and the algebraic theory of normal complexes of Weiss [186]. The normal
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L-spectrum NL.
(R) has homotopy groups

π∗(NL.(R)) = NL∗(R) .

The hyperquadratic L-groups of Z are 4-periodic, so that the normal L-

groups of Z are given by

NLn(Z) = L̂n(Z) =





Z8

Z2

0

Z2

if n ≡





0

1

2

3

(mod 4) .

The simply connected normal L-spectrum NL.(Z) has a ‘1/2-connective’

version L̂.
= NL.〈1/2〉(Z), which is 0-connective and fits into a fibration

sequence

L.
1+T
−−→ L. J

−−→ L̂.
,

with homotopy groups

πn(L̂.) =





L0(Z) = Z if n = 0

im(1 + T :L1(Z)−−→L1(Z)) = 0 if n = 1

L̂n(Z) if n ≥ 2 .

The normal L-spectrum L̂. is a ring spectrum, which rationally is just the
Q-coefficient homology spectrum L̂.⊗Q ' K.(Q, 0).

A (k − 1)-spherical fibration ν:X−−→BG(k) has a canonical L̂.
-orient-

ation Ûν ∈ Ḣk(T (ν); L̂.), with T (ν) the Thom space of ν and Ḣ denoting
reduced cohomology with w1(ν)-twisted coefficients. The fibration sequence

L.−−→L.−−→L̂.
induces an exact sequence of cohomology groups

. . . −−→ Ḣk(T (ν);L.)
1+T
−−→ Ḣk(T (ν);L.)

J
−−→ Ḣk(T (ν); L̂.)

δ
−−→ Ḣk+1(T (ν);L.) −−→ . . . .

A topological block bundle ν̃:X−−→BT̃OP (k) has a canonical L.-orient-
ation Uν̃ ∈ Ḣk(T (ν);L.) , with ν = Jν̃:X−−→BG(k). It was proved in

Levitt and Ranicki [94] that ν:X−−→BG(k) admits a topological block bun-

dle reduction ν̃:X−−→BT̃OP (k) if and only if there exists a L.-orientation
Uν̃ ∈ Ḣk(T (ν);L.) such that

J(Uν) = Ûν ∈ im(J : Ḣk(T (ν);L.)−−→Ḣk(T (ν); L̂.))

= ker(δ: Ḣk(T (ν); L̂.
)−−→Ḣk+1(T (ν);L.)) .

Thus δ(Ûν) ∈ Ḣk+1(T (ν);L.) is the obstruction to the existence of a topo-
logical block bundle structure on ν. If this vanishes and k ≥ 3 the structures
are classified by the elements of the abelian group

Ḣk(T (ν);L.) = H0(X;L.) = [X,G/TOP ] = [X,G(k)/T̃OP (k)] .
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Rationally, the symmetric L-spectrum of Z has the homotopy type of a
wedge of Eilenberg-MacLane spectra

L.⊗Q '
∨

j≥0

K.(Q, 4j) ,

and the L.-orientation of an oriented topological block bundle ν̃:X−−→
BST̃OP (k) coincides with the inverse of the Hirzebruch L-genus

Uν̃ ⊗Q = L−1(ν̃) = L(−ν̃) ∈ Ḣk(T (ν);L.)⊗Q =
∑

j≥0

H4j(X;Q) ,

since both are determined by the signatures of submanifolds. See Taylor and
Williams [173] for a general account of the homotopy theory of the algebraic
L-spectra, and for an exposition of the work of Morgan and Sullivan [119]

and Wall [182] on surgery characteristic classes for manifolds and normal
maps in terms of the algebraic L-spectra.

An n-dimensional Poincaré space X has a Spivak normal structure

( νX : X −−→BG(k) , ρX : Sn+k −−→T (νX) )

with νX the normal (k − 1)-spherical fibration defined by a closed regular
neighbourhood (W,∂W ) of an embedding X ⊂ Sn+k (k large)

Sk−1 −−→ ∂W −−→ W ' X

and ρX the collapsing map

ρX : Sn+k −−→ Sn+k/cl(Sn+k\W ) = W/∂W = T (νX) .

The total surgery obstruction s(X) ∈ Sn(X) has image

t(X) = δ(ÛνX ) ∈ Hn−1(X;L.) = Ḣk+1(T (νX);L.) ,

the obstruction to lifting νX :X−−→BG(k) to a topological block bundle

ν̃X :X−−→BT̃OP (k). A particular choice of lift ν̃X corresponds to a bordism
class of normal maps (f, b):M−−→X with M a closed n-dimensional mani-

fold, by the Browder–Novikov transversality construction on ρX :Sn+k−−→
T (νX) = T (ν̃X), with

f = ρX | : M = (ρX)−1(X) −−→ X , b : νM −−→ ν̃X ,

s(X) = ∂σ∗(f, b) ∈ ker(Sn(X)−−→Hn−1(X;L.))

= im(∂:Ln(Z[π1(X)])−−→Sn(X)) .

It follows that s(X) = 0 if and only if there exists a normal map (f, b):M
−−→X with surgery obstruction

σ∗(f, b) ∈ ker(∂:Ln(Z[π1(X)])−−→Sn(X))

= im(A:Hn(X;L.)−−→Ln(Z[π1(X)])) .

This is just the condition for the existence of a topological reduction ν̃X
such that the corresponding bordism class of normal maps (f, b):M−−→X
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has σ∗(f, b) = 0 ∈ Ln(Z[π1(X)]). For n ≥ 5 this is the necessary and
sufficient condition given by the Browder–Novikov–Sullivan–Wall theory for
the existence of a topological manifold in the homotopy type of X. The
theory has been extended to the case n = 4, provided the fundamental

group π1(X) is not too large (Freedman and Quinn [56]).
A closed n-dimensional manifold M has a topologically invariant canonical

L.-homology fundamental class [M ]L ∈ Hn(M ;L.) which assembles to the

symmetric signature

A([M ]L) = σ∗(M) ∈ Ln(Z[π1(M)]) .

Cap product with [M ]L defines the Poincaré duality isomorphism

[M ]L ∩ − : [M,G/TOP ] = H0(M ;L.) −−→ Hn(M ;L.)

which is used in the identification of the algebraic and geometric surgery
sequences.

A normal map (f, b):N−−→M of closed n-dimensional manifolds has a

normal invariant

[f, b]L ∈ Hn(M ;L.) = H0(M ;L.) = [M,G/TOP ]

with assembly the surgery obstruction

A([f, b]L) = σ∗(f, b) ∈ Ln(Z[π1(M)]) ,

and symmetrization the difference of the L.
-homology fundamental classes

(1 + T )[f, b]L = f∗[N ]L − [M ]L ∈ Hn(M ;L.
) .

The localization away from 2 of the L.
-orientation [M ]L ∈ Hn(M ;L.

) of
a closed n-dimensional manifold M

[M ]L ⊗ Z[1/2] ∈ Hn(M ;L.)⊗ Z[1/2] = KOn(M)⊗ Z[1/2]

is the KO[1/2]-orientation of Sullivan [168]. Rationally

[M ]L ⊗Q = [M ]Q ∩ L(M) =
∑

k≥0

([M ]Q ∩ Lk(M))

∈ Hn(M ;L.)⊗Q =
∑

k≥0

Hn−4k(M ;Q)

is the Poincaré dual of the L-genus L(M) = L(τM ) ∈ H4∗(M ;Q) of the sta-

ble tangent bundle τM = −νM :M−−→BSTOP , with [M ]Q ∈ Hn(M ;Q) the
rational fundamental class. Let (f, b):N−−→M be a normal map of closed n-
dimensional topological manifolds, as classified by a map c:M−−→G/TOP
such that

(f−1)∗νN − νM : M
c
−−→ G/TOP −−→ BTOP .

The rational surgery obstruction of (f, b) is the assembly

σ∗(f, b)⊗Q = A([f, b]L ⊗Q) ∈ Ln(Z[π1(M)])⊗Q
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of the element

[f, b]L ⊗Q = f∗[N ]L ⊗Q− [M ]L ⊗Q

= [M ]Q ∩ (L(M) ∪ (L(c)− 1))

∈ Hn(M ;L.)⊗Q =
∑

k≥0

Hn−4k(M ;Q) ,

with 0 component in Hn(M ;Q).
The symmetric structure groups S∗(X) are defined to fit into an exact

sequence of abelian groups

. . . −−→ Hn(X;L.)
A
−−→ Ln(Z[π1(X)])

∂
−−→ Sn(X)

−−→ Hn−1(X;L.) −−→ . . . .

The symmetrization of the total surgery obstruction s(X) ∈ Sn(X) of an
n-dimensional Poincaré space X is the image of the symmetric signature
σ∗(X) ∈ Ln(Z[π1(X)])

(1 + T )s(X) = ∂σ∗(X) ∈ Sn(X) .

Thus (1 + T )s(X) = 0 ∈ Sn(X) if and only if there exists an L.
-homology

fundamental class [X]L ∈ Hn(X;L.) with assembly the symmetric signature
of X

A([X]L) = σ∗(X) ∈ Ln(Z[π1(X)]) .

The visible symmetric L-groups V L∗(R[π]) of Weiss [187] are defined for
any commutative ring R and group π, with similar properties to L∗(R[π]).
The visible analogues of the normal L-groups can be expressed as general-

ized homology groups of the group π with coefficients in NL.
(R), so that

there is defined an exact sequence

. . . −−→ Ln(R[π])
1+T
−−→ V Ln(R[π]) −−→ Hn(Bπ;NL.(R))

∂
−−→ Ln−1(R[π]) −−→ . . . .

The 1/2-connective visible symmetric L-groups V L∗(X) = V L∗〈1/2〉(Z, X)
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are defined in §15 to fit into a commutative braid of exact sequences
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with 0 component in Hn(M ; Q).

The symmetric structure groups S∗(X) are defined to fit into an exact
sequence of abelian groups

. . . −−→ Hn(X; L.)
A
−−→ Ln(Z[π1(X)])

∂
−−→ Sn(X)

−−→ Hn−1(X; L.) −−→ . . . .

The symmetrization of the total surgery obstruction s(X) ∈ Sn(X) of an

n-dimensional Poincaré space X is the image of the symmetric signature
σ∗(X) ∈ Ln(Z[π1(X)])

(1 + T )s(X) = ∂σ∗(X) ∈ Sn(X) .

Thus (1 + T )s(X) = 0 ∈ Sn(X) if and only if there exists an L.-homology
fundamental class [X]L ∈ Hn(X; L.) with assembly the symmetric signature

of X

A([X]L) = σ∗(X) ∈ Ln(Z[π1(X)]) .

The visible symmetric L-groups V L∗(R[π]) of Weiss [187] are defined for

any commutative ring R and group π, with similar properties to L∗(R[π]).
The visible analogues of the normal L-groups can be expressed as general-
ized homology groups of the group π with coefficients in N L.(R), so that

there is defined an exact sequence

. . . −−→ Ln(R[π])
1+T
−−→ V Ln(R[π]) −−→ Hn(Bπ; N L.(R))

∂
−−→ Ln−1(R[π]) −−→ . . . .

The 1/2-connective visible symmetric L-groups V L∗(X) = V L∗⟨1/2⟩(Z, X)

are defined in §15 to fit into a commutative braid of exact sequences

[
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'
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The visible symmetric L-groups V L∗(Bπ) of a classifying space Bπ are
the versions of V L∗(Z[π]) in which the chain complexes are required to be
0-connective (= positive) and the Poincaré duality chain equivalences are

required to be locally 1-connected.
An n-dimensional Poincaré space X has a 1/2-connective visible symmet-

ric signature

σ∗(X) = (C, φ) ∈ V Ln(X)

with assembly the symmetric signature

σ∗(X) = (C(X̃), φ(X̃)) ∈ Ln(Z[π1(X)]) .

The main geometric result of the text is the expression in §17 of the total
surgery obstruction of X in terms of the 1/2-connective visible symmetric
signature

s(X) = ∂σ∗(X) ∈ Sn(X) .

Thus s(X) = 0 ∈ Sn(X) if and only if there exists an L.
-homology fun-

damental class [X]L ∈ Hn(X;L.) with assembly the 1/2-connective visible
symmetric signature

A([X]L) = σ∗(X) ∈ V Ln(X) .

The simply connected symmetric signature of an oriented 4k-dimensional
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Poincaré space X is just the signature (alias index)

σ∗(X) = signature (X)

= signature (H2k(X;Q), φ) ∈ L4k(Z) = Z ,

with φ the nonsingular symmetric form

φ : H2k(X;Q)×H2k(X;Q) −−→ Q ; (x, y) −−→ 〈x ∪ y, [X]Q〉 .
The Hirzebruch formula expresses the signature of an oriented 4k-dimen-

sional manifold M as

signature (M) = 〈Lk(M), [M ]Q〉 ∈ Z ⊂ Q ,

with Lk(M) ∈ H4k(M ;Q) the 4k-dimensional component of the L-genus
L(M) = L(τM ) ∈ H4∗(M ;Q), and [M ]Q ∈ H4k(M ;Q) the rational funda-

mental class. This is a special case of σ∗(M) = A([M ]L), since the signature
of M in L4k(Z) = Z is the clockwise image of the fundamental L.-homology
class [M ]L ∈ H4k(M ;L.) in the commutative square
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The visible symmetric L-groups V L∗(Bπ) of a classifying space Bπ are

the versions of V L∗(Z[π]) in which the chain complexes are required to be
0-connective (= positive) and the Poincaré duality chain equivalences are
required to be locally 1-connected.

An n-dimensional Poincaré space X has a 1/2-connective visible symmet-
ric signature

σ∗(X) = (C, ϕ) ∈ V Ln(X)

with assembly the symmetric signature

σ∗(X) = (C(X̃), ϕ(X̃)) ∈ Ln(Z[π1(X)]) .

The main geometric result of the text is the expression in §17 of the total
surgery obstruction of X in terms of the 1/2-connective visible symmetric
signature

s(X) = ∂σ∗(X) ∈ Sn(X) .

Thus s(X) = 0 ∈ Sn(X) if and only if there exists an L.-homology fun-
damental class [X]L ∈ Hn(X; L.) with assembly the 1/2-connective visible

symmetric signature

A([X]L) = σ∗(X) ∈ V Ln(X) .

The simply connected symmetric signature of an oriented 4k-dimensional
Poincaré space X is just the signature (alias index)

σ∗(X) = signature (X)

= signature (H2k(X; Q), ϕ) ∈ L4k(Z) = Z ,

with ϕ the nonsingular symmetric form

ϕ : H2k(X; Q)×H2k(X; Q) −−→ Q ; (x, y) −−→ ⟨x ∪ y, [X]Q⟩ .
The Hirzebruch formula expresses the signature of an oriented 4k-dimen-
sional manifold M as

signature (M) = ⟨Lk(M), [M ]Q⟩ ∈ Z ⊂ Q ,

with Lk(M) ∈ H4k(M ; Q) the 4k-dimensional component of the L-genus
L(M) = L(τM ) ∈ H4∗(M ; Q), and [M ]Q ∈ H4k(M ; Q) the rational funda-

mental class. This is a special case of σ∗(M) = A([M ]L), since the signature
of M in L4k(Z) = Z is the clockwise image of the fundamental L.-homology
class [M ]L ∈ H4k(M ; L.) in the commutative square

H4k(M ; L.)

u

w
A L4k(Z[π1(M)])

u
H4k({∗}; L.) w

A L4k(Z)

and the anticlockwise image is the evaluation 〈Lk(M), [M ]Q〉.
Let X be a simply connected 4k-dimensional Poincaré space. If the Spivak

normal fibration νX :X−−→BSG admits a topological reduction ν̃X :X−−→
BSTOP there exists a normal map (f, b): (M,νM )−−→(X, ν̃X) from a 4k-

dimensional manifold M , with surgery obstruction the difference between
the evaluation of the L-genus of ν̃X on [X]Q ∈ H4k(X;Q) and the signature
of X

σ∗(f, b) = (σ∗(M)− σ∗(X))/8

= (〈Lk(−ν̃X), [X]Q〉 − signature (X))/8 ∈ L4k(Z) = Z .

There exists a manifold M4k with a normal homotopy equivalence (f, b):
(M,νM )−−→(X, ν̃X) if and only if there exists a topological reduction ν̃X
such that X satisfies the Hirzebruch signature formula with respect to ν̃X .

The simply-connected assembly map A:H4k(X;L.)−−→L4k(Z) is onto, so
that

S4k(X) −−→ H4k−1(X;L.) ; s(X) −−→ t(X)

is one-one. The total surgery obstruction of X is such that s(X) = 0 ∈
S4k(X) if and only if the topological reducibility obstruction is t(X) = 0 ∈
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H4k−1(X;L.). Thus X is homotopy equivalent to a manifold if and only
if νX admits a topological reduction (Browder [16] for k ≥ 2, Freedman
and Quinn [56] for k = 1). Moreover, it follows from the computation
L4k+1(Z) = 0 that if X is homotopy equivalent to a manifold M4k the

structure set of M is in one-one correspondence with the set of topological
reductions ν̃X satisfying the formula, namely

STOP (M) = S4k+1(X) = ker(A:H4k(X;L.)−−→L4k(Z))

⊆ H4k(X;L.) = H0(X;L.) = [X,G/TOP ] .

The symmetric L-theory assembly map for any connected space M factors
through the generalized homology of the fundamental group π1(M) = π

A : H∗(M ;L.)
f∗−−→ H∗(Bπ;L.)

Aπ−−→ Ln(Z[π])

with f :M−−→Bπ the map classifying the universal cover, and Aπ the assem-
bly map for the classifying space Bπ. (There is a corresponding factorization
of the quadratic L-theory assembly map). The L.-homology fundamental

class of an n-dimensional manifold M assembles to the symmetric signature

A([M ]L) = Aπ(f∗[M ]L) = σ∗(M) ∈ im(Aπ) ⊆ Ln(Z[π]) .

The evaluation map

Hn−4∗(Bπ;Q) −−→ HomQ(Hn−4∗(Bπ;Q),Q)

(which is an isomorphism if H∗(Bπ;Q) is finitely generated) sends

f∗[M ]L ⊗Q =
∑

k≥0

f∗([M ]Q ∩ Lk(M))

∈ Hn(Bπ;L.
)⊗Q =

∑

k≥0

Hn−4k(Bπ;Q)

to the higher signatures of M , which are the Q-linear morphisms defined by

Hn−4∗(Bπ;Q) −−→ Q ; x −−→ 〈L(M) ∪ f∗x, [M ]Q〉 = 〈x, f∗[M ]L ⊗Q〉 .
The assembly of f∗[M ]L ⊗Q is the rational symmetric signature of M

Aπ(f∗[M ]L)⊗Q = σ∗(M)⊗Q

∈ im(Aπ ⊗Q:Hn(Bπ;L.)⊗Q−−→Ln(Z[π])⊗Q) .

For finite π and n ≡ 0(mod 2) this is just the special case of the Atiyah–
Singer index theorem which states that the π-signature of the free action
of π on the universal cover M̃ of a closed manifold M with π1(M) = π is
a multiple of the regular representation of π. See §22 for the connection

between the symmetric signature and the π-signature.
The Novikov conjecture on the homotopy invariance of the higher signa-

tures of manifolds M with π1(M) = π is equivalent to the injectivity of the

rational assembly map Aπ ⊗Q:H∗(Bπ;L.
)⊗Q−−→L∗(Z[π])⊗Q.
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For a finitely presented group π and n ≥ 5 every element of the L.-
homology group Hn(Bπ;L.) of the classifying space Bπ is the image of
the normal invariant [f, b]L ∈ Hn(M ;L.) of a normal map (f, b):N−−→M
of closed n-dimensional manifolds with π1(M) = π. Every element of

Sn+1(Bπ) is the image of the structure invariant s(f) ∈ Sn+1(M) of a
homotopy equivalence f :N−−→M of closed n-dimensional manifolds with
π1(M) = π. The kernel of the quadratic L-theory assembly map Aπ

ker(Aπ:H∗(Bπ;L.)−−→L∗(Z[π])) = im(S∗+1(Bπ)−−→H∗(Bπ;L.))

consists of the images of the structure invariants s(f) of homotopy equiva-
lences f :N−−→M of closed manifolds with fundamental group π1(M) = π.
The image of the assembly map

im(Aπ:H∗(Bπ;L.)−−→L∗(Z[π])) = ker(L∗(Z[π])−−→S∗(Bπ))

consists of the surgery obstructions of normal maps of closed manifolds
with fundamental group π. The image of Aπ for finite π was determined by
Hambleton, Milgram, Taylor and Williams [69] and Milgram [109].

The ultimate version of the algebraic L-theory assembly should be topo-

logically invariant, using the language of sheaf theory to dispense with the
combinatorial constructions, i.e. replacing the simplicial chain complex by
the singular chain complex. From this point of view the total surgery ob-

struction s(X) ∈ Sn(X) of an n-dimensional Poincaré space X would mea-
sure the failure of a morphism of chain complexes of sheaves inducing the
maps

[X] ∩ − : Hn−∗({x}) −−→ H∗(X,X\{x}) (x ∈ X)

to be a quasi-isomorphism, up to the appropriate sheaf cobordism relation.
Although the text is primarily concerned with the applications of algebraic
Poincaré complexes to the topology of manifolds and Poincaré spaces, there
are also applications to the topology of singular and stratified spaces, as well

as to group actions on manifolds – see Zeeman [192], Sullivan [170], McCrory
[106], Goresky and MacPherson [62], [63], Siegel [162], Goresky and Siegel
[64], Pardon [125], Cappell and Shaneson [28], Cappell and Weinberger [31]

and Weinberger [185]. Indeed, the first version of the intersection homology
theory of Goresky and MacPherson [62] used the combinatorial methods
of PL topology, while the second version [63] used topologically invariant
chain complexes of sheaves.
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Summary
§1 develops the L-theory of algebraic Poincaré complexes in an additive
category with chain duality. §2 deals with the algebraic analogue of the

Spivak normal fibration. An ‘algebraic bordism category’ (A,B,C) is an
additive category with chain duality A, together with a pair (B,C ⊆ B) of
subcategories of the chain homotopy category of A . In §3 the quadratic
L-groups Ln(A,B,C) (n ∈ Z) are defined to be the cobordism groups of

finite chain complexes in B with an n-dimensional quadratic C-Poincaré
duality. The quadratic L-groups L∗(R) of a ring with involution R are the
quadratic L-groups L∗(Λ(R)) of the algebraic bordism category Λ(R) =

(A (R),B (R),C (R)) with B (R) the category of finite chain complexes in
A (R), and C (R) the category of contractible chain complexes in A (R).
The additive category A ∗(X) is defined in §4, for any additive category A
and simplicial complex X. In §5 a chain duality on A is extended to a chain

duality on A ∗(X). The simply connected assembly functor A ∗(X)−−→A
is defined in §6. The chain duality on A ∗(X) has a dualizing complex
with respect to a derived Hom, which is obtained in §7. The chain duality

on A ∗(X) is used in §8 to extend an algebraic bordism category (A,B,C)
to an algebraic bordism category (A ∗(X),B ∗(X),C ∗(X)) depending co-
variantly on X, as a kind of ‘(A,B,C)-coefficient algebraic bordism cat-

egory of X’. The algebraic bordism category obtained in this way from
(A (R),B (R),C (R)) is denoted by (A (R,X),B (R,X),C (R)∗(X)). The as-
sembly functor A (R,X)−−→A(R[π1(X)]) is defined in §9. In §10 this is used
to define an algebraic bordism category (A(R,X),B (R,X),C(R,X)), with

C(R,X) the chain homotopy category of finite chain complexes in A(R,X)
which assemble to a contractible chain complex in A(R[π1(X)]). An alge-
braic analogue of the π-π theorem of Wall [180] is used in §10 to identify the

‘geometric’ L-groups L∗(A (R,X),B (R,X),C(R,X)) with the ‘algebraic’
L-groups L∗(R[π1(X)]). The theory of ∆-sets is recalled in §11, and ap-
plied to generalized homology theory in §12. The quadratic L-spectrum
L.(A,B,C) of an algebraic bordism category (A,B,C) is defined in §13 to

be an Ω-spectrum of Kan ∆-sets with homotopy groups π∗(L.(A,B,C)) =
L∗(A,B,C). The quadratic L-groups L∗(A(R,X),B (R,X),C (R)∗(X)) are
identified in §13 with the generalized homology groups H∗(X;L.(R)). The

braid relating the visible L-groups, the quadratic L-groups and the gen-
eralized homology with L-theory coefficients is constructed in §14, with a
connective version in §15. The symmetric L-theory orientations of topolog-

ical bundles and manifolds are constructed in §16. The theory developed
in §1-§16 is applied in §17 to obtain the total surgery obstruction s(X) and
in §18 to give an algebraic description of the structure set STOP (M). In
§19 the total surgery obstruction is identified with the obstruction to geo-
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metric Poincaré transversality. §20 deals with the simply connected case.
The transfer properties of the total surgery obstruction are described in
§21. The rational part of the total surgery obstruction in the case when
the fundamental group is finite is computed in §22 in terms of the mul-

tisignature invariant, and this is used to construct the simplest examples
of Poincaré spaces with non-zero total surgery obstruction. §23 relates the
total surgery obstruction to splitting obstructions along submanifolds. §24

expresses the total surgery obstruction s(X) ∈ Sn(X) of an aspherical n-
dimensional Poincaré space X = Bπ satisfying the Novikov conjectures in
terms of codimension n signatures. §25 deals with the 4-periodic version

of the total surgery obstruction, which applies to the surgery classification
of compact ANR homology manifolds. §26 considers the version of the
theory appropriate to surgery with coefficients. Appendix A develops the
nonorientable case of the theory. Appendix B deals with an alternative

construction of assembly in L-theory, using products. Appendix C relates
assembly to bounded surgery theory.



Part I

Algebra
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§1. Algebraic Poincaré complexes

A chain duality (1.1) on an additive category A is a generalization of an
involution on A, in which the dual of an object in A is a chain complex

in A . A chain duality determines an involution on the derived category
of chain complexes in A and chain homotopy classes of chain maps, al-
lowing the definition of an n-dimensional algebraic Poincaré complex in

A as a finite chain complex which is chain equivalent to its n-dual. The{
symmetric
quadratic

L-groups

{
L∗(A)
L∗(A)

are defined to be the cobordism groups of
{

symmetric
quadratic

Poincaré complexes in A . As already noted in the Introduc-

tion, geometric Poincaré complexes have a symmetric signature in L∗(A)
and normal maps have a quadratic signature (= surgery obstruction) in
L∗(A) for A = { f.g. free Z[π]-modules} with the standard duality involu-

tion, with π the fundamental group.

Let then A be an additive category. A chain complex in A

C : . . . −−→ Cr+1

d
−−→ Cr

d
−−→ Cr−1 −−→ . . . (r ∈ Z)

is finite if Cr = 0 for all but a finite number of r ∈ Z. C is n-dimensional
if Cr = 0 unless 0 ≤ r ≤ n.

The algebraic mapping cone of a chain map f :C−−→D in A is the chain
complex C(f) in A defined by

dC(f) =

(
dD (−)r−1f

0 dC

)
:

C(f)r = Dr ⊕ Cr−1 −−→ C(f)r−1 = Dr−1 ⊕ Cr−2 .

Inclusion and projection define chain maps

D −−→ C(f) , C(f) −−→ SC

with SC the suspension chain complex defined by

dSC = dC : SCr = Cr−1 −−→ SCr−1 = Cr−2 .

The total complex of a double complex C∗,∗ in A with differentials

d′ : Cp,q −−→ Cp−1,q , d′′ : Cp,q −−→ Cp,q−1 (p, q ∈ Z)

such that d′d′ = 0, d′′d′′ = 0, d′d′′ = d′′d′ is the chain complex C in A
defined by

dC =
∑

p+q=r

(d′′ + (−)qd′) : Cr =
∑

p+q=r

Cp,q −−→ Cr−1 .

Given chain complexes C,D in A let HomA(C,D)∗,∗ be the double complex
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of abelian groups with

HomA(C,D)p,q = HomA(C−p, Dq) ,

d′(f) = fdC : C−p+1 −−→ Dq , d′′(f) = dDf : C−p −−→ Dq−1 .

The total complex is the chain complex HomA(C,D) defined by

dHomA(C,D) : HomA(C,D)r =
∑

p+q=r

HomA(C−p, Dq)

−−→ HomA(C,D)r−1 ; f −−→ dDf + (−)qfdC .

Define ΣnC to be the chain complex in A with

dΣnC = (−)rdC : (ΣnC)r = Cr−n −−→ (ΣnC)r−1 = Cr−1−n .

The nth homology group Hn(HomA(C,D)) (n ∈ Z) is the abelian group of

chain homotopy classes of chain maps f : ΣnC−−→D. The isomorphisms of
chain objects

(ΣnC)r = Cr−n
'−−→ (SnC)r = Cr−n ; x −−→ (−)r(r+1)/2x

define an isomorphism of chain complexes ΣnC ∼= SnC.
Let B (A) be the additive category of finite chain complexes in A and chain

maps. The embedding

1 : A −−→ B (A) ; A −−→ A , Ar =

{
A if r = 0

0 if r 6= 0

is used to identify A with the subcategory of B (A) consisting of 0-dimensional
chain complexes.

Given a contravariant additive functor

T : A −−→ B (A) ; A −−→ T (A)

define an extension of T to a contravariant additive functor

T : B (A) −−→ B (A) ; C −−→ T (C)

by sending a finite chain complex C in A to the total complex T (C) of the
double complex T (C)∗,∗ in A defined by

T (C)p,q = T (C−p)q , d′ = T (dC) , d′′ = dT (C−p) ,

that is

dT (C) =
∑

p+q=r

(dT (C−p) + (−)qT (dC)) :

T (C)r =
∑

p+q=r

T (C−p)q −−→ T (C)r−1 .

For any morphism f :C−−→D in B (A) it is possible to identify

C(T (f):T (D)−−→T (C)) = STC(f :C−−→D)

up to natural isomorphism in B (A).
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Definition 1.1 A chain duality (T, e) on an additive category A is a con-
travariant additive functor T :A−−→B (A) together with a natural transfor-
mation

e : T 2 −−→ 1 : A −−→ B (A)

such that for each object A in A
(i) e(T (A)) . T (e(A)) = 1 : T (A)−−→T 3(A)−−→T (A) ,

(ii) e(A):T 2(A)−−→A is a chain equivalence.

The dual of a chain complex C is the chain complex T (C), and ΣnT (C) is
the n-dual of C.

Note that the n-dual ΣnT (C) of an n-dimensional chain complex C need
not be n-dimensional.

Definition 1.2 A chain duality on A is 0-dimensional if for each object A
in A the dual chain complex T (A) is 0-dimensional. A 0-dimensional chain

duality is an involution on A .

In the 0-dimensional case e(A):T 2(A)−−→A is an isomorphism of 0-dimen-

sional chain complexes for each object A in A , and the n-dual ΣnT (C) of
an n-dimensional chain complex C is n-dimensional, with

ΣnT (C)r = T (C)r−n = T (Cn−r) .

An involution is a contravariant additive functor T :A−−→A together with a
natural equivalence e′ = e−1: 1−−→T 2:A−−→A such that for each object A

in A

e′(T (A))−1 = T (e′(A)) : T 3(A) −−→ T (A) ,

i.e. an involution on A in the sense of Ranicki [148].
Fix an additive category A with a chain duality (T, e).
For any objects M,N in A define the abelian group chain complex

M ⊗A N = HomA(T (M), N) .

The construction is covariant in both variables, with morphisms g:M−−→
M ′, h:N−−→N ′ in A inducing abelian group morphisms

g ⊗A h : M ⊗A N −−→ M ′ ⊗A N
′ ;

(f :T (M)−−→N) −−→ (hfT (g):T (M ′)−−→N ′) .
The duality isomorphism of abelian group chain complexes

TM,N : M ⊗A N
'−−→ N ⊗A M
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is defined by

TM,N : (M ⊗A N)n = HomA(T (M)−n, N)

'−−→ (N ⊗A M)n = HomA(T (N)−n,M) ;

(f :T (M)−n−−→N) −−→ (TM,N (f):T (N)−n−−→M)

with
TM,N (f) = e(M)T (f) :

T (N)−n −−→ T (T (M)−n)−n ⊆ T 2(M)0 −−→ M0 = M .

The inverse of TM,N is

(TM,N )−1 = TN,M : N ⊗A M
'−−→ M ⊗A N ,

since for any f ∈M ⊗A N

TN,MTM,N (f) = e(N)T (e(M)T (f)) = e(N)T 2(f)T (e(M))

= fe(T (M))T (e(M)) = f ∈M ⊗A N .

Example 1.3 Given a ring R with an involution R−−→R; r−−→r̄ let Ap(R)
be the additive category of f.g. projective (left) R-modules. Define a 0-

dimensional chain duality

T : Ap(R) −−→ Ap(R) ; P −−→ T (P ) = P ∗ = HomR(P,R)

by

R× P ∗ −−→ P ∗ ; (r, f) −−→ (x −−→ f(x).r̄) ,

e(P )−1 : P −−→ P ∗∗ ; x −−→ (f −−→ f(x)) .

The tensor product of f.g. projective R-modules P ,Q is the abelian group

P ⊗R Q = P ⊗Z Q/{ rx⊗ y − x⊗ r̄y |x ∈ P, y ∈ Q, r ∈ R } ,
such that the slant map defines a natural isomorphism

P ⊗R Q
'−−→ HomR(P ∗, Q) = P ⊗Ap(R) Q ; x⊗ y −−→ (f −−→ f(x).y) .

The duality isomorphism TP,Q:P ⊗Ap(R) Q−−→Q ⊗Ap(R) P corresponds to
the transposition isomorphism

TP,Q : P ⊗R Q
'−−→ Q⊗R P ; x⊗ y −−→ y ⊗ x .

Similarly for the full subcategory Ah(R) ⊆ Ap(R) of f.g. free R-modules.

Example 1.4 Given a commutative ring R, a group π and a group mor-
phism w:π−−→{±1} let R[π]w denote the group ring R[π] with the w-twisted
involution

¯: R[π]w −−→ R[π]w ; a =
∑

g∈π
rgg −−→ ā =

∑

g∈π
rgw(g)g−1 (rg ∈ R) .
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This is the example occurring most frequently in topological applications,
with w an orientation character. In the orientable case w = +1 write R[π]w

as R[π]. The additive category of f.g. free R-modules is written

Ah(R) = A (R) .

There is also a version of the theory for based f.g. free R-modules, with
Whitehead torsion considerations.

Given a finite chain complex C in A write

Cr = T (C)−r , ΣnT (C) = Cn−∗ .

For a chain map f :C−−→C ′ the components in each degree of the dual chain
map T (f):T (C ′)−−→T (C) are written

f∗ = T (f) : C ′r = T (C ′)−r −−→ Cr = T (C)−r .

Given also a finite chain complex D in A define the abelian group chain
complex

C ⊗A D = HomA(T (C), D) .

The duality isomorphism

TC,D : C ⊗A D
'−−→ D ⊗A C

is defined by

TC,D = Σ(−)pqTCp,Dq :

(C ⊗A D)n =
∑

p+q+r=n

(Cp ⊗A Dq)r −−→ (D ⊗A C)n ,

with inverse

(TC,D)−1 = TD,C : D ⊗A C
'−−→ C ⊗A D .

Hn(C ⊗A D) is the abelian group of chain homotopy classes of chain maps

φ:Cn−∗−−→D in A . The duality isomorphism for C = D

T = TC,C : C ⊗A C
'−−→ C ⊗A C

is an involution (T 2 = 1), so that C ⊗A C is a Z[Z2]-module chain complex.

The algebraic theory of surgery on

{
symmetric
quadratic

complexes in an additive

category with involution of Ranicki [144], [148] can now be developed for an
additive category A with chain duality.

Use the standard free Z[Z2]-module resolution of Z

W : . . . −−→ Z[Z2]
1−T
−−→ Z[Z2]

1+T
−−→ Z[Z2]

1−T
−−→ Z[Z2]

to define for any finite chain complex C in A the Z-module chain complexes{
W%C = HomZ[Z2](W,C ⊗A C) = HomZ[Z2](W,HomA(TC,C))

W%C = W ⊗Z[Z2] (C ⊗A C) = W ⊗Z[Z2] HomA(TC,C) .
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The boundary of the n-chain{
φ = {φs ∈ HomA(Cr, Cn−r+s) | r ∈ Z, s ≥ 0} ∈ (W%C)n

ψ = {ψs ∈ HomA(Cr, Cn−r−s) | r ∈ Z, s ≥ 0} ∈ (W%C)n
is the (n− 1)-chain with{

(∂φ)s = dC⊗AC(φs) + (−)n+s−1(φs−1 + (−)sTφs−1)

(∂ψ)s = dC⊗AC(ψs) + (−)n−s−1(ψs+1 + (−)s+1Tψs+1)

for s ≥ 0, with φ−1 = 0.

Definition 1.5 (i) The

{
symmetric
quadratic

Q-groups of a finite chain complex C

in A are defined for n ∈ Z by{
Qn(C) = Hn(W%C)

Qn(C) = Hn(W%C) .

(ii) A chain map f :C−−→D of finite chain complexes in A induces a Z[Z2]-
module chain map

f ⊗ f : C ⊗A C −−→ D ⊗A D

and hence Z-module chain maps{
f% : W%C −−→ W%D

f% : W%C −−→ W%D .

The morphisms of Q-groups induced by a chain map f :C−−→D depend
only on the chain homotopy class of f , and are isomorphisms for a chain

equivalence.

Definition 1.6 (i) An n-dimensional

{
symmetric
quadratic

(Poincaré) complex

in A
{

(C, φ)
(C,ψ)

is a finite chain complex C in A together with an n-cycle
{
φ ∈ (W%C)n
ψ ∈ (W%C)n

(such that the chain map

{
φ0:Cn−∗−−→C
(1 + T )ψ0:Cn−∗−−→C is a chain

equivalence in A).

(ii) A map of n-dimensional

{
symmetric
quadratic

complexes in A
{
f : (C, φ) −−→ (C ′, φ′)

f : (C,ψ) −−→ (C ′, ψ′)

is a chain map f :C−−→C ′ such that{
f%(φ) = φ′ ∈ Qn(C ′)

f%(ψ) = ψ′ ∈ Qn(C ′) .

The map is a homotopy equivalence if f :C−−→C ′ is a chain equivalence.
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Note that the chain complex C in 1.6 is only required to be finite, and
not n-dimensional as in Ranicki [144].

Let f :C−−→D be a chain map of finite chain complexes in A . An (n+1)-
cycle {

(δφ, φ) ∈ C(f%:W%C−−→W%D)n+1

(δψ, ψ) ∈ C(f%:W%C−−→W%D)n+1

is an n-cycle

{
φ ∈ (W%C)n
ψ ∈ (W%C)n

together with a collection

{
δφ = {δφs ∈ (D ⊗A D)n+1+s | s ≥ 0}
δψ = {δψs ∈ (D ⊗A D)n+1−s | s ≥ 0}

such that



dD⊗AD(δφs) + (−)n+s(δφs−1 + (−)sTδφs−1)

+ (−)n(f ⊗A f)(φs) = 0 ∈ (D ⊗A D)n+s

dD⊗AD(δψs) + (−)n−s(δψs+1 + (−)s+1Tδψs+1)

+ (−)n(f ⊗A f)(ψs) = 0 ∈ (D ⊗A D)n−s
The (n+ 1)-cycle{

(δφ0, φ0) ∈ C(f ⊗A f :C ⊗A C−−→D ⊗A D)n+1

((1 + T )δψ0, (1 + T )ψ0) ∈ C(f ⊗A f :C ⊗A C−−→D ⊗A D)n+1

determines a chain map{
(δφ0, φ0) : Dn+1−∗ −−→ C(f)

(1 + T )(δψ0, ψ0) : Dn+1−∗ −−→ C(f)

with 



(δφ0, φ0) =

(
δφ0

φ0f
∗

)
: Dn+1−r −−→ C(f)r = Dr ⊕ Cr−1

((1 + T )δψ0, (1 + T )ψ0) =

(
(1 + T )δψ0

(1 + T )ψ0f
∗

)

: Dn+1−r −−→ C(f)r = Dr ⊕ Cr−1 .

Definition 1.7 (i) An (n + 1)-dimensional

{
symmetric
quadratic

(Poincaré) pair

in A {
( f :C−−→D , (δφ, φ) )

( f :C−−→D , (δψ, ψ) )

is a chain map f :C−−→D of finite chain complexes together with an (n+1)-

cycle

{
(δφ, φ) ∈ C(f%)n+1

(δψ, ψ) ∈ C(f%)n+1

(such that the chain map

{
(δφ0, φ0) : Dn+1−∗ −−→ C(f)

(1 + T )(δψ0, ψ0) : Dn+1−∗ −−→ C(f)
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is a chain equivalence).

(ii) A cobordism of n-dimensional

{
symmetric
quadratic

Poincaré complexes
{

(C, φ)

(C,ψ)
,

{
(C ′, φ′)

(C ′, ψ′)
is an (n+ 1)-dimensional

{
symmetric
quadratic

Poincaré pair

{
( (f f ′):C ⊕ C ′−−→D , (δφ, φ⊕−φ′) )

( (f f ′):C ⊕ C ′−−→D , (δψ, ψ ⊕−ψ′) ) .

Definition 1.8 The n-dimensional

{
symmetric
quadratic

L-group

{
Ln(A)

Ln(A)
(n ∈ Z)

an additive category with chain duality A is the cobordism group of n-

dimensional

{
symmetric
quadratic

Poincaré complexes in A .

Definition 1.9 Given a finite chain complex C in A define the double
skew-suspension isomorphism of Z-module chain complexes

{
S2 : S4(W%C)

'−−→ W%(S2C) ; φ −−→ S2φ , (S2φ)s = φs

S2 : S4(W%C)
'−−→ W%(S2C) ; ψ −−→ S2ψ , (S2ψ)s = ψs .

Proposition 1.10 The n-dimensional

{
symmetric
quadratic

L-groups are 4-periodic,

with the double skew-suspension maps defining isomorphisms


S2 : Ln(A)

'−−→ Ln+4(A) ; (C, φ) −−→ (S2C, S2φ)

S2 : Ln(A)
'−−→ Ln+4(A) ; (C,ψ) −−→ (S2C, S2ψ)

for n ∈ Z.
Proof The functor S2:B (A)−−→B (A) is an isomorphism of additive cat-

egories.

Example 1.11 Let R be a ring with involution, so that the additive cat-
egories with duality involution

Ah(R) = { f.g. free R-modules} , Ap(R) = { f.g. projective R-modules}
are defined as in 1.3.
(i) The quadratic L-groups of Aq(R) for q = h (resp. p) are the free (resp.
projective) versions of the 4-periodic quadratic L-groups of Wall [180]

Ln(Aq(R)) = Lqn(R) (n ∈ Z) .
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(ii) The symmetric L-groups of Aq(R) for q = h (resp. p) are the 4-periodic
versions of the free (resp. projective) symmetric L-groups of Mishchenko
[115]

Ln(Aq(R)) = lim−→
k

Ln+4k
q (R) = Ln+4∗

q (R) (n ∈ Z) .

See Ranicki [144], [148] for proofs of both (i) and (ii). The 4-periodicity
of the symmetric L-groups is ensured by the use of finite rather than n-

dimensional chain complexes in 1.6. See 3.18 below for a further discussion.

The 4-periodic L-groups of the additive category Ah(R) of a ring with
involution R are written

Ln(Ah(R)) = Ln(R) = Ln+4∗(R) ,

Ln(Ah(R)) = Ln+4∗(R) (n ∈ Z) .

Definition 1.12 The n-dimensional

{
symmetric
quadratic

complex

{
(C ′, φ′)

(C ′, ψ′)
in A

obtained from an n-dimensional

{
symmetric
quadratic

complex

{
(C, φ)

(C,ψ)
by algebraic

surgery on an (n+ 1)-dimensional

{
symmetric
quadratic

pair
{

(f :C−−→D, (δφ, φ))

(f :C−−→D, (δψ, ψ))
is given in the symmetric case by

dC′ =




dC 0 (−)n+1φ0f
∗

(−)rf dD (−)rδφ0

0 0 (−)rd∗D


 :

C ′r = Cr ⊕Dr+1 ⊕Dn−r−1

−−→ C ′r−1 = Cr−1 ⊕Dr ⊕Dn−r+2 ,

φ′0 =




φ0 0 0

(−)n−rfTφ1 (−)n−rTδφ1 (−)r(n−r)e

0 1 0


 :

C ′n−r = Cn−r ⊕Dn−r+1 ⊕ (T 2D)r+1

−−→ C ′r = Cr ⊕Dr+1 ⊕Dn−r+1

φ′s =




φs 0 0

(−)n−rfTφs (−)n−r+sTδφs+1 0

0 0 0


 :

C ′n−r+s = Cn−r+s ⊕Dn−r+s+1 ⊕ (T 2D)r−s+1

−−→ C ′r = Cr ⊕Dr+1 ⊕Dn−r+1 (s ≥ 1)
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and in the quadratic case by

dC′ =




dC 0 (−)n+1(1 + T )ψ0f
∗

(−)rf dD (−)r(1 + T )δψ0f
∗

0 0 (−)rd∗D


 :

C ′r = Cr ⊕Dr+1 ⊕Dn−r+1

−−→ C ′r−1 = Cr−1 ⊕Dr ⊕Dn−r+2 ,

ψ′0 =



ψ0 0 0

0 0 0

0 1 0


 :

C ′n−r = Cn−r ⊕Dn−r+1 ⊕ (T 2D)r+1

−−→ C ′r = Cr ⊕Dr+1 ⊕Dn−r+1

ψ′s =



ψs (−)r+sTψs−1f

∗ 0

0 (−)n−r−s+1Tδψs−1 0

0 0 0


 :

C ′n−r−s = Cn−r−s ⊕Dn−r−s+1 ⊕ (T 2D)r+s+1

−−→ C ′r = Cr ⊕Dr+1 ⊕Dn−r+1 (s ≥ 1) .

Proposition 1.13 Cobordism of n-dimensional

{
symmetric
quadratic

Poincaré com-

plexes in A is the equivalence relation generated by homotopy equivalence
and algebraic surgery.
Proof As for Ranicki [144, 5.1], the special case A = Ap(R) = {f.g. project-

ive R-modules}.

Definition 1.14 The boundary of an n-dimensional

{
symmetric
quadratic

complex
{

(C, φ)

(C,ψ)
in A is the (n− 1)-dimensional

{
symmetric
quadratic

complex

{
∂(C, φ) = (∂C, ∂φ)

∂(C,ψ) = (∂C, ∂ψ)

obtained from (0,0) by surgery on the n-dimensional

{
symmetric
quadratic

pair
{

(0: 0−−→C, (φ, 0))

(0: 0−−→C, (ψ, 0)) .
In the symmetric case
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d∂C =

(
dC (−)rφ0

0 (−)rd∗C

)
:

∂Cr = Cr+1 ⊕ Cn−r −−→ ∂Cr−1 = Cr ⊕ Cn−r−1 ,

∂φ0 =

(
(−)n−rTφ1 (−)r(n−r−1)e

1 0

)
:

∂Cn−r−1 = Cn−r ⊕ (T 2C)r+1 −−→ ∂Cr = Cr+1 ⊕ Cn−r ,

∂φs =

(
(−)n−r+sTφs+1 0

0 0

)
:

∂Cn−r+s−1 = Cn−r+s ⊕ (T 2C)r−s+1

−−→ ∂Cr = Cr+1 ⊕ Cn−r (s ≥ 1)

and in the quadratic case

d∂C =

(
dC (−)r(1 + T )ψ0

0 (−)rd∗C

)
:

∂Cr = Cr+1 ⊕ Cn−r −−→ ∂Cr−1 = Cr ⊕ Cn−r+1 ,

∂ψ0 =

(
0 0

1 0

)
:

∂Cn−r−1 = Cn−r ⊕ (T 2C)r+1 −−→ ∂Cr = Cr+1 ⊕ Cn−r ,

∂ψs =

(
(−)n−r−s−1Tψs−1 0

0 0

)
:

∂Cn−r−s−1 = Cn−r−s ⊕ (T 2C)r+s+1

−−→ ∂Cr = Cr+1 ⊕ Cn−r (s ≥ 1) .

It is immediate from the identity

∂C =

{
S−1C(φ0:Cn−∗−−→C)

S−1C((1 + T )ψ0:Cn−∗−−→C)

that an n-dimensional

{
symmetric
quadratic

complex

{
(C, φ)
(C,ψ)

is Poincaré if and only

if the boundary

{
∂(C, φ)
∂(C,ψ)

is contractible.
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Proposition 1.15 The homotopy equivalence classes of n-dimensional{
symmetric
quadratic

complexes in A are in one–one correspondence with the homo-

topy equivalence classes of n-dimensional

{
symmetric
quadratic

Poincaré pairs in

A .
Proof As for Ranicki [144, 3.4], the special case A = Ap(R).

Given an n-dimensional

{
symmetric
quadratic

complex

{
(C, φ)

(C,ψ)
in A define the

n-dimensional

{
symmetric
quadratic

Poincaré pair

{
δ∂(C, φ)

δ∂(C,ψ)
=

(
pC = projection : ∂C −−→ Cn−∗ ,

{
(0, ∂φ)

(0, ∂ψ)

)
.

Conversely, given an n-dimensional

{
symmetric
quadratic

Poincaré pair in A

B =

(
f : C −−→ D ,

{
(δφ, φ)

(δψ, ψ)

)

apply the algebraic Thom construction to obtain an n-dimensional{
symmetric
quadratic

complex

B/∂B =

{
(D, δφ)/C = (C(f), δφ/φ)

(D, δψ)/C = (C(f), δψ/ψ)

with

(δφ/φ)s =

(
δφs 0

(−)n−r−1φsf
∗ (−)n−r+sTφs−1

)
:

C(f)n−r+s+1 = Dn−r+s+1 ⊕ Cn−r+s −−→ C(f)r = Dr ⊕ Cr−1

(s ≥ 0, φ−1 = 0) ,

(δψ/ψ)s =

(
δψs 0

(−)n−r−1ψsf
∗ (−)n−r−sTψs+1

)
:

C(f)n−r−s+1 = Dn−r−s+1 ⊕ Cn−r−s −−→ C(f)r = Dr ⊕ Cr−1

(s ≥ 0) ,

which is homotopy equivalent to δ∂(B/∂B).
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It follows from 1.15 that an n-dimensional

{
symmetric
quadratic

Poincaré complex
{

(C, φ)

(C,ψ)
in A is such that

{
(C, φ) = 0 ∈ Ln(A)

(C,ψ) = 0 ∈ Ln(A)
if and only if

{
(C, φ)

(C,ψ)
is

homotopy equivalent to the boundary ∂(D, θ) of an (n + 1)-dimensional{
symmetric
quadratic

complex (D, θ) in A .
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§2. Algebraic normal complexes

An algebraic normal complex is a chain complex with the normal structure
of a Poincaré complex, but not necessarily the Poincaré duality. Algebraic
normal complexes are analogues of the normal spaces of Quinn [132], which
have the normal structure of Poincaré spaces, but not necessarily the duality.

Indeed, a normal space determines an algebraic normal complex.
The algebraic theory of normal complexes of Ranicki [145] and Weiss

[186] is now generalized to an additive category A with a chain duality

(T :A−−→B (A), e:T 2−−→1). Algebraic normal complexes will be used in §3
to describe the difference between symmetric and quadratic L-groups of A .

Use the standard complete (Tate) free Z[Z2]-module resolution of Z

Ŵ : . . . −−→ Z[Z2]
1−T
−−→ Z[Z2]

1+T
−−→ Z[Z2]

1−T
−−→ Z[Z2] −−→ . . .

to define for any finite chain complex C in A the Z-module chain complex

Ŵ%C = HomZ[Z2](Ŵ , C ⊗A C) = HomZ[Z2](Ŵ ,HomA(TC,C)) .

A chain θ ∈ (Ŵ%C)n is a collection of morphisms

θ = {θs ∈ HomA(Cn−r+s, Cr) | r, s ∈ Z} ,
with the boundary d(θ) ∈ (Ŵ%C)n−1 given by

d(θ)s = dθs + (−)rθsd
∗ + (−)n+s−1(θs−1 + (−)sTθs−1) :

Cn−r+s−1 −−→ Cr (r, s ∈ Z) .

Definition 2.1 (i) The hyperquadratic Q-groups of a finite chain complex
C in A are defined by

Q̂n(C) = Hn(Ŵ%C) (n ∈ Z) .

(ii) A chain map f :C−−→D of finite chain complexes in A induces a Z-
module chain map

f̂% : Ŵ%C −−→ Ŵ%D

via the Z[Z2]-module chain map f ⊗ f :C ⊗A C−−→D ⊗A D .

The short exact sequence of Z-module chain complexes

0 −−→ W%C −−→ Ŵ%C −−→ S(W%C) −−→ 0

induces the long exact sequence of Q-groups of Ranicki [144, 1.1]

. . . −−→ Qn(C)
1+T
−−→ Qn(C)

J
−−→ Q̂n(C)

H
−−→ Qn−1(C)

1+T
−−→ Qn−1(C) −−→ . . .
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with

(Jφ)s =

{
φs for s ≥ 0

0 for s < 0
, ((1 + T )ψ)s =

{
(1 + T )ψ0 for s = 0

0 for s ≥ 1

(Hθ)s = θ−s−1 for s ≥ 0 .

Definition 2.2 (i) A chain bundle (C, γ) is a chain complex C in A together

with a 0-cycle γ ∈ (Ŵ%TC)0.
(ii) A map of chain bundles in A

(f, b) : (C, γ) −−→ (C ′, γ′)

is a chain map f :C−−→C ′ together with a 1-chain b ∈ (Ŵ%TC)1 such that

f̂%(γ′) − γ = d(b) ∈ (Ŵ%TC)0 .

For any chain complex C in A there is defined a suspension isomorphism

S : Ŵ%C
'−−→ S−1(Ŵ%SC) ; θ −−→ Sθ

sending an n-chain θ ∈ (Ŵ%C)n to the (n + 1)-chain Sθ ∈ (Ŵ%SC)n+1

with

(Sθ)t = θt−1 : (SC)n−r+t+1 = Cn−r+t −−→ (SC)r = Cr−1 .

Hence for any n ∈ Z there is defined an n-fold suspension isomorphism

Sn : Ŵ%TC
'−−→ S−n(Ŵ%Cn−∗)

sending a 0-cycle γ ∈ (Ŵ%TC)0 to the n-cycle Snγ ∈ (Ŵ%Cn−∗)n with

(Snγ)s = γn+s : Cr −−→ C−n−r−s (r, s ∈ Z) .

Definition 2.3 Given a chain bundle (C, γ) let Qn(C, γ) (n ∈ Z) be the
twisted quadratic Q-groups of Weiss [186], designed to fit into a long exact
sequence

. . . −−→ Qn(C, γ)
1+T
−−→ Qn(C)

Jγ−−→ Q̂n(C)
H
−−→ Qn−1(C, γ)

1+T
−−→ Qn−1(C) −−→ . . .

with

Jγ : Qn(C) −−→ Q̂n(C) ; φ −−→ J(φ)− φ̂%
0 (Snγ) .

An element of Qn(C, γ) is an equivalence class of pairs

(φ ∈ (W%C)n , χ ∈ (Ŵ%C)n+1 )

such that

d(φ) = 0 ∈ (W%C)n−1 , J(φ)− (φ̂0)%(Snγ) = d(χ) ∈ (Ŵ%C)n ,

with
1 + T : Qn(C, γ) −−→ Qn(C) ; (φ, χ) −−→ φ ,

H : Q̂n+1(C) −−→ Qn(C, γ) ; χ −−→ (0, χ) .
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The addition in Qn(C, γ) is by

(φ, χ) + (φ′, χ′) = (φ+ φ′, χ+ χ′ + ξ) ,

with

ξs = φ0(γs−n+1)φ′0 : Cr −−→ Cn−r+s+1 (r, s ∈ Z) .

Jγ is induced by a morphism of the simplicial abelian groups K(W%C)

−−→K(Ŵ%C) associated to the abelian group chain complexes W%C, Ŵ%C

by the Kan–Dold theorem, rather than by a chain map W%C−−→Ŵ%C.
For γ = 0 Jγ = J is induced by the chain map J :W%C−−→Ŵ%C and
Q∗(C, 0) = Q∗(C).

A map of chain bundles (f, b): (C, γ)−−→(C ′, γ′) induces morphisms of the
twisted quadratic Q-groups

(f, b)% : Qn(C, γ) −−→ Qn(C ′, γ′) ; (φ, χ) −−→ (f%φ, f̂%χ+(f̂φ0)%(Snb)) .

Definition 2.4 (i) An (algebraic) n-dimensional normal complex (C, θ) in
A is a finite chain complex C in A together with a triple

θ = (φ ∈ (W%C)n, γ ∈ (Ŵ%TC)0, χ ∈ (Ŵ%C)n+1)

such that

d(φ) = 0 ∈ (W%C)n−1 , d(γ) = 0 ∈ (Ŵ%TC)−1 ,

J(φ)− (φ̂0)%(Snγ) = d(χ) ∈ (Ŵ%C)n .

(C, θ) is an n-dimensional symmetric complex (C, φ) with a normal structure

(γ, χ).
(ii) An (n+1)-dimensional normal pair (f :C−−→D, (δθ, θ)) in A is an (n+1)-
dimensional symmetric pair (f :C−−→D, (δφ, φ)) in A together with a map

of chain bundles (f, b): (C, γ)−−→(D, δγ) and chains χ ∈ (Ŵ%C)n+1, δχ ∈
(Ŵ%D)n+2 such that

J(φ)− (φ̂0)%(Snγ) = d(χ) ∈ (Ŵ%C)n ,

J(δφ)− δ̂φ%

0 (Snδγ) + f̂%(χ− (φ̂0)%(Snb)) = d(δχ) ∈ (Ŵ%D)n+1 ,

with (δθ, θ) short for ((δφ, δγ, δχ), (φ, γ, χ)).

(iii) A map of n-dimensional normal complexes in A
(f, b) : (C, φ, γ, χ) −−→ (C ′, φ′, γ′, χ′)

is a bundle map (f, b): (C, γ)−−→(C ′, γ′) such that

(f, b)%(φ, χ) = (φ′, χ′) ∈ Qn(C ′, γ′) .

The map is a homotopy equivalence if f :C−−→C ′ is a chain equivalence.
(iv) The normal L-groups NLn(A) (n ∈ Z) are the cobordism groups of
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n-dimensional normal complexes in A .

Remark 2.5 Geometric normal (resp. Poincaré) complexes and pairs de-
termine algebraic normal (resp. Poincaré) complexes and pairs. The meth-

ods of Ranicki [145] and Weiss [186] can be combined to associate to any
(k − 1)-spherical fibration ν:X−−→BG(k) over a finite CW complex X a
chain bundle in A (Z[π]w) (cf. 1.4)

σ̂∗(ν) = (C(X̃), γ)

with X̃ any regular covering of X such that the pullback ν̃: X̃−−→BG(k)
is oriented, π the group of covering translations, C(X̃) the cellular Z[π]-
module chain complex of X̃, and w:π−−→{±1} a factorization of the orien-

tation character

w1(ν) : π1(X) −−→ π
w
−−→ {±1} .

The hyperquadratic structure γ is unique up to equivalence (i.e. only the
homology class γ ∈ Q̂0(C(X̃)−∗) is determined), and depends only on the
stable spherical fibration ν:X−−→BG. Let T (ν) be the Thom space of ν,

and let Uν ∈ Ḣk(T (ν), w) be the w-twisted Thom class, with Ḣ∗ denot-
ing reduced cohomology. The Alexander–Whitney–Steenrod diagonal chain
approximation

∆
X̃

: C(X̃) −−→ HomZ[Z2](W,C(X̃)⊗Z C(X̃))

induces the ‘symmetric construction’ of Ranicki [145, §1]

φX = 1⊗∆
X̃

: Hn(X,w) = Hn(Zw ⊗Z[π]w C(X̃))

−−→ Qn(C(X̃)) = Hn(HomZ[Z2](W,C(X̃)⊗Z[π]w C(X̃))) .

The composite of the Thom isomorphism and the symmetric construction

Ḣn+k(T (ν))
Uν∩−−−−→ Hn(X,w)

φX−−→ Qn(C(X̃))

extends to a natural transformation of exact sequences of abelian groups
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n-dimensional normal complexes in A .

Remark 2.5 Geometric normal (resp. Poincaré) complexes and pairs de-

termine algebraic normal (resp. Poincaré) complexes and pairs. The meth-
ods of Ranicki [145] and Weiss [186] can be combined to associate to any
(k − 1)-spherical fibration ν:X−−→BG(k) over a finite CW complex X a

chain bundle in A (Z[π]w) (cf. 1.4)

σ̂∗(ν) = (C(X̃), γ)

with X̃ any regular covering of X such that the pullback ν̃: X̃−−→BG(k)

is oriented, π the group of covering translations, C(X̃) the cellular Z[π]-
module chain complex of X̃, and w:π−−→{±1} a factorization of the orien-
tation character

w1(ν) : π1(X) −−→ π
w
−−→ {±1} .

The hyperquadratic structure γ is unique up to equivalence (i.e. only the
homology class γ ∈ Q̂0(C(X̃)−∗) is determined), and depends only on the
stable spherical fibration ν:X−−→BG. Let T (ν) be the Thom space of ν,

and let Uν ∈ Ḣk(T (ν), w) be the w-twisted Thom class, with Ḣ∗ denot-
ing reduced cohomology. The Alexander–Whitney–Steenrod diagonal chain
approximation

∆
X̃

: C(X̃) −−→ HomZ[Z2](W,C(X̃)⊗Z C(X̃))

induces the ‘symmetric construction’ of Ranicki [145, §1]

ϕX = 1⊗∆
X̃

: Hn(X,w) = Hn(Zw ⊗Z[π]w C(X̃))

−−→ Qn(C(X̃)) = Hn(HomZ[Z2](W,C(X̃)⊗Z[π]w C(X̃))) .

The composite of the Thom isomorphism and the symmetric construction

Ḣn+k(T (ν))
Uν∩−
−−−→ Hn(X,w)

ϕX−−→ Qn(C(X̃))

extends to a natural transformation of exact sequences of abelian groups

. . . w Γn+k+1(T (ν)) w

u

πn+k(T (ν)) w
h

u

Ḣn+k(T (ν)) w

u

Γn+k(T (ν)) w

u

. . .

. . . w Q̂n+1(C(X̃)) w Qn(C(X̃), γ) w Qn(C(X̃)) w
Jγ

Q̂n(C(X̃)) w . . .

from the certain exact sequence of Whitehead [190], with h the Hurewicz
map.

An n-dimensional geometric normal complex (X, νX , ρX) in the sense of

Quinn [132] is a finite CW complex X together with a (k − 1)-spherical
fibration νX :X−−→BG(k) and a map ρX :Sn+k−−→T (νX). The algebraic

from the certain exact sequence of Whitehead [190], with h the Hurewicz

map.
An n-dimensional geometric normal complex (X, νX , ρX) in the sense of

Quinn [132] is a finite CW complex X together with a (k − 1)-spherical

fibration νX :X−−→BG(k) and a map ρX :Sn+k−−→T (νX). The algebraic
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normal complex of (X, νX , ρX) with respect to a covering X̃ of X is defined
by

σ̂∗(X, νX , ρX) = (C(X̃), φ, γ, χ)

with (C(X̃), γ) = σ̂∗(νX) and (φ, χ) ∈ Qn(C(X̃), γ) the image of ρX ∈
πn+k(T (νX)). The Z[π1(X)]-module duality chain map of σ̂∗(X) is given

by the cap product

φ0 = φX([X])0 = [X] ∩ − : C(X̃)n−∗ −−→ C(X̃) ,

with the fundamental class defined by

[X] = h(ρX) ∩ UνX ∈ Hn(X,w) .

A (finite) n-dimensional geometric Poincaré complex X is a (finite) CW
complex together with an orientation map w:π1(X)−−→Z2 and a fundamen-

tal class [X] ∈ Hn(X,w) such that cap product defines a Z[π1(X)]-module
chain equivalence

[X] ∩ − : C(X̃)n−∗
'−−→ C(X̃) .

An embeddingX ⊂ Sn+k (k large) determines the normal structure (νX , ρX)
of Spivak [164], so that X is an n-dimensional geometric normal complex.

The n-dimensional symmetric Poincaré complex in A (Z[π]w)

σ∗(X) = (C(X̃), φ)

is such that Jσ∗(X) = σ̂∗(X, νX , ρX).

The following result deals with the analogue for algebraic Poincaré com-
plexes in any additive category with chain duality A of the Spivak normal

structure of a geometric Poincaré complex:

Proposition 2.6 (i) An n-dimensional symmetric complex (C, φ) in A has

a normal structure (γ, χ) if and only if the boundary (n − 1)-dimensional
symmetric Poincaré complex ∂(C, φ) admits a quadratic refinement.
(ii) There is a natural one–one correspondence between the homotopy equiv-

alence classes of n-dimensional symmetric Poincaré complexes (C, φ) in A
and those of n-dimensional normal complexes (C, φ, γ, χ) with φ0:Cn−∗−−→
C a chain equivalence.
(iii) There is a natural one–one correspondence between the homotopy equiv-

alence classes of n-dimensional quadratic complexes (C,ψ) in A and those
of n-dimensional normal complexes (C, φ, γ, χ) with γ = 0.
Proof (i) Write

∂(C, φ) = (∂C, ∂φ) , ∂C = S−1C(φ0) ,

and let e:C−−→S∂C = C(φ0) be the inclusion. Consider the exact sequences
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of Q-groups

Qn−1(∂C)
1+T
−−→ Qn−1(∂C)

J
−−→ Q̂n−1(∂C) ,

Q̂n(Cn−∗)
φ̂%
0−−→ Q̂n(C)

ê%

−−→ Q̂n(S∂C) .

The obstruction J(∂φ) ∈ Q̂n−1(∂C) to a quadratic refinement of ∂(C, φ)

corresponds under the suspension isomorphism Q̂n−1(∂C)−−→Q̂n(S∂C) to
the obstruction ê%J(φ) ∈ Q̂n(S∂C) to a normal refinement of (C, φ).
(ii) An n-dimensional symmetric Poincaré complex (C, φ) determines an

n-dimensional normal complex

J(C, φ) = (C, φ, γ, χ)

with (γ, χ) unique up to equivalence. The class γ ∈ Q̂0(TC) is the image
of φ ∈ Qn(C) under the composite

Qn(C)
J
−−→ Q̂n(C)

(φ̂%
0 )−1

−−−−−→ Q̂n(Cn−∗)
S−n

−−→ Q̂0(TC) .

(iii) An n-dimensional quadratic complex (C,ψ) determines an n-dimensional
normal complex with γ = 0 and

(1 + T )(C,ψ) = (C, (1 + T )ψ, 0, χ)

such that

((1 + T )ψ)s =

{
(1 + T )ψ0 if s ≥ 0

0 if s < 0,
χs =

{
0 if s ≥ 0

ψ−s−1 if s < 0.

Conversely, an n-dimensional normal complex (C, φ, γ, χ) with γ = 0 deter-
mines an n-dimensional quadratic complex (C,ψ), by virtue of Qn(C, 0) =
Qn(C).

Definition 2.7 (i) An n-dimensional (symmetric, quadratic) pair (f :C−−→
D, (δφ, ψ)) in A is an n-dimensional symmetric pair with a quadratic struc-

ture on the boundary, i.e. a chain map f :C−−→D of finite chain com-
plexes in A together with an (n − 1)-cycle ψ ∈ (W%C)n−1 and an n-chain
δφ ∈ (W%D)n such that

f%(1 + T )ψ = d(δφ) ∈ (W%D)n−1 .

(ii) The pair (f :C−−→D, (δφ, ψ)) is Poincaré if the chain map

(δφ, (1 + T )ψ)0 : Dn−∗ −−→ C(f)

is a chain equivalence.

Proposition 2.8 (i) The homotopy equivalence classes of n-dimensional
(symmetric, quadratic) Poincaré pairs in A are in natural one–one corre-

spondence with the homotopy equivalence classes of n-dimensional normal
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complexes in A .
(ii) The cobordism classes of n-dimensional (normal, symmetric Poincaré)
pairs in A are in natural one–one correspondence with the cobordism classes
of (n− 1)-dimensional quadratic Poincaré complexes in A .

Proof (i) An n-dimensional normal complex (C, φ, γ, χ) in A determines
the n-dimensional (symmetric, quadratic) Poincaré pair in A

(iC : ∂C−−→Cn−∗, (δφ, ψ))

defined by

iC = (0 1) : ∂Cr = Cr+1 ⊕ Cn−r −−→ Cn−r ,

d∂C =

(
dC (−)rφ0

0 (−)rd∗C

)
:

∂Cr = Cr+1 ⊕ Cn−r −−→ ∂Cr−1 = Cr ⊕ Cn−r+1 ,

ψ0 =

(
χ0 0

1 + γ−nφ∗0 γ∗−n−1

)
:

∂Cr = Cr+1 ⊕ Cn−r −−→ ∂Cn−r−1 = Cn−r ⊕ Cr+1 ,

ψs =

(
χ−s 0

γ−n−sφ∗0 γ∗−n−s−1

)
:

∂Cr = Cr+1 ⊕ Cn−r −−→ ∂Cn−r−s−1 = Cn−r−s ⊕ Cr+s+1 (s ≥ 1) ,

δφs = γ−n+s : Cr −−→ Cn−r+s (s ≥ 0) .

Conversely, an n-dimensional (symmetric, quadratic) Poincaré pair (f :C−−→
D, (δφ, ψ)) in A determines an n-dimensional normal complex (C(f), φ, γ, χ)
in A with the symmetric structure

φs =





(
δφ0 0

(1 + T )ψ0f
∗ 0

)
if s = 0

(
δφ1 0

0 (1 + T )ψ0

)
if s = 1

(
δφs 0

0 0

)
if s ≥ 2

: C(f)r = Dr ⊕ Cr−1 −−→ C(f)n−r+s = Dn−r+s ⊕ Cn−r+s−1 .

The normal structure (γ, χ) is determined up to equivalence by the Poincaré

duality, with γ ∈ Q̂0(D−∗) the image of (δφ/(1 + T )ψ) ∈ Qn(C(f)) under
the composite

Qn(C(f))
((δφ0,(1+T )ψ0)%)−1

−−−−−−−−−−−−−−→ Qn(Dn−∗)
J
−−→ Q̂n(Dn−∗)

S−n

−−→ Q̂0(D−∗) .

(ii) Given an n-dimensional (normal, symmetric) pair in A (f :C−−→D,
((δφ, δγ, δχ), φ)) let (C ′, φ′) be the (n− 1)-dimensional symmetric complex
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obtained from (C, φ) by surgery on (f :C−−→D, (δφ, φ)). The trace of the
surgery is an n-dimensional symmetric pair ((g g′):C ⊕C ′−−→D′, (δφ′, φ⊕
−φ′)) with

g = inclusion : C −−→ D′ = C(φ0f
∗:Dn−1−∗−−→C) ,

g′ = projection : C ′ = S−1C((δφ, φ)0:Dn−∗−−→C(f)) −−→ D′ .

The natural isomorphism

Q̂n+1(Dn+1−∗)
'−−→ Q̂n+1(D′n−∗−−→C ′n−∗)

sends the chain bundle Sn+1δγ ∈ Q̂n+1(Dn+1−∗) to a normal structure on
the trace which restricts to 0 ∈ Q̂n(C ′n−∗), corresponding to a quadratic

refinement ψ′ ∈ Qn−1(C ′) of φ′ ∈ Qn−1(C ′). The symmetric complex (C, φ)
is Poincaré if and only if the quadratic complex (C ′, ψ′) is Poincaré.

Conversely, given an (n − 1)-dimensional quadratic Poincaré complex

(C ′, ψ′) define an n-dimensional (normal, symmetric Poincaré) pair (C−−→0,
(0, (1 + T )ψ)).

Definition 2.9 The quadratic boundary of an n-dimensional normal com-
plex (C, φ, γ, χ) is the (n− 1)-dimensional quadratic Poincaré complex

∂(C, φ, γ, χ) = (∂C, ψ)

defined in 2.6 (i) above, with ∂C = S−1C(φ0) the desuspension of the
algebraic mapping cone of the duality chain map φ0:Cn−∗−−→C. This can
also be viewed as the complex associated by 2.8 (ii) to the n-dimensional

(normal, symmetric Poincaré) pair (0−−→C, ((φ, γ, γ), 0)).

Definition 2.10 The n-dimensional hyperquadratic L-group L̂n(A) (n ∈ Z)

is the cobordism group of n-dimensional (symmetric, quadratic) Poincaré
pairs in A, designed to fit into the quadratic-symmetric exact sequence

. . . −−→ Ln(A)
1+T
−−→ Ln(A)

J
−−→ L̂n(A)

∂
−−→ Ln−1(A) −−→ . . . .

For a ring with involution R and A = Ap(R) the hyperquadratic L-
groups L̂∗(A) of 2.10 are just the hyperquadratic L-groups L̂∗(R) of Ranicki

[146, p. 137].

Proposition 2.11 The hyperquadratic L-groups L̂∗(A) are isomorphic to
the cobordism groups NL∗(A) of normal complexes in A

L̂∗(A) ∼= NL∗(A) ,

so that there is defined an exact sequence

. . . −−→ Ln(A)
1+T
−−→ Ln(A)

J
−−→ NLn(A)

∂
−−→ Ln−1(A) −−→ . . .
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with

∂ : NLn(A) −−→ Ln−1(A) ; (C, φ, γ, χ) −−→ (∂C, ψ)

given by the quadratic boundary (2.9) of normal complexes.
Proof The identities L̂n(A) = NLn(A) (n ∈ Z) are immediate from 2.8 (i)
and its relative version relating (symmetric, quadratic) Poincaré triads and
normal pairs. See Ranicki [146, §2.1] for algebraic Poincaré triads.

In the case A = Aq(R) (q = h, p) for a ring with involution R write the
normal L-groups as

NL∗(Aq(R)) = NL∗q(R) .

Example 2.12 The hyperquadratic L-groups L̂∗q(R) (q = h, p) of Ranicki
[146, p. 137] are the cobordism groups of (symmetric, quadratic) Poincaré

pairs over a ring with involution R which fit into an exact sequence

. . . −−→ Lqn(R)
1+T
−−→ Lnq (R)

J
−−→ L̂nq (R)

∂
−−→ Lqn−1(R) −−→ . . . .

The relative terms Ĥ∗(Z2 ; K̃0(R)) in the Rothenberg exact sequences re-
lating the free and projective L-groups of R are the same for the symmetric

and quadratic L-groups

. . . −−→ Lnh(R) −−→ Lnp (R) −−→ Ĥn(Z2 ; K̃0(R)) −−→ Ln−1
h (R) −−→ . . . ,

. . . −−→ Lhn(R) −−→ Lpn(R) −−→ Ĥn(Z2 ; K̃0(R)) −−→ Lhn−1(R) −−→ . . . .

Thus the free and projective hyperquadratic L-groups of R coincide

L̂∗(R) = L̂∗h(R) = L̂∗p(R) .

Similarly, the hyperquadratic L-groups of the categories Ah(R) and Ap(R)
coincide, being the 4-periodic versions of the hyperquadratic L-groups L̂∗(R)

L̂n(Ah(R)) = L̂n(Ap(R)) = lim−→
k
L̂n+4k(R) (n ∈ Z) ,

the direct limits being taken with respect to the double skew-suspension
maps. Use the isomorphisms given by 2.11

NL∗(Aq(R)) ∼= L̂∗(Aq(R)) (q = h, p)

to write

NL∗(R) = NL∗h(R) = NL∗p(R) = lim−→
k
L̂∗+4k(R) .

Remark 2.13 The exact sequence of 2.11 for A = A (R) = Ah(R) is the
algebraic analogue of the exact sequence of Levitt [92], Jones [80], Quinn
[132] and Hausmann and Vogel [75]

. . . −−→ ΩNn+1(K) −−→ Ln(Z[π]) −−→ ΩPn (K) −−→ ΩNn (K) −−→ . . . ,
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with ΩPn (K) (resp. ΩNn (K)) the bordism group of maps X−−→K from n-
dimensional geometric Poincaré (resp. normal) complexes, with π = π1(K)
the fundamental group of K and n ≥ 5. The symmetric signature of
Mishchenko [115] and Ranicki [145, §1] defines a map from geometric to

symmetric Poincaré bordism

σ∗ : ΩPn (K) −−→ Ln(Z[π]) ; X −−→ σ∗(X) = (C(X̃), φ) .

The hyperquadratic signature of Ranicki [146, p. 619] defines a map from
geometric to algebraic normal bordism

σ̂∗ : ΩNn (K) −−→ L̂n(Z[π]) ; X −−→ σ̂∗(X) = (C(X̃), φ, γ, χ) .

The signature maps fit together to define a map of exact sequences
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σ̂∗ : ΩNn (K) −−→ L̂n(Z[π]) ; X −−→ σ̂∗(X) = (C(X̃), ϕ, γ, χ) .

The signature maps fit together to define a map of exact sequences

. . . w ΩNn+1(K) w
σ∗

u
σ̂∗

Ln(Z[π]) w ΩPn (K) w

u
σ∗

ΩNn (K) w

u
σ̂∗

. . .

. . . w L̂n+1(Z[π]) w
∂ Ln(Z[π]) w

1+T
Ln(Z[π]) w

J L̂n(Z[π]) w . . . .

The normal signature is the stable hyperquadratic signature

σ̂∗ : ΩNn (K) −−→ NLn(Z[π]) = lim−→
k
L̂n+4k(Z[π]) .

The normal signature determines the quadratic signature

σ∗ = ∂σ̂∗ : ΩNn (K) −−→ lim−→
k
Ln+4k−1(Z[π]) = Ln−1(Z[π]) .

There is also a twisted version for a double covering Kw−−→K, with the
w-twisted involution on Z[π], and the bordism groups Ω∗(K,w) of maps

X−−→K such that the pullback Xw−−→X is the orientation double cover.

Example 2.14 (i) Let R be a ring with involution, and let (B, β) be a
chain bundle over R, with B a free R-module chain complex (not necessarily
finite or finitely generated). The cobordism groups Ln(B, β) (n ≥ 0) of n-

dimensional symmetric Poincaré complexes (C, ϕ, γ, χ) in A (R) with a chain
bundle map (f, b): (C, γ)−−→(B, β) fit into an exact sequence

. . . −−→ Ln(R) −−→ Ln(B, β) −−→ Qn(B, β)
∂
−−→ Ln−1(R) −−→ . . .

with

Ln(R) −−→ Ln(B, β) ; (C,ψ) −−→ ((C, (1 + T )ψ, 0, ψ), 0) ,

Ln(B, β) −−→ Qn(B, β) ; ((C, ϕ, γ, χ), (f, b)) −−→ (f, b)%(γ, χ) ,

∂ : Qn(B, β) −−→ Ln−1(R) ; (ϕ, χ) −−→ ∂(B̄, ϕ̄, β̄, χ̄) ,

where (B̄, ϕ̄, β̄, χ̄) the restriction of (B,ϕ, β, χ) to any finite subcomplex
B̄ ⊂ B supporting (ϕ, χ) ∈ Qn(B, β). As in Weiss [186] there is defined
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a universal chain bundle (B, β) over R, with β ∈ Q̂0(B−∗) such that the
algebraic Wu classes of Ranicki [146, 1.4] are isomorphisms

v̂r(β) : Hr(B)
'−−→ Ĥr(Z2 ;R) ; x −−→ β−2r(x)(x) (r ∈ Z) .

For the universal chain bundle (B, β) and any finite chain complex C in
A (R) there is defined an isomorphism

H0(HomR(C,B))
'−−→ Q̂0(C−∗) ; f −−→ f̂%(β)

so that the chain bundles (C, γ ∈ Q̂0(C−∗)) are classified up to homotopy
equivalence by the chain homotopy classes of chain maps C−−→B. For
universal (B, β) the forgetful maps define isomorphisms

Ln(B, β)
'−−→ Ln(R) ; (C, φ, γ, χ) −−→ (C, φ) ,

Qn(B, β)
'−−→ NLn(R) ; (φ, χ) −−→ (B̄n−∗, ∂(B̄, φ̄, β̄, χ̄)) .

(ii) Let K be a field of characteristic 2 which is perfect, i.e. such that
K−−→K;x−−→x2 is an isomorphism, so that for all n ∈ Z
Ĥn(Z2 ;K) = K , K × Ĥn(Z2 ;K) −−→ Ĥn(Z2 ;K) ; (x, y) −−→ x2y

with the identity involution on K. The chain bundle over K

(B : . . .
0
−−→ K

0
−−→ K

0
−−→ K

0
−−→ K

0
−−→ . . . , β = 1)

is universal. The quadratic Witt group L2∗(K) is detected by the Arf in-
variant, and the symmetric Witt group L2∗(K) is detected by the rank

(mod 2), with isomorphisms

Q2∗+1(B, β) = K/{x+ x2 |x ∈ K}
'−−→ L2∗(K) ; a −−→

(
K ⊕K ,

(
a 1

0 1

) )
,

Q2∗(B, β) = {x ∈ K |x+ x2 = 0} = Z2

'−−→ NL2∗(K) = L2∗(K) ; 1 −−→ (K, 1)

and L2∗+1(K) = L2∗+1(K) = 0 . In particular, this applies to K = F2.

By analogy with the observation of Quinn [132] that the mapping cylinder

of a map of geometric normal complexes defines a cobordism, we have:

Proposition 2.15 The algebraic mapping cylinder of a map of n-dimen-
sional normal complexes in A

(f, b) : (C ′, φ′, γ′, χ′) −−→ (C, φ, γ, χ)

is an (n+ 1)-dimensional normal pair in A
M(f, b) =

( (f 1):C ′ ⊕ C−→C , ((δφ, γ, δχ), (φ′ ⊕−φ, γ′ ⊕−γ, χ′ ⊕−χ)) , b⊕ 0 ) ,
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which defines a cobordism between (C, φ, γ, χ) and (C, φ, γ, χ).
Proof The chains δφ, δχ are determined by a chain level representative for
the identity

(f, b)%(φ′, χ′) = (φ, χ) ∈ Qn(C, γ) .

Remark 2.16 (i) Let A be an additive category with a 0-dimensional chain

duality. An algebraic normal map in A is a normal map of n-dimensional
symmetric Poincaré complexes

(f, b) : (C ′, φ′, γ′, χ′) −−→ (C, φ, γ, χ) .

The algebraic mapping cylinder M(f, b) of 2.15 is an (n + 1)-dimensional
(normal, symmetric Poincaré) pair. The quadratic kernel of (f, b) is the
n-dimensional quadratic Poincaré complex

σ∗(f, b) = (C(f !), ψ)

obtained by applying the construction of 2.8 (ii) to M(f, b), with f ! the

Umkehr chain map defined up to chain homotopy by the composite

f ! : C
(φ0)−1

−−−−−→ Cn−∗
f∗

−−→ C ′n−∗
φ′0−−→ C ′ .

The symmetrization of the quadratic kernel is an n-dimensional symmetric
Poincaré complex

(1 + T )σ∗(f, b) = (C(f !), (1 + T )ψ)

such that up to homotopy equivalence

(1 + T )σ∗(f, b)⊕ (C, φ) = (C ′, φ′) .

The construction of 2.8 (ii) defines an isomorphism between the cobordism
group of (n + 1)-dimensional (normal, symmetric Poincaré) pairs in A and
the quadratic L-group Ln(A). The quadratic signature of (f, b) is the cobor-

dism class of the quadratic kernel

σ∗(f, b) = (C(f !), ψ) ∈ Ln(A) .

The methods of Ranicki [144], [148] show that σ∗(f, b) = 0 ∈ Ln(A) if and
only if M(f, b) is algebraic normal cobordant rel ∂ to a symmetric Poincaré
cobordism between (C, φ, γ, χ) and (C ′, φ′, γ′, χ′).
(ii) The quadratic kernel σ∗(f, b) of a geometric normal map (f, b):X ′−−→X
of n-dimensional geometric Poincaré complexes obtained in Ranicki [145] is
the quadratic kernel σ∗(f̃ , b̃) of an induced algebraic normal map of n-
dimensional symmetric Poincaré complexes in A(Z[π]w)

(f̃ , b̃) : σ∗(X ′) = (C ′, φ′, γ′, χ′) −−→ σ∗(X) = (C, φ, γ, χ) ,

with w:π−−→Z2 the orientation map, and C = C(X̃), C ′ = C(X̃ ′) the

cellular chain complexes of the cover X̃ of X and the pullback cover X̃ ′ of
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X ′. The quadratic signature of (f, b) is the cobordism class of (C(f !), ψ)

σ∗(f, b) = σ∗(f̃ , b̃) = (C(f !), ψ) ∈ Ln(A(Z[π]w)) = Ln(Z[π]w) ,

with symmetrization

(1 + T )σ∗(f, b) = σ∗(X ′)− σ∗(X) ∈ Ln(Z[π]w) .

For X ′ = M a manifold and (f, b):M−−→X a geometric normal map in the
sense of Browder [16] the surgery obstruction of Wall [180] is the quadratic

signature of (f, b) with π = π1(X) and X̃ the universal cover of X.
(iii) Geometric normal complexes can be constructed from geometric Poin-
caré bordisms of degree 1 normal maps of geometric Poincaré complexes,

as follows. Given a normal map (f, b):X ′−−→X of n-dimensional geometric
Poincaré complexes let W ' X be the mapping cylinder of f , so that
(W ;X,X ′) is an (n + 1)-dimensional normal complex cobordism. Given

also a geometric Poincaré cobordism (V ;X,X ′) there is defined an (n+ 1)-
dimensional geometric normal complex

Y = V ∪∂ W .

The normal signature of Y is the stable hyperquadratic signature

σ̂∗(Y ) = (C(Ỹ ), φ, γ, χ) ∈ NLn+1(Z[π1(Y )]) = lim−→
k

L̂n+4k+1(Z[π1(Y )]) ,

with boundary the quadratic signature of (f, b) relative to π1(X)−−→π1(Y )

∂σ̂∗(Y ) = σ∗(f, b) ∈ Ln(Z[π1(Y )]) .

(iv) For the mapping cylinder W of the 2-dimensional normal map

(f, b) : X ′ = S1 × S1 −−→ X = S2

determined by the exotic framing of S1 × S1 with Kervaire–Arf invariant 1
and for the geometric Poincaré cobordism

(V ;X,X ′) = (D3 t S1 ×D2;S2, S1 × S1)

the construction of (iii) gives a simply-connected 3-dimensional geometric
normal complex Y = V ∪∂ W such that

∂σ̂∗(Y ) = σ∗(f, b) = 1 ∈ L2(Z) = Z2 .

Thus Y is not normal bordant to a geometric Poincaré complex, and (a

fortiori) the normal fibration νY :Y−−→BSG is not topologically reducible,
with νY :Y ' S2 ∨ S3−−→S3−−→BSG detected by the generator

1 ∈ π3(BSG) = π2(G/TOP ) = πs2 = Ωfr2 = L2(Z) = Z2 .

From now on the normal structure (γ, χ) will be suppressed from the

terminology of a normal complex (C, φ, γ, χ), which will be written as (C, φ).
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§3. Algebraic bordism categories

An algebraic bordism category Λ = (A,B,C) is a triple defined by an addi-

tive category with chain duality A and a pair (B,C ⊆ B) of additive cate-
gories of chain complexes in A satisfying certain conditions. The L-groups


L∗(Λ)
L∗(Λ)
NL∗(Λ)

of Λ are defined to be the cobordism groups of

{
symmetric
quadratic
normal

complexes in A which are B-contractible and C-Poincaré. The main re-
sult of §3 is the exact sequence relating quadratic, symmetric and normal

L-groups of an algebraic bordism category.

As in §§1,2 let A be an additive category with chain duality, and let B (A)

be the additive category of finite chain complexes in A and chain maps.

Definition 3.1 (i) A subcategory C ⊆ B (A) is closed if it is a full additive
subcategory which is invariant under T , such that the algebraic mapping
cone C(f) of any chain map f :C−−→D in C is an object in C.

(ii) A chain complex C in A is C-contractible if it belongs to C. A chain map
f :C−−→D in A is a C-equivalence.18 if the algebraic mapping cone C(f) is
C-contractible.

(iii) An n-dimensional

{
symmetric
quadratic

complex

{
(C, φ)
(C,ψ)

in A is C-contractible

if the chain complexes C and Cn−∗ are C-contractible.

(iv) An n-dimensional

{
symmetric
quadratic

complex

{
(C, φ)
(C,ψ)

in A is C-Poincaré if

the chain complex{
∂C = S−1C(φ0:Cn−∗−−→C)

∂C = S−1C((1 + T )ψ0:Cn−∗−−→C)

is C-contractible.

Definition 3.2 An algebraic bordism category Λ = (A,B,C) is an additive
category A with a chain duality T :A−−→B (A), together with a pair (B,C ⊆
B) of closed subcategories of B (A), such that for any object B in B

(i) the algebraic mapping cone C(1:B−−→B) is an object in C,

(ii) the chain equivalence e(B):T 2(B)
'−−→B is a C-equivalence.

Example 3.3 For any additive category with chain duality A there is de-
fined an algebraic bordism category

Λ(A) = (A,B (A),C (A))

with B (A) the category of finite chain complexes in A, and C (A) ⊆ B (A)
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the subcategory of contractible complexes.

Definition 3.4 Let Λ = (A,B,C) be an algebraic bordism category.

(i) An n-dimensional

{
symmetric
quadratic
normal

complex





(C, φ)
(C,ψ)
(C, φ)

in Λ is an n-dimen-

sional

{
symmetric
quadratic
normal

complex in A which is B-contractible and C-Poincaré.

Similarly for pairs and cobordisms.

(ii) The

{
symmetric
quadratic
normal

L-groups




Ln(Λ)
Ln(Λ)
NLn(Λ)

(n ∈ Z) are the cobordism

groups of n-dimensional

{
symmetric
quadratic
normal

complexes in Λ.

Proposition 3.5 If Λ = (A,B,C) is an algebraic bordism category such
that Q̂∗(C) = 0 for any C-contractible finite chain complex C in A then the
forgetful maps define isomorphisms

NLn(Λ)
'−−→ Ln(Λ) ; (C, φ, γ, χ) −−→ (C, φ) (n ∈ Z) .

Proof An n-dimensional symmetric complex (C, φ) in A has a normal
structure if and only if

J(φ) ∈ im(φ̂%
0 : Q̂n(Cn−∗)−−→Q̂n(C)) .

The hyperquadratic Q-groups of C,Cn−∗ and ∂C = S−1C(φ0:Cn−∗−−→C)
are related by an exact sequence

. . . −−→ Q̂n(∂C) −−→ Q̂n(Cn−∗)
φ̂%
0−−→ Q̂n(C) −−→ Q̂n−1(∂C) −−→ . . . .

If (C, φ) is C-Poincaré then ∂C is C-contractible, Q̂∗(∂C) = 0 and there is
defined an isomorphism

φ̂%
0 : Q̂n(Cn−∗)

'−−→ Q̂n(C) ,

so that (C, φ) has a normal structure. Similarly for pairs.

Example 3.6 The algebraic bordism category Λ(A) = (A,B (A),C (A)) of
3.3 is such that Q̂∗(C) = 0 for C (A)-contractible (= contractible) B (A)-

contractible (= any) finite chain complexes in A, so that

NL∗(Λ(A)) = L∗(Λ(A)) = L∗(A) .
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Definition 3.7 A functor of algebraic bordism categories

F : Λ = (A,B,C) −−→ Λ′ = (A′,B′,C′)
is a (covariant) functor F :A−−→A′ of the additive categories, such that

(i) F (B) is an object in B′ for any object B in B,
(ii) F (C) is an object in C′ for every object C in C,

(iii) for every object A in A there is given a natural C′-equivalence

G(A) : T ′F (A)
'−−→ FT (A)

with a commutative diagram
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Proof The exact sequences through L∗(A,C,D) are given by 3.9 (ii), and

those through NL∗(A,B,B) by 3.9 (iii).

For any object C in a closed subcategory C ⊆ B (A) the suspension SC =
C(0:C−−→0) is also an object in C.

Definition 3.15 (i) A closed subcategory C ⊆ B (A) is stable if
(a) C contains the finite chain complexes C in A such that SC is an object

in C,

(b) C contains the n-duals Cn−∗ (n ∈ Z) of objects C in C.
(ii) An algebraic bordism category Λ = (A,B,C) is stable if B and C are
stable closed subcategories of B (A).

Proposition 3.16 (i) The double skew-suspension maps of L-groups




S
2

: Ln(Λ) −−→ Ln+4(Λ) ; (C, ϕ) −−→ (S2C, ϕ)

S
2

: Ln(Λ) −−→ Ln+4(Λ) ; (C,ψ) −−→ (S2C,ψ)

S
2

: NLn(Λ) −−→ NLn+4(Λ) ; (C, ϕ, γ, χ) −−→ (S2C, ϕ, γ, χ)

are defined for any algebraic bordism category Λ = (A,B,C) and all n ∈ Z,
using the double skew-suspension isomorphisms of Q-groups given by 1.9.
(ii) The double skew-suspension maps of L-groups are isomorphisms for a

stable algebraic bordism category Λ.
Proof (i) Trivial.

Proposition 3.8 A functor of algebraic bordism categories

F : Λ = (A,B,C) −−→ Λ′ = (A′,B′,C′)
induces morphisms of L-groups




F : L∗(Λ) −−→ L∗(Λ′)

F : L∗(Λ) −−→ L∗(Λ′)

F : NL∗(Λ) −−→ NL∗(Λ′)

and there are defined relative L-groups




L∗(F )
L∗(F )
NL∗(F )

to fit into a long exact

sequence



. . . −−→ Ln(Λ)
F
−−→ Ln(Λ′) −−→ Ln(F ) −−→ Ln−1(Λ) −−→ . . .

. . . −−→ Ln(Λ)
F
−−→ Ln(Λ′) −−→ Ln(F ) −−→ Ln−1(Λ) −−→ . . .

. . . −−→ NLn(Λ)
F
−−→ NLn(Λ′) −−→ NLn(F ) −−→ NLn−1(Λ) −−→ . . . .

Proof For any objects M,N in A define a chain map of abelian group
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chain complexes

F (M,N) : M ⊗A N −−→ F (M)⊗A′ F (N) ;

(φ:T (M)−−→N) −−→ (F (φ)G(M):T ′F (M)−−→FT (M)−−→F (N))

which is compatible with the duality equivalences. An n-dimensional sym-
metric complex (C, φ) in Λ induces an n-dimensional symmetric complex
(F (C), F (φ)) in Λ′. Similarly for quadratic and normal complexes, and also

for pairs. Working as in Ranicki [146, §2] define the relative L-group Ln(F )
to be the cobordism group of pairs

((n− 1)-dimensional symmetric complex (C, φ) in Λ ,

n-dimensional symmetric pair (F (C)−−→D, (δφ, F (φ))) in Λ′) .

Similarly for the quadratic and normal cases.

Proposition 3.9 Let A be an additive category with chain duality, and let
(B ⊆ B (A),C ⊆ B,D ⊆ C) be a triple of closed subcategories of B (A). The

relative L-groups of the functor of algebraic bordism categories

F : Λ′ = (A,B,D) −−→ Λ = (A,B,C)

defined by inclusion are given up to isomorphism by the absolute L-groups

of the algebraic bordism category Λ′′ = (A,C,D)

(i) Ln(F ) = Ln−1(Λ′′)

(ii) Ln(F ) = Ln−1(Λ′′)
(iii) NLn(F ) = Ln−1(Λ′′)

and there are defined exact sequences

(i) . . . −−→ Ln(Λ′′) −−→ Ln(Λ′) −−→ Ln(Λ)
∂
−−→ Ln−1(Λ′′) −−→ . . .

(ii) . . . −−→ Ln(Λ′′) −−→ Ln(Λ′) −−→ Ln(Λ)
∂
−−→ Ln−1(Λ′′) −−→ . . .

(iii) . . . −−→ Ln(Λ′′) −−→ NLn(Λ′) −−→ NLn(Λ)
∂
−−→ Ln−1(Λ′′) −−→ . . .

with ∂ given by the boundary of 1.14 for (i) and (ii), and by 2.10 for (iii).

Proof (i) The relative symmetric L-group Ln(F ) is the cobordism group of
n-dimensional symmetric pairs (f :C−−→D, (δφ, φ)) in (A,B,C) with (C, φ)
defined in (A,B,D) (i.e. the pair is B-contractible, C-Poincaré and the

boundary is D-Poincaré). Define inverse isomorphisms

Ln−1(A,C,D)
'−−→ Ln(F ) ; (C, φ) −−→ ((C, φ), (C−−→0, (0, φ))) ,

Ln(F )
'−−→ Ln−1(A,C,D) ; (f :C−−→D, (δφ, φ)) −−→ (C ′, φ′)

with (C ′, φ′) the (n − 1)-dimensional symmetric complex in (A,C,D) ob-
tained from (C, φ) by algebraic surgery on the n-dimensional symmetric

pair (f :C−−→D, (δφ, φ)) in (A,B,C).
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(ii) As for (i), with symmetric replaced by quadratic.
(iii) As for (i), with symmetric replaced by normal, and using 2.9 (ii) to
obtain a quadratic structure on the effect of surgery on a normal pair.

The exact sequences of 3.9 are generalizations of the localization exact
sequence of Ranicki [146] (cf. 3.13 below), and of the relative L-theory
exact sequences of Vogel [174].

Example 3.10 For any algebraic bordism category Λ = (A,B,C) the exact

sequence of 3.9 (iii) for the triple (B,B,C) can be written as

. . . −−→ Ln(Λ)
1+T
−−→ NLn(Λ)

J
−−→ NLn(Λ̂)

∂
−−→ Ln−1(Λ) −−→ . . .

with Λ̂ = (A,B,B). If Λ satisfies the hypothesis of 3.5 then NL∗(Λ) can be

replaced by L∗(Λ). In particular, this can be done for the algebraic bordism
category Λ = Λ(A) of 3.3 (cf. 3.6), recovering the exact sequence of 2.12

. . . −−→ Ln(A)
1+T
−−→ Ln(A)

J
−−→ NLn(A)

∂
−−→ Ln−1(A) −−→ . . . .

Example 3.11 Given a ring with involution R and q = p (resp. h, s) define
the algebraic bordism category

Λq(R) = (Aq(R),Bq(R),Cq(R))

with Aq(R) the additive category of f.g. projective (resp. f.g. free, based
f.g. free) R-modules with the duality involution of 1.11, Bq(R) = B (A)q(R)
the category of finite chain complexes in Aq(R), and Cq(R) ⊆ Bq(R) the

subcategory of contractible complexes C, such that τ(C) = 0 ∈ K̃1(R) for
q = s. The quadratic L-groups of Λq(R) are the type q quadratic L-groups
of R

L∗(Λ
q(R)) = Lq∗(R) .

Let {
∗ : K̃0(R)

'−−→ K̃0(R) ; [P ] −−→ [P ∗]

∗ : K̃1(R)
'−−→ K̃1(R) ; τ(f :Rn−−→Rn) −−→ τ(f∗:Rn−−→Rn)

be the induced involution of the reduced
{

projective class
torsion

group of R. The

intermediate quadratic L-groups LX∗ (R) for a ∗ -invariant subgroup X ⊆{
K̃0(R)

K̃1(R)
can be expressed as the L-groups of an algebraic bordism category

LX∗ (R) =

{
L∗(Ap(R),BX(R),Cp(R))

L∗(As(R),Bs(R),CX(R))



56 Algebraic L-theory and topological manifolds

with

{
BX(R) ⊆ Bp(R)
CX(R) ⊆ Bs(R)

the subcategory of
{−

contractible
chain complexes

C in the category

{
Ap(R)
As(R)

with

{
projective class [C] ∈ X ⊆ K̃0(R)

torsion τ(C) ∈ X ⊆ K̃1(R) .
The

projective, free and simple quadratic L-groups of R are the special cases

L
K̃0(R)
∗ (R) = Lp∗(R) , L

{0}⊆K̃1(R)
∗ (R) = Ls∗(R) ,

L
{0}⊆K̃0(R)
∗ (R) = L

K̃1(R)
∗ (R) = Lh∗(R) .

Given ∗ -invariant subgroups Y ⊆ X ⊆
{
K̃0(R)

K̃1(R)
the exact sequence of

quadratic L-groups given by 3.9 (ii) for the triple

{
(Bp(R),BX(R),BY (R))

(CX(R),CY (R),Cs(R))
is isomorphic to the Rothenberg exact sequence of Ranicki [144, §9]

. . . −−→ LYn (R) −−→ LXn (R) −−→ Ĥn(Z2 ;X/Y ) −−→ LYn−1(R) −−→ . . . ,

corresponding to the isomorphisms



Ln(Ap(R),BX(R),BY (R))
'−−→ Ĥn(Z2 ;X/Y ) ; (C,ψ) −−→ [C]

Ln−1(As(R),CX(R),CY (R))
'−−→ Ĥn(Z2 ;X/Y ) ;

(C,ψ) −−→ τ((1 + T )ψ0:Cn−1−∗−−→C) = τ(C) + (−)nτ(C)∗ .
Similar considerations apply to the symmetric and normal L-groups.

Remark 3.12 In dealing with the free L-theory of a ring with involution R

the terminology is abbreviated, writing

Λh(R) = Λ(R) = (A (R),B (R),C (R)) ,

Ln(Λ(R)) = Ln+4∗
h (R) = Ln+4∗(R) ,

Ln(Λ(R)) = Lhn(R) = Ln(R) ,

Λ̂(R) = (A (R),B (R),B (R)) , NLn(Λ̂(R)) = NLn(R) .

Example 3.13 Let R be a ring with involution, and let S ⊂ R be a mul-

tiplicative subset of central non-zero divisors which is invariant under the
involution. The localization of R inverting S is the ring with involution

S−1R = { r/s | r ∈ R , s ∈ S }
with

r/s = rt/st , (r/s) = r̄/s̄ (r ∈ R, s, t ∈ S) .

Define algebraic bordism categories

Γ(R,S) = (A (R),B (R),C(R,S)) ,

Λ(R,S) = (A (R),C (R,S),C (R))



3. Algebraic bordism categories 57

with C(R,S) ⊂ B (R) the closed subcategory of the finite f.g. free R-module
chain complexes C such that the localization

S−1C = S−1R⊗R C
is in C(S−1R), i.e. a contractible finite chain complex in A(S−1R). The
localization maps of quadratic L-groups are isomorphisms

Ln(Γ(R,S))
'−−→ Ln(Λ(S−1R)) = Ln(S−1R) ;

(C,ψ) −−→ (S−1C, S−1ψ) (n ∈ Z)

because

(i) for every finite chain complex C in A (R) localization defines isomor-
phisms of abelian groups

lim−−→
C→D

Qn(D)
'−−→ lim−−→

C→D
Qn(S−1D) = Qn(S−1C) (n ∈ Z)

with the direct limits taken over all the finite chain complexes D in

A (R) with a C (R,S)-equivalence C
'−−→D,

(ii) every finite chain complex in A(S−1R) is C (S−1R)-equivalent to S−1C
for a finite chain complex C in A (R).

Let Ln(R,S) = Ln−1(Λ(R,S)), the cobordism group of (n−1)-dimensional
quadratic Poincaré complexes (C,ψ) in A (R) with C in C(R,S). The lo-
calization exact sequence of Ranicki [146, §4]

. . . −−→ Ln(R) −−→ Ln(S−1R)
∂
−−→ Ln(R,S) −−→ Ln−1(R) −−→ . . .

is isomorphic to the exact sequence of 3.9 (ii)

. . . −−→ Ln(Λ(R)) −−→ Ln(Γ(R,S)) −−→ Ln−1(Λ(R,S))

−−→ Ln−1(Λ(R)) −−→ . . . .

The quadratic L-group Ln(R,S) is isomorphic to the cobordism group of
n-dimensional quadratic Poincaré complexes in the category of S-torsion
R-modules of homological dimension 1. In particular, the boundary map
for n = 0

∂ : L0(S−1R) = L0(Γ(R,S)) −−→ L0(R,S) = L−1(Λ(R,S))

sends the Witt class of a nonsingular quadratic form S−1(M,λ, µ) over
S−1R induced from a quadratic form (M,λ, µ) over R to the Witt class of
a nonsingular S−1R/R-valued quadratic linking form

∂S−1(M,λ, µ) = (∂M, ∂λ, ∂µ) ,

with
∂M = coker(λ:M−−→M∗) ,
∂λ : ∂M × ∂M −−→ S−1R/R ; x −−→ (y −−→ x(z)/s)

(x, y ∈M∗ , z ∈M , s ∈ S , λ(z) = sy ∈M∗) .
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Similarly for the symmetric L-groups.

Proposition 3.14 Given an additive category with chain duality A and

closed subcategories D ⊆ C ⊆ B ⊆ B (A) there is defined a commutative
braid of exact sequences
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Proof The exact sequences through L∗(A,C,D) are given by 3.9 (ii), and

those through NL∗(A,B,B) by 3.9 (iii).

For any object C in a closed subcategory C ⊆ B (A) the suspension SC =
C(0:C−−→0) is also an object in C.

Definition 3.15 (i) A closed subcategory C ⊆ B (A) is stable if
(a) C contains the finite chain complexes C in A such that SC is an object

in C,

(b) C contains the n-duals Cn−∗ (n ∈ Z) of objects C in C.
(ii) An algebraic bordism category Λ = (A,B,C) is stable if B and C are
stable closed subcategories of B (A).

Proposition 3.16 (i) The double skew-suspension maps of L-groups




S
2

: Ln(Λ) −−→ Ln+4(Λ) ; (C, ϕ) −−→ (S2C, ϕ)

S
2

: Ln(Λ) −−→ Ln+4(Λ) ; (C,ψ) −−→ (S2C,ψ)

S
2

: NLn(Λ) −−→ NLn+4(Λ) ; (C, ϕ, γ, χ) −−→ (S2C, ϕ, γ, χ)

are defined for any algebraic bordism category Λ = (A,B,C) and all n ∈ Z,
using the double skew-suspension isomorphisms of Q-groups given by 1.9.
(ii) The double skew-suspension maps of L-groups are isomorphisms for a

stable algebraic bordism category Λ.
Proof (i) Trivial.

Proof The exact sequences through L∗(A,C,D) are given by 3.9 (ii), and
those through NL∗(A,B,B) by 3.9 (iii).

For any object C in a closed subcategory C ⊆ B (A) the suspension SC =
C(0:C−−→0) is also an object in C.

Definition 3.15 (i) A closed subcategory C ⊆ B (A) is stable if
(a) C contains the finite chain complexes C in A such that SC is an object

in C,

(b) C contains the n-duals Cn−∗ (n ∈ Z) of objects C in C.
(ii) An algebraic bordism category Λ = (A,B,C) is stable if B and C are
stable closed subcategories of B (A).

Proposition 3.16 (i) The double skew-suspension maps of L-groups




S
2

: Ln(Λ) −−→ Ln+4(Λ) ; (C, φ) −−→ (S2C, φ)

S
2

: Ln(Λ) −−→ Ln+4(Λ) ; (C,ψ) −−→ (S2C,ψ)

S
2

: NLn(Λ) −−→ NLn+4(Λ) ; (C, φ, γ, χ) −−→ (S2C, φ, γ, χ)

are defined for any algebraic bordism category Λ = (A,B,C) and all n ∈ Z,

using the double skew-suspension isomorphisms of Q-groups given by 1.9.
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(ii) The double skew-suspension maps of L-groups are isomorphisms for a
stable algebraic bordism category Λ.
Proof (i) Trivial.
(ii) For stable Λ the double skew-suspension functor defines an isomorphism

of categories

S
2

: {n-dimensional symmetric complexes in Λ}
'−−→ {(n+ 4)-dimensional symmetric complexes in Λ}

for all n ∈ Z by virtue of the stability of B and C. (Actually only 3.15 (i)

(a) is being used here.) Similarly for quadratic and normal complexes, and
also for pairs.

Example 3.17 (i) The algebraic bordism category Λ(A) = (A,B (A),C (A))

of 3.3 is stable. The

{
symmetric
quadratic

L-groups of Λ(A) are the

{
symmetric
quadratic

L-groups of the additive category with chain duality A{
L∗(Λ(A)) = L∗(A)

L∗(Λ(A)) = L∗(A) .

Also, by 3.5 the normal L-groups of Λ(A) are the symmetric L-groups of A
NL∗(Λ(A)) = L∗(A) ,

since Q̂∗(C) = 0 for any C (A)-contractible (= contractible) finite chain

complex in A .
(ii) The normal L-groups of Λ(A) = (A,B (A),B (A)) are the normal L-
groups of A

NL∗(Λ(A)) = NL∗(A) .

Example 3.18 Given a ring with involution R define the algebraic bordism
category

Λ+(R) = (A (R),B+(R),C+(R))

with A (R) the additive category of f.g. free R-modules, B+(R) the additive
category of finite chain complexes C in A (R) which are positive (i.e. Cr = 0

for r < 0), and C+(R) ⊆ B+(R) the subcategory of the contractible positive
complexes. The inclusion Λ+(R) ⊆ Λ(R) in the algebraic bordism category

Λ(R) of 3.12 induces the natural maps to the 4-periodic

{
symmetric
quadratic

L-

groups of R{
Ln(Λ+(R)) −−→ Ln(Λ(R)) = Ln(A (R)) = Ln+4∗(R)

Ln(Λ+(R)) −−→ Ln(Λ(R)) = Ln(A (R)) = Ln+4∗(R)
(n ∈ Z) .
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The symmetric L-groups of Λ+(R) are the symmetric L-groups of R as
originally defined by Mishchenko [115]

L∗(Λ+(R)) = L∗(R) .

It was shown in Ranicki [144] that for ∗ ≥ 0 the maps{
L∗(Λ+(R))→ L∗(Λ(R))
L∗(Λ+(R))→ L∗(Λ(R))

{
are not
are

isomorphisms in general, and also that

L∗(Λ+(R)) = L∗(R)

with L∗(R) the original 4-periodic quadratic L-groups of Wall [180].

Call Ln(R) the connective symmetric L-groups of R, to distinguish them

from the 4-periodic symmetric L-groups Ln+4∗(R). See §15 for the general
L-theory of algebraic Poincaré complexes with connectivity conditions.

The algebraic surgery below the middle dimension used in Ranicki [144]

to prove the 4-periodicity of the quadratic L-groups of rings with involution
admits the following generalization for algebraic bordism categories, which
is needed for §6 below.

Definition 3.19 (i) An n-dimensional chain complex C in A is highly con-
nected if there exist morphisms Γ:Cr−−→Cr+1 (2r ≥ n) such that

dΓ + Γd = 1 : Cr −−→ Cr (2r > n) .

(ii) An n-dimensional chain complex C in A is highly B-connected if it is
B-equivalent to a highly connected complex.

Example 3.20 Let (A,B,C) = (Aq(R),Bq(R),Cq(R)) (q = p, h, s) for some
ring with involution R. The following conditions on an n-dimensional chain
complex C in A are equivalent:

(i) C is highly connected,
(ii) C is highly B-connected,

(iii) Hr(C) = Hr(C) = 0 for 2r > n,

(iv) C is C-equivalent to an n-dimensional chain complex D in A such that
Dr = 0 for 2r > n.

Definition 3.21 (i) An n-dimensional quadratic complex (C,ψ) (resp. pair
(f :C−−→D, (δψ, ψ))) in A is highly B-connected if the chain complexes C

(resp. C and D) are highly B-connected.
(ii) Let Ln(Λ)hc (n ∈ Z) be the cobordism group of highly B-connected
n-dimensional quadratic complexes in Λ = (A,B,C).
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Definition 3.22 The algebraic bordism category Λ = (A,B,C) is connected
if

(i) for each object A in A the dual chain complex TA is such that (TA)r =
0 for r > 0,

(ii) for every B-contractible chain complex B and k ∈ Z the subcomplex
B[k] ⊆ B defined by

B[k]r =
{
Br if r ≥ k
0 otherwise

is B-contractible.

In particular, Λ = (A,B,C) is connected if T :A−−→B (A) is 0-dimensional
(1.2) and B = B (A).

If C is a finite chain complex in A which is positive (i.e. Cr = 0 for r < 0)

and Λ = (A,B,C) is connected then C ⊗A C = HomA(TC,C) is a positive
Z[Z2]-module chain complex.

Proposition 3.23 For a connected algebraic bordism category Λ = (A,B,C)
the forgetful maps are isomorphisms

Ln(Λ)hc
'−−→ Ln(Λ) ; (C,ψ) −−→ (C,ψ) (n ∈ Z) .

Proof As in Ranicki [144] define inverses

Ln(Λ)
'−−→ Ln(Λ)hc ; (C,ψ) −−→ (C ′, ψ′)

by sending an n-dimensional quadratic complex (C,ψ) in Λ to the highly
B-connected quadratic complex (C ′, ψ′) in Λ obtained by surgery on the
quadratic pair (C−−→C[k], (0, ψ)), with k the least integer such that 2k >

n.

Theorem A of Quillen [129] is an algebraic K-theory analogue of the Vi-
etoris mapping theorem, stating that a functor F :A−−→A′ of exact cat-
egories with contractible fibres is a homotopy equivalence of categories, and

so induces isomorphisms F :K∗(A)
'−−→K∗(A′) in the algebraic K-groups.

There is an evident algebraic L-theory analogue: a functor of algebraic
bordism categories F : Λ = (A,B,C)−−→Λ′ = (A′,B′,C′) such that

(*) for every n ∈ Z and every B-connected n-dimensional symmetric com-
plex (C, φ) in Λ and every B′-connected (n+1)-dimensional symmetric

pair E′ = (f ′:F (C)−−→D′, (δφ′, F (φ))) in Λ′ there exists an (n + 1)-
dimensional symmetric pair E = (f :C−−→D, (δφ, φ)) in Λ with F (E)
B′-equivalent to E′

induces isomorphisms F :L∗(Λ)
'−−→L∗(Λ′) in the symmetric L-groups, and

L∗(F : Λ−−→Λ′) = 0. Similarly for quadratic L-theory. The following highly-



62 Algebraic L-theory and topological manifolds

connected quadratic version is required for the proof of the algebraic π-π
theorem in §10 below.

Proposition 3.24 A functor of connected algebraic bordism categories

F : Λ = (A,B,C) −−→ Λ′ = (A′,B′,C′)
such that

(*) for every n ∈ Z and every highly B-connected n-dimensional quadratic
complex (C,ψ) in Λ and every highly B′-connected (n+1)-dimensional

quadratic pair E′ = (f ′:F (C)−−→D′, (δψ′, F (ψ))) in Λ′ there exists an
(n+ 1)-dimensional quadratic pair E = (f :C−−→D, (δψ, ψ)) in Λ with
F (E) B′-equivalent to E′

induces isomorphisms F :L∗(Λ)
'−−→L∗(Λ′) in the quadratic L-groups, and

L∗(F : Λ−−→Λ′) = 0.
Proof The induced map F :Ln(Λ)−−→Ln(Λ′) is one–one because by 3.23 an

element in the kernel is represented by a highly B-connected n-dimensional
quadratic complex (C,ψ) in Λ for which there exists a highly B′-connected
(n+ 1)-dimensional quadratic pair in Λ′

E′ = (f ′:F (C)−−→D′, (δψ′, F (ψ))) .

The corresponding (n + 1)-dimensional quadratic B-Poincaré pair E =
(f :C−−→D, (δψ, ψ)) in A with F (E) B′-equivalent to E′ gives (C,ψ) =
0 ∈ Ln(Λ).

The induced map F :Ln+1(Λ)−−→Ln+1(Λ′) is onto because by 3.23 every ele-
ment in Ln+1(Λ′) is represented by a highly B′-connected (n+1)-dimensional
quadratic complex (D′, δψ′) in Λ′, defining a highly B′-connected (n + 1)-

dimensional quadratic pair E′ = (0−−→D′, (δψ′, 0)) in Λ′. The algebraic
Thom construction (Ranicki [144, 3.4]) applied to the corresponding (n+1)-
dimensional quadratic pair E = (f :C−−→D, (δψ, ψ)) in Λ with F (E) B′-
equivalent to E′ is an (n+ 1)-dimensional quadratic complex (C(f), δψ/ψ)

in Λ such that

F (C(f), δψ/ψ) = (D′, δψ′) ∈ im(F :Ln+1(Λ)−−→Ln+1(Λ′)) .



4. Categories over complexes 63

§4. Categories over complexes

An additive category A and a simplicial complex K are combined to de-

fine an additive category

{
A∗(K)
A ∗(K)

of K-based objects in A which depends
{

contravariantly
covariantly

on K. In §5 a chain duality on A is extended to a chain

duality on

{
A∗(K)
A ∗(K)

, allowing the extension of an algebraic bordism cate-

gory Λ = (A,B,C) to an algebraic bordism category

{
Λ∗(K)
Λ∗(K) .

Definition 4.1 (i) An object M in an additive category A is K-based if it
is expressed as a direct sum

M =
∑

σ∈K
M(σ)

of objects M(σ) in A, such that {σ ∈ K |M(σ) 6= 0} is finite. A morphism
f :M−−→N of K-based objects is a collection of morphisms in A

f = {f(τ, σ):M(σ)−−→N(τ) |σ, τ ∈ K} .

(ii) Let

{
A∗(K)
A ∗(K)

be the additive category of K-based objects M in A, with

morphisms f :M−−→N such that f(τ, σ):M(σ)−−→N(τ) is 0 unless
{
τ ≤ σ
τ ≥ σ ,

so that 



f(M(σ)) ⊆ ∑
τ≤σ

N(τ)

f(M(σ)) ⊆ ∑
τ≥σ

N(τ) .

(iii) Forgetting the K-based structure defines the covariant assembly functor




A∗(K) −−→ A ; M −−→ M∗(K) =
∑

σ∈K
M(σ)

A ∗(K) −−→ A ; M −−→ M∗(K) =
∑

σ∈K
M(σ) .

Example 4.2 The simplicial
{

chain
cochain

complex

{
∆(K)
∆(K)−∗

of K is a finite

chain complex in

{
A (Z)∗(K)
A (Z)∗(K)

with

{
∆(K)(σ) = S|σ|Z
∆(K)−∗(σ) = S−|σ|Z

(σ ∈ K) .
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Regard the simplicial complex K as a category with one object for each
simplex σ ∈ K and one morphism σ → τ for each face inclusion σ ≤ τ .

Definition 4.3 Let

{
A∗[K]
A ∗[K]

be the additive category with objects the
{

covariant
contravariant

functors

M : K −−→ A ; σ −−→ M [σ]

such that {σ ∈ K |M [σ] 6= 0} is finite. The morphisms are the natural
transformations of such functors.

Assume that the simplicial complex K is locally finite and ordered, so
that for each simplex σ ∈ K the set

{
K∗(σ) = {τ ∈ K | τ > σ , |τ | = |σ|+ 1}
K∗(σ) = {τ ∈ K | τ < σ , |τ | = |σ| − 1}

is finite and ordered, and its elements are written

{
K∗(σ) = { δ0σ, δ1σ, δ2σ, . . . }
K∗(σ) = { ∂0σ, ∂1σ, ∂2σ, . . . } .

Definition 4.4 Define the covariant assembly functor for a simplicial com-

plex K

{B (A)∗[K] = B (A∗[K]) −−→ B (A ∗(K)) ; C −−→ C∗[K]

B (A ∗[K]) −−→ B (A∗(K)) ; C −−→ C∗[K]

by sending a finite chain complex C in

{
A∗[K]
A ∗[K]

to the finite chain complex
{
C∗[K]
C∗[K]

in

{
A ∗(K)
A∗(K)

with





C∗[K]r =
∑

σ∈K
C[σ]r+|σ| , C∗[K](σ) = S−|σ|C[σ]

C∗[K]r =
∑

σ∈K
C[σ]r−|σ| , C∗[K](σ) = S|σ|C[σ]

(σ ∈ K) .
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The assembly is the total complex of the double complex in A defined by




C∗[K]p,q =
∑

σ∈K,|σ|=−p
C[σ]q

C∗[K]p,q =
∑

σ∈K,|σ|=p
C[σ]q ,





d′ : C∗[K]p,q −−→ C∗[K]p−1,q ; c[σ] −−→
∑

i

(−)iδic[σ]

d′ : C∗[K]p,q −−→ C∗[K]p−1,q ; c[σ] −−→
∑

i

(−)i∂ic[σ] ,

{
d′′ : C∗[K]p,q −−→ C∗[K]p,q−1 ; c[σ] −−→ dC[σ](c[σ])

d′′ : C∗[K]p,q −−→ C∗[K]p,q−1 ; c[σ] −−→ dC[σ](c[σ]) ,

the sum in d′ being taken over all the elements

{
δiσ ∈ K∗(σ)

∂iσ ∈ K∗(σ)
with

{
δi:C[σ]−−→C[δiσ]

∂i:C[σ]−−→C[∂iσ]
the chain map induced by the inclusion

{
σ−−→δiσ
∂iσ−−→σ.

Example 4.5 The assembly of the 0-dimensional chain complex Z in{
A (Z)∗[K]
A (Z)∗[K]

defined by

Z : K −−→ A (Z) ⊆ B (A (Z)) ; σ −−→ Z[σ] = Z

with the identity structure chain maps Z[σ] = Z[τ ] is the simplicial
{

cochain
chain

complex of K
{
Z ∗[K] = ∆(K)−∗

Z∗[K] = ∆(K)

already considered in 4.2 above as a chain complex in

{
A (Z)∗(K)
A (Z)∗(K).

Remark 4.6 If A is embedded in an abelian category the double complex{
C∗[K]
C∗[K]

of 4.4 determines a spectral sequence E(C) with E2-terms

E2
p,q =

{
H−p(K; {Hq(C[σ])})
Hp(K; {Hq(C[σ])}) ,
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which converges to

{
H∗(C∗[K])
H∗(C∗[K])

with respect to the filtration defined by





FpC
∗[K]q =

∑
σ∈K,|σ|≥−p

C[σ]q+|σ| ⊆ C∗[K]q

FpC∗[K]q =
∑

σ∈K,|σ|≤p
C[σ]q−|σ| ⊆ C∗[K]q .

Define the covariant functors




A∗(K) −−→ A∗[K] ; M −−→ [M ] , [M ][σ] =
∑

τ≤σ
M(τ)

A ∗(K) −−→ A ∗[K] ; M −−→ [M ] , [M ][σ] =
∑

τ≥σ
M(τ) .

For any object M in

{
A∗(K)
A ∗(K)

and any object N in

{
A∗[K]
A ∗[K]





HomA∗[K]([M ], N) =
∑

σ∈K
HomA(M(σ), N [σ])

HomA∗[K]([M ], N) =
∑

σ∈K
HomA(M(σ), N [σ]) .

A direct application of the contravariant duality functor T :A−−→B (A)

only gives a contravariant functor

{
T :A∗(K)−−→B (A)∗(K)
T :A ∗(K)−−→B (A)∗(K)

and so does

not define a chain duality on A ∗(K). In §5 below the chain duality T :A−−→
B (A) will be extended to a chain duality

{
T :A∗(K)−−→B (A∗(K))
T :A ∗(K)−−→B (A ∗(K))

using

the following embedding of

{
A∗(K)
A ∗(K)

in the functor category

{
A∗[K]
A ∗[K] .

Proposition 4.7 (i) A finite chain complex C in

{
A∗(K)
A ∗(K)

is contractible

if and only if each of the chain complexes C(σ) (σ ∈ K) in A is contractible.

(ii) A chain map f :C−−→D of finite chain complexes in

{
A∗(K)
A ∗(K)

is a chain

equivalence if and only if each of the diagonal components

f(σ, σ) : C(σ) −−→ D(σ) (σ ∈ K)

is a chain equivalence in A .
Proof Proposition 2.7 of Ranicki and Weiss [150].
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Remark 4.8 Given an additive category A let D (A) be the homotopy cat-
egory of finite chain complexes in A and chain homotopy classes of chain

maps. Let

{
D ′(A∗[K])
D ′(A ∗[K])

be the localization of the triangulated category
{
D (A∗[K])
D (A ∗[K])

inverting the chain complexes C in

{
A∗[K]
A ∗[K]

such that each

of the chain complexes C[σ] (σ ∈ K) in A is contractible. Using the
methods of Ranicki and Weiss [150, §3] it can be shown that the functor{
A∗(K)−−→A∗[K]
A ∗(K)−−→A ∗[K]

is a full embedding which determines an equivalence of

the homotopy categories



D (A∗(K))
'−−→ D ′(A∗[K]) ; C −−→ [C] ,

D (A ∗(K))
'−−→ D ′(A ∗[K]) ; C −−→ [C] .

Proposition 4.9 For any finite chain complex C in A ∗(K) the assembly

[C]∗[K] of the finite chain complex [C] in A ∗[K] is naturally chain equivalent
to the finite chain complex C∗(K) in A obtained by forgetting the K-based
structure.
Proof Define a natural chain equivalence in A

βC : [C]∗[K]
'−−→ C∗(K)

by

βC : [C]∗[K]n =
∑

σ∈K
(∆(∆|σ|)⊗Z C(σ))n

−−→ C∗(K)n =
∑

σ∈K
C(σ)n ; a⊗ b −−→ ε(a)b ,

using the chain equivalences ε: ∆(∆|σ|)
'−−→Z in A (Z) defined by augmen-

tation.

Remark 4.10 (i) The open star of a simplex σ ∈ K is

stK(σ) = {τ ∈ K | τ ≥ σ} .
Note that K\stK(σ) is a subcomplex of K: if λ ∈ K does not have σ as a
face, and µ ∈ K is a face of λ, then µ does not have σ as a face. For any

finite chain complex C in A∗[K] and σ ∈ K projection defines a chain map
in A

∂σ : C∗[K]→ C∗[K,K\stK(σ)]
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with C∗[K,K\stK(σ)] the quotient complex of C∗[K] defined by

C∗[K,K\stK(σ)]r =
∑

τ≥σ
C[τ ]r−|τ | .

(ii) The star and link of a simplex σ ∈ K in a simplicial complex K are the
subcomplexes defined by

starK(σ) = {τ ∈ K |στ ∈ K} ,
linkK(σ) = {τ ∈ K |στ ∈ K , σ ∩ τ = ∅} .

The dual cell of σ is the contractible subcomplex of the barycentric subdi-
vision K ′ defined by

D(σ,K) = {σ̂0σ̂1 . . . σ̂p ∈ K ′ |σ ≤ σ0 < σ1 < . . . < σp} ,
with boundary

∂D(σ,K) =
⋃

τ>σ

D(τ,K) = {σ̂0σ̂1 . . . σ̂p ∈ K ′ |σ < σ0 < σ1 < . . . < σp} .

The barycentric subdivision of the link of σ ∈ K is isomorphic to the bound-

ary of the dual cell D(σ,K)

(linkK(σ))′ ∼= ∂D(σ,K) .

The star and link in K ′ of the barycentre σ̂ ∈ K ′ of σ ∈ K are given by the

joins

(starK′(σ̂), linkK′(σ̂)) = ∂σ′ ∗ (D(σ,K), ∂D(σ,K)) .

The local homology groups of |K| at a point x ∈ |K| in the interior of σ ∈ K
are given by

H∗(|K|, |K|\{x}) ∼= H∗(K,K\stK(σ)) .

Now S−|σ|∆(K,K\stK(σ)) is the cellular chain complex of the relative CW

pair (|D(σ,K)|, |∂D(σ,K)|), with one q-cell

eq = |D(σ,K) ∩ τ ′|

= |
⋃
{τ̂0τ̂1 . . . τ̂p ∈ K ′ |σ ≤ τ0 < τ1 < . . . < τp ≤ τ}| (q = |τ | − |σ|)

for each τ ∈ stK(σ). The subdivision chain equivalence

S−|σ|∆(K,K\stK(σ)) = C(|D(σ,K)|, |∂D(σ,K)|)
'−−→ ∆(|D(σ,K)|, |∂D(σ,K)|)

induces isomorphisms

H∗(K,K\stK(σ)) ∼= H∗−|σ|(D(σ,K), ∂D(σ,K)) .

The following conditions on a locally finite simplicial complex K are equiv-

alent:
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(i) the polyhedron |K| is an n-dimensional homology manifold, i.e. the
local homology of |K| at each point x ∈ |K| is

H∗(|K|, |K|\{x}) ∼= H∗(Rn,Rn\{0}) =

{
Z if ∗ = n

0 otherwise,

(ii) K is a combinatorial homology n-manifold, i.e. for each simplex σ ∈ K
H∗(K,K\stK(σ)) ∼= H∗(Rn,Rn\{0}) ,

(iii) each linkK(σ) (σ ∈ K) is an (n−|σ|−1)-dimensional homology sphere

H∗(linkK(σ)) ∼= H∗(S
n−|σ|−1) =

{
Z if ∗ = 0 , n− |σ| − 1
0 otherwise ,

(iv) each ∂D(σ,K) (σ ∈ K) is an (n−|σ|−1)-dimensional homology sphere,
(v) each (D(σ,K), ∂D(σ,K)) (σ ∈ K) is an (n−|σ|)-dimensional geomet-

ric Z-coefficient Poincaré pair with

H∗(D(σ,K), ∂D(σ,K)) ∼= Hn−|σ|−∗(D(σ,K)) .

If |K| is an oriented n-dimensional homology manifold with fundamental
class [K] ∈ Hn(K) then for each σ ∈ K (D(σ,K), ∂D(σ,K)) is an oriented
(n− |σ|)-dimensional homology manifold with boundary, with fundamental

class

∂σ[K] = [D(σ,K)] ∈ Hn(K,K\stK(σ)) = Hn−|σ|(D(σ,K), ∂D(σ,K)) .

By contrast with 4.9, for a finite chain complex C in A∗(K) the assembly
[C]∗[K] is not chain equivalent to C∗(K). If K is an oriented n-dimensional

homology manifold with boundary ∂K then [C]∗[K] is chain equivalent to
S−n(C∗(K)/C∗(∂K)).

Example 4.11 As in 4.2 regard the simplicial cochain complex ∆(K)−∗ as
a chain complex in A (Z)∗(K), with

∆(K)−∗(σ) = S−|σ|Z (σ ∈ K) .

The associated chain complex [∆(K)−∗] in A (Z)∗[K] is such that

[∆(K)−∗][σ] = ∆(K,K\stK(σ))−∗ (σ ∈ K) .

The spectral sequence E([∆(K)−∗]) of 4.6 is the dihomology spectral se-
quence of Zeeman [192] converging to H−∗(K), with

E2
p,q = Hp(K; {H−q(K,K\stK(σ))}) .

If K is an n-dimensional homology manifold

Hr(K,K\stK(σ)) =

{
Z if r = n

0 otherwise
(σ ∈ K) ,

and the spectral sequence collapses to the Poincaré duality isomorphisms

Hn−∗(K) ∼= H∗(K) ,
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using twisted coefficients in the nonorientable case. See McCrory [106] for
a geometric interpretation of the Zeeman spectral sequence.

Example 4.12 The simplicial chain complex ∆(K) is Z-module chain equiv-
alent to the assembly B∗[K] of the chain complex B in A (Z)∗[K] defined
by

B[σ] = ∆(K,K\stK(σ)) (σ ∈ K) ,

with a chain equivalence

∆(K)
'−−→ B∗[K] ; σ −−→ σ̂ .

For any n-cycle [K] ∈ ∆n(K) let

[K][σ] ∈ Bn[σ] = ∆n(K,K\stK(σ)) (σ ∈ K)

be the image n-cycles. Evaluation on [K] defines a chain map in A (Z)∗[K]

φ = 〈[K],−〉 : SnZ −−→ B

with

φ[σ] = 〈[K][σ],−〉 : SnZ[σ] = SnZ
[K]
−−→ ∆(K)

−−→ B[σ] = ∆(K,K\stK(σ)) .

The assembly of φ is the cap product Z-module chain map

φ[K] = [K] ∩ − : SnZ[K] = ∆(K)n−∗ −−→ B∗[K] ' ∆(K) .

The following conditions on K are equivalent:
(i) K is an n-dimensional homology manifold with fundamental class

[K] ∈ Hn(K), with each φ[σ] (σ ∈ K) a Z-module chain equivalence,

(ii) φ:SnZ−−→B is a chain equivalence in A (Z)∗[K].
For a homology manifold K the assembly φ[K] is the Poincaré duality chain
equivalence.

Example 4.13 The simplicial chain complex ∆(K ′) of the barycentric sub-
division K ′ is the assembly C∗(K) = ∆(K ′) of the chain complex C in

A (Z)∗(K) defined by

C(σ) = ∆(D(σ,K), ∂D(σ,K)) (σ ∈ K) .

The Z-module chain equivalences given by augmentation

ε[σ]: [C][σ] = ∆(D(σ,K))
'−−→ Z[σ] = Z ; τ̂ −−→ 1 (σ ≤ τ ∈ K)

define a chain equivalence ε: [C]
'−−→Z in A (Z)∗[K], with Z as in 4.5. C is

chain equivalent in A (Z)∗(K) to the assembly B∗[K] of the chain complex

B in A (Z)∗[K] of 4.12, with B[σ] = ∆(K,K\stK(σ)).
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As in McCrory [106, §5] consider the Flexner cap product Z-module chain
map

∆F : ∆(K)⊗Z ∆(K)−∗ −−→ ∆(K ′)

defined by

∆F : ∆p(K)⊗Z ∆q(K) −−→ ∆p−q(K
′) ; σ⊗τ∗ −−→

{∑
S

ε(S)S if τ ≤ σ

0 otherwise

with S running over the r-simplexes of the dual cell of τ in σ

D(σ, τ) = σ′ ∩D(τ,K)

= {(σ̂0σ̂1 . . . σ̂r) ∈ K ′ | τ ≤ σ0 < σ1 < . . . < σr ≤ σ} ,
with r = p− q and

ε(S) = ε(σ0, σ1) ε(σ1, σ2) . . . ε(σr−1, σr) ∈ {+1,−1}
the product of the incidence numbers of the successive codimension 1 pairs

of simplices, defined using the ordering of K. The adjoint of ∆F is a Z-
module chain map

A∆F : ∆(K) −−→ HomA (Z)∗(K)(∆(K)−∗,∆(K ′))

which is shown to be a chain equivalence in 7.3 below. Cap product with
any homology class [K] ∈ Hn(K)

φ = [K] ∩ − : Hn−∗(K) −−→ H∗(K
′) = H∗(K)

is induced by the chain map φ in A (Z)∗(K) obtained by the evaluation of
A∆F on any representative n-cycle [K] ∈ ∆n(K)

φ = A∆F [K] = [K] ∩ − : ∆(K)n−∗ −−→ ∆(K ′) .

The diagonal components of φ are the Z-module chain maps

φ(σ, σ) = 〈[K][σ],−〉 :

∆(K)n−∗(σ) = Sn−|σ|Z −−→ ∆(K ′)(σ) = ∆(D(σ,K), ∂D(σ,K))

obtained by the evaluations on cycles representing the images of [K]

[K][σ] ∈ Hn(K,K\stK(σ)) = Hn−|σ|(D(σ,K), ∂D(σ,K)) .

The following conditions on K are equivalent:
(i) K is an n-dimensional homology manifold with fundamental class

[K] ∈ Hn(K), with each φ(σ, σ) (σ ∈ K) a Z-module chain equiv-
alence,

(ii) φ = [K] ∩−: ∆(K)n−∗−−→∆(K ′) is a chain equivalence in A (Z)∗(K).
For a homology manifold K the assembly φ∗(K) is the Poincaré duality
chain equivalence.
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Definition 4.14 (i) Let X be a topological space with a covering
⋃

v∈V
X[v] = X

by a collection {X[v] | v ∈ V } of non-empty subspaces X[v] ⊆ X. The nerve

of the covering is the simplicial complex K with vertex set K(0) = V , such
that distinct vertices v0, v1, . . . , vn ∈ V span a simplex σ = (v0v1 . . . vn) ∈ K
if and only if the intersection

X[σ] = X[v0] ∩X[v1] ∩ . . . ∩X[vn]

is non-empty.

(ii) Let K be simplicial complex. A K-dissection of a topological space X
is a collection {X[σ] |σ ∈ K} of subspaces X[σ] ⊆ X (some of which may
be empty) indexed by the simplexes σ ∈ K, such that

(a) X[σ] ∩X[τ ] =

{
X[στ ] if σ, τ ∈ K span a simplex στ ∈ K
∅ otherwise ,

(b)
⋃

σ∈K
X[σ] = X .

The nerve of the covering of X is the subcomplex {σ ∈ K |X[σ] 6= ∅} ⊆ K.

Example 4.15 Let X,K be simplicial complexes. If f :X−−→K ′ is a sim-

plicial map then {X[σ] = f−1D(σ,K) |σ ∈ K} is a K-dissection of X.
Conversely, any K-dissection {X[σ] |σ ∈ K} of X determines a simplicial
map g:X ′−−→K ′ with g−1D(σ,K) = X[σ]′ (σ ∈ K).

For any K-dissection {X[σ] |σ ∈ K} of X define ∂X[σ] ⊆ X[σ] to be the
subcomplex

∂X[σ] =
⋃

τ>σ

X[τ ] (σ ∈ K) .

The simplicial chain complex of X is a chain complex C∗(K) = ∆(X) in
A (Z)∗(K) with

C(σ) = ∆(X[σ], ∂X[σ]) , [C][σ] = ∆(X[σ]) (σ ∈ K) .

The assembly [C]∗[K] is the cellular chain complex of the homotopy colimit

CW complex

[X] = hocolim
σ∈K

X[σ] =

( ∐

σ∈K
∆|σ| ×X[σ]

)/
{(a, ∂ib) ∼ (∂ia, b)}

with one (p+ q)-cell for each p-simplex σ ∈ K and each q-simplex in X[σ].
The projection

[X] −−→ |X| ; (a, b) −−→ b

is a map with contractible point inverses, inducing the chain equivalence
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βC : [C]∗[K]
'−−→C∗(K) of 4.9. Define a filtration of [X] by

Fp[X] = hocolim
σ∈K,|σ|≤p

X[σ]

=

( ∐

σ∈K,|σ|≤p
∆|σ| ×X[σ]

)/
{(a, ∂ib) ∼ (∂ia, b)} .

The spectral sequence determined by the corresponding filtration of [C]∗[K]
is the spectral sequence E([C]) of 4.6, namely the spectral sequence with

respect to the first grading of the double complex D with

Dp,q = Cp+q(Fp[X]) =
∑

σ∈K,|σ|=p
∆q(X[σ]) ,

d′ =
∑

σ

∑

i

(−)i(∂iσ−→σ)∗ : Dp,q −−→ Dp−1,q ,

d′′ =
∑

σ

d∆(X[σ]) : Dp,q −−→ Dp,q−1 .

E([C]) is the Leray–Serre spectral sequence with E2-terms

E2
p,q = Hp(K; {Hq(X[σ])}) ,

converging to

H∗([C][K]) = H∗([X]) = H∗(X)

with

E∞p,q = im(Hp+q(Fp[X])−−→Hp+q(X))/im(Hp+q(Fp−1[X])−−→Hp+q(X)) .

Example 4.16 Given a topological space X let Open(X) be the category
whose objects are the open sets in X and whose morphisms are inclusions
of open sets. Let K be the nerve of a finite open cover U = {Uj | j ∈ J}
of X, and let R be a commutative ring. The Čech complex (Bott and Tu

[12, p. 110]) of U with coefficients in a
{

contravariant
covariant

functor

F : Open(X) −−→ B (R) ; U −−→ F (U)

is the assembly R-module chain complex

C(U, F ) =

{
C∗[K]

C∗[K]

of the

{
A (R)∗[K]
A (R)∗[K]

-module chain complex C defined by

C[j0j1 . . . jn] = F (Uj0 ∩ Uj1 ∩ . . . ∩ Ujn) ((j0j1 . . . jn) ∈ K(n)) .

In particular, for any finite open cover U of a differentiable manifold X there
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is defined a
{

contravariant
covariant

functor

F =

{
Ω∗

Ω∗c
: Open(X) −−→ B (R) ; U −−→

{
Ω∗(U)

Ω∗c(U)

sending an open subset U ⊆ X to the R-module chain complex

{
Ω∗(U)
Ω∗c(U)

of
{−

compactly supported
differential forms on U . The assembly R-module

chain complex C(U, F ) is the
{−

compactly supported
Čech–deRham complex

of X, with homology

H∗(C(U, F )) =

{
H−∗(X;R)

H−∗c (X;R)

the
{−

compactly supported
deRham cohomology of X, as in [12,

{
8.5
12.12

].
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§5. Duality

An algebraic bordism category Λ = (A,B,C) and a locally finite simplicial
complex K will now be shown to determine an algebraic bordism category{

Λ∗(K) = (A∗(K),B ∗(K),C ∗(K))

Λ∗(K) = (A ∗(K),B ∗(K),C ∗(K))

which depends

{
contravariantly
covariantly

on K. In §13 below the symmetric (resp.

quadratic) L-groups of this category will be identified with the generalized{
cohomology
homology

groups of K

{
Ln(Λ∗(K)) = H−n(K;L.

(Λ))

Ln(Λ∗(K)) = Hn(K;L.(Λ))

(
resp.

{
Ln(Λ∗(K)) = H−n(K;L.(Λ))

Ln(Λ∗(K)) = Hn(K;L.(Λ))

)
(n ∈ Z)

with coefficients in an Ω-spectrum L.
(Λ) (resp. L.(Λ)) of Kan ∆-sets such

that

πn(L.(Λ)) = Ln(Λ) (resp. πn(L.(Λ)) = Ln(Λ)) .

Algebraic Poincaré complexes in Λ∗(K) are analogues of the ‘mock bun-
dles’ over K used by Buoncristiano, Rourke and Sanderson [22] as cocycles
for generalized cohomology h∗(K). For PL bordism h = ΩPL a (−d)-

dimensional cocycle p :E−−→K is a d-dimensional mock bundle, a PL map
such that the inverse image p−1(σ) (σ ∈ K) is a (d + |σ|)-dimensional PL
manifold with boundary p−1(∂σ). Dually, algebraic Poincaré complexes in

Λ∗(K) are analogues of manifold cycles for generalized homology h∗(K).
For PL bordism a d-dimensional cycle p :E−−→K is just a PL map from a
d-dimensional PL manifold E, in which case the inverse image p−1(D(σ,K))
(σ ∈ K) is a (d− |σ|)-dimensional manifold with boundary p−1(∂D(σ,K)).

For the additive category M (Z) = {Z-modules} write{
M (Z)∗(K) = Z∗(K)

M (Z)∗(K) = Z∗(K)
,

{
M (Z)∗[K] = Z∗[K]

M (Z)∗[K] = Z∗[K]
.

For any finite chain complexes C,D in A there is defined an abelian group
chain complex C ⊗A D = HomA(TC,D) as in §3. Given chain complexes

C,D in

{
A∗[K]
A ∗[K]

define a chain complex C ⊗A D in

{
Z∗[K]
Z∗[K]

by

(C ⊗A D)[σ] = C[σ]⊗A D[σ] (σ ∈ K) ,

and let

TC,D : C ⊗A D
'−−→ D ⊗A C
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be the isomorphism with components

TC,D[σ] = TC[σ],D[σ] : C[σ]⊗A D[σ] −−→ D[σ]⊗A C[σ] (σ ∈ K) .

Proposition 5.1 An algebraic bordism category Λ = (A,B,C) and a locally

finite ordered simplicial complex K determine an algebraic bordism category{
Λ∗(K) = (A∗(K),B ∗(K),C ∗(K))

Λ∗(K) = (A ∗(K),B ∗(K),C ∗(K)) .

Proof Define a contravariant functor

{
T :A∗[K]−−→B (A∗(K))

T :A ∗[K]−−→B (A ∗(K))
by sending

an object M to the chain complex TM with

(TM)r(σ) =

{
T (M [σ])r−|σ|
T (M [σ])r+|σ| ,

dTM (σ, σ) = dTM (σ) : (TM)r(σ) −−→ (TM)r−1(σ) ,

dTM (τ, σ) = (−)iT (M [τ ]−−→M [σ]) : (TM)r(σ) −−→ (TM)r−1(τ)

if

{
σ > τ, |σ| = |τ |+ 1, τ = ∂iσ

σ < τ, |σ| = |τ | − 1, σ = ∂iτ .

The contravariant functor defined by the composite


T : A∗(K) −−→ A∗[K]

T
−−→ B (A∗(K))

T : A ∗(K) −−→ A ∗[K]
T
−−→ B (A ∗(K))

is such that for any objects M,N in

{
A∗(K)
A ∗(K)

{
M ⊗A∗(K) N = HomA∗(K)(TM,N) = ([M ]⊗A [N ])∗[K]

M ⊗A∗(K) N = HomA∗(K)(TM,N) = ([M ]⊗A [N ])∗[K] .

Thus

{
M ⊗A∗(K) N
M ⊗A∗(K) N

is a chain complex in A with





(M ⊗A∗(K) N)r =
∑
σ∈K

∑
λ,µ≤σ

(M(λ)⊗A N(µ))r+|σ|

(M ⊗A∗(K) N)r =
∑
σ∈K

∑
λ,µ≥σ

(M(λ)⊗A N(µ))r−|σ| .

The duality isomorphism of Z-module chain complexes


TM,N : M ⊗A∗(K) N

'−−→ N ⊗A∗(K) M

TM,N : M ⊗A∗(K) N
'−−→ N ⊗A∗(K) M

for N = TM sends the 0-cycle
{

1 ∈ (M ⊗A∗(K) TM)0 = HomA∗(K)(TM, TM)0

1 ∈ (M ⊗A∗(K) TM)0 = HomA∗(K)(TM, TM)0
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to a 0-cycle{
e(M) ∈ (TM ⊗A∗(K) M)0 = HomA∗(K)(T

2M,M)0

e(M) ∈ (TM ⊗A∗(K) M)0 = HomA∗(K)(T
2M,M)0 ,

defining a natural transformation{
e : T 2 −−→ 1 : A∗(K) −−→ B (A∗(K))

e : T 2 −−→ 1 : A ∗(K) −−→ B (A ∗(K))

such that e(TM) . T (e(M)) = 1.

The additive category

{
B ∗(K)
B ∗(K)

is the full subcategory of

{
B (A∗(K))
B (A ∗(K))

with objects the finite chain complexes C in

{
A∗(K)
A ∗(K)

such that each C(σ)

(σ ∈ K) is an object in B. The dual chain complex TC is then also defined

in

{
B ∗(K)
B ∗(K).

Similarly for

{
C ∗(K)
C ∗(K).

Example 5.2 If the chain duality on A is 0-dimensional (e.g. if A = A (R) =

{ f.g. free R-modules}) then the dual of an object M in

{
A∗(K)
A ∗(K)

is the

chain complex TM in

{
A∗(K)
A ∗(K)

with

TMr(σ) = T ([M ][σ]) if

{
r = |σ|
r = −|σ| , = 0 otherwise .

Example 5.3 The chain complexes B,C in A (Z)∗(K) defined in 4.2 and
4.15 by

B(σ) = S−|σ|Z , B∗(K) = ∆(K)−∗ ,

C(σ) = ∆(D(σ,K), ∂D(σ,K)) , C∗(K) = ∆(K ′) ' ∆(K)

are dual to each other, with the subdivision chain equivalences in A (Z)

TB(σ) = S−|σ|∆(K,K\stK(σ)) ' C(σ) = ∆(D(σ,K), ∂D(σ,K))

defining a chain equivalence TB ' C in A (Z)∗(K).

Example 5.4 An m-dimensional quadratic Poincaré complex n-ad over
a ring with involution R in the sense of Levitt and Ranicki [94, §3] is an
(m− n)-dimensional quadratic Poincaré complex in A (R)∗(∆n).

Example 5.5 Let C be the chain complex in A (Z)∗(K) associated to a
K-dissection {X[σ] |σ ∈ K} of a simplicial complex X in 4.15, with

C(σ) = ∆(X[σ], ∂X[σ]) (σ ∈ K) , C∗(K) = ∆(X) .
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For any n ∈ Z the n-dual of C is the chain complex ΣnTC = Cn−∗ in
A (Z)∗(K) with

Cn−∗(σ) = ∆(X[σ])n−|σ|−∗ ,

[Cn−∗][σ] ' ∆(X[σ], ∂X[σ])n−|σ|−∗ (σ ∈ K) ,

(Cn−∗)∗(K) = ([C]∗[K])n−∗ ' ∆(X)n−∗ .

A ∆-map of simplicial complexes is a simplicial map which is injective on
simplexes.

Proposition 5.6 Let Λ = (A,B,C) be an algebraic bordism category.

A

{
∆−
simplicial

map f : J−−→K of finite ordered simplicial complexes induces
{

contravariantly
covariantly

a covariant functor of algebraic bordism categories

{
f∗ : Λ∗(K) −−→ Λ∗(J)

f∗ : Λ∗(J) −−→ Λ∗(K) ,

inducing morphisms of the symmetric L-groups
{
f∗ : Ln(Λ∗(K)) = H−n(K;L.

(Λ)) −−→ Ln(Λ∗(J)) = H−n(J ;L.
(Λ))

f∗ : Ln(Λ∗(J)) = Hn(J ;L.(Λ)) −−→ Ln(Λ∗(K)) = Hn(K;L.(Λ)) .

Similarly for the quadratic L-groups.

Proof See §13 below for the identifications of the L-groups with the gen-
eralized (co)homology groups.
(i) The functor induced by a ∆-map f : J−−→K is defined by

f∗ : A∗(K) −−→ A∗(J) ; M −−→ f∗M , f∗M(σ) = M(fσ) ,

with T (f∗M) = f∗(TM).
(ii) The functor f∗: Λ∗(J)−−→Λ∗(K) induced by a simplicial map f : J−−→K
is given by

f∗ : A ∗(J) −−→ A ∗(K) ; M −−→ f∗M , f∗M(τ) =
∑

σ∈J,fσ=τ

M(σ) ,

with

(f∗M)∗(K) = M∗(J) =
∑

σ∈J
M(σ) .

For any object M in A ∗(J) define a C-equivalence in A

βf (M) : [M ]∗[J ]
'−−→ [f∗M ]∗[K]
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by

βf (M) : [M ]∗[J ]r =
(∑

σ∈J
∆(∆|σ|)⊗Z M(σ)

)
r
−−→

[f∗M ]∗[K]r =
(∑

σ∈J
∆(∆|fσ|)⊗Z M(σ)

)
r

; a⊗ b −−→ fa⊗ b .

The dual C-equivalences determine a natural C ∗(K)-equivalence

G(M) = T (βf (M)) : T (f∗M)
'−−→ f∗(TM) ,

making F = f∗: Λ∗(J)−−→Λ∗(K) a functor of algebraic bordism categories.

Example 5.7 Given a simplicial complex K let f :K−−→{∗} be the unique
simplicial map. The assembly of a finite chain complex C in A ∗(K) is the
finite chain complex C∗[K] = f∗C in A induced by the functor

f∗ : A ∗(K) −−→ A ∗({∗}) = A .

The C-equivalence defined in the proof of 4.9 is given by

βC = βf (C) : [C]∗[K]
'
−−→ C∗(K) .

Example 5.8 Let X, J be simplicial complexes such that X has a J-
dissection {X[σ] |σ ∈ J}, so that as in 4.15 there is defined a chain complex

C in A (Z)∗(J) with

C(σ) = ∆(X[σ], ∂X[σ]) , [C][σ] = ∆(X[σ]) (σ ∈ J) .

The pushforward of C with respect to a simplicial map f : J−−→K is the
chain complex f∗C in A (Z)∗(K) associated to theK-dissection {f∗X[τ ] | τ ∈
K} of X defined by

f∗X[τ ] =
⋃

σ∈J,f(σ)=τ

X[σ] .

In particular, if X[σ] = g−1D(σ, J) for a simplicial map g:X−−→J ′ then

f∗X[τ ] = (f ′g)−1D(τ,K) (τ ∈ K)

for the composite simplicial map f ′g:X−−→J ′−−→K ′, since

f ′−1D(τ,K) =
⋃

σ∈J,f(σ)=τ

D(σ, J) (τ ∈ K) .

Remark 5.9 The method of 5.1 also applies to show that{
Λ∗[K] = (A∗[K],B ∗[K],C ∗[K])

Λ∗[K] = (A ∗[K],B ∗[K],C ∗[K])
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is an algebraic bordism category, with the chain duality


T : A∗[K]

T
−−→ B (A∗(K)) −−→ B (A∗[K])

T : A ∗[K]
T
−−→ B (A ∗(K)) −−→ B (A ∗[K])

such that for any objects M,N in

{
A∗[K]
A ∗[K]

{
M ⊗A∗[K] N = HomA∗[K](TM,N) = (M ⊗A N)∗[K]

M ⊗A∗[K] N = HomA∗[K](TM,N) = (M ⊗A N)∗[K] .

Example 5.10 The dual in the sense of 5.9 of the object Z in A (Z)∗[K]

of 4.5 is the chain complex [∆(K)−∗] in A (Z)∗[K] associated to the chain
complex ∆(K)−∗ in A (Z)∗(K) of 4.2

TZ = [∆(K)−∗] ,

with

TZ[σ] = [∆(K)−∗][σ] = ∆(K,K\stK(σ))−∗ (σ ∈ K) .
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§6. Simply connected assembly

As in §5 let Λ = (A,B,C) be an algebraic bordism category, and let K be a
locally finite simplicial complex. The simply connected assembly functor of
algebraic bordism categories Λ∗(K)−−→Λ will now be defined. The simply

connected assembly map for the algebraic bordism category Λ = Λ(R) of
a ring with involution R will be generalized in §9 to a universal assembly
functor Λ(R)∗(K)−−→Λ(R[π1(K)]).

Proposition 6.1 The assembly functor of §4
A ∗(K) −−→ A ; M −−→ M∗(K)

extends to a simply connected assembly functor of algebraic bordism cat-

egories Λ∗(K)−−→Λ inducing assembly maps in the

{
symmetric
quadratic

L-groups

{
Ln(Λ∗(K)) −−→ Ln(Λ) ; (C, φ) −−→ (C∗(K), φ∗(K))

Ln(Λ∗(K)) −−→ Ln(Λ) ; (C,ψ) −−→ (C∗(K), ψ∗(K)) .

Proof For any object M in A ∗(K) use the dual of the natural chain equiva-

lence βM : [M ]∗[K]
'−−→M∗(K) given by 4.9 to define a natural C-equivalence

TβM : T (M∗(K))
'−−→ T ([M ]∗[K]) = (TM)∗(K) .

In particular, for any finite chain complex C in A ∗(K) there is defined an
assembly Z[Z2]-module chain map

C ⊗A∗(K) C = HomA∗(K)(TC,C) −−→
HomA((TC)∗(K), C∗(K)) ' HomA(T (C∗(K)), C∗(K))

= C∗(K)⊗A C∗(K) .

The Alexander–Whitney–Steenrod diagonal chain approximation of a sim-

plicial complex X is a Z-module chain map

∆X : ∆(X) −−→ W%∆(X) = HomZ[Z2](W,∆(X)⊗Z ∆(X)) ,

called the symmetric construction in Ranicki [145]. The evaluation of ∆X

on any n-cycle [X] ∈ ∆n(X) representing a homology class [X] ∈ Hn(X)

determines an n-dimensional symmetric complex (∆(X), φ) in A (Z), with
φ = ∆X([X]), such that

φ0 = [X] ∩ − : ∆(X)n−∗ −−→ ∆(X) .

If X is an n-dimensional Z-coefficient geometric Poincaré complex with fun-

damental class [X] ∈ Hn(X), then φ0 is a chain equivalence and (∆(X), φ)
is an n-dimensional symmetric Poincaré complex in A (Z).
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Example 6.2 Given a K-dissection {X[σ] |σ ∈ K} of a simplicial complex
X let C be the chain complex in A (Z)∗(K) defined in 4.15, with

C(σ) = ∆(X[σ], ∂X[σ]) (σ ∈ K) , C∗(K) = ∆(X) .

The symmetric constructions

∆X[σ] : [C][σ] = ∆(X[σ]) −−→ W%∆(X[σ]) (σ ∈ K)

fit together to define a Z-module chain map

∆C : [C]∗[K] −−→ W%C = HomZ[Z2](W, ([C]⊗Z [C])∗[K]) .

The evaluation of ∆C on any n-cycle [X] ∈ [C]∗[K]n representing a homol-
ogy class

[X] ∈ Hn([C]∗[K]) = Hn(C∗(K)) = Hn(X)

determines an n-dimensional symmetric complex (C, φ) in A (Z)∗(K) with
φ = ∆C [X], such that the assembly is homotopy equivalent to the n-

dimensional symmetric complex in A (Z)

(C∗(K), φ∗(K)) ' (∆(X),∆X([X]))

considered in Ranicki [145]. Let E = E([C]) be the Leray–Serre spectral

sequence associated to the double complex D of 4.15, with E2-terms

E2
p,q = Hp(K; {Hq(X[σ])}) ,

converging to H∗(X). For each σ ∈ K let D[σ] be the quotient double

complex of D defined by

D[σ]p,q =
∑

τ≥σ,|τ |=p
∆(X[τ ])q ,

and let

∂σ : ∆(X) ' D −−→ D[σ] ' S|σ|∆(X[σ], ∂X[σ])

be the chain map determined by the projection of the total complexes. (See

8.2 below for a direct construction of ∂σ.) The n-dimensional symmetric
complex (C, φ) in A (Z)∗(K) is such that

φ0(σ) = [X(σ)] ∩ − : Cn−∗(σ) = ∆(X[σ])n−|σ|−∗

−−→ C(σ) = ∆(X[σ], ∂X[σ]) ,

with

[X[σ]] = ∂σ([X]) ∈ Hn−|σ|(X[σ], ∂X[σ]) (σ ∈ K) .

The spectral sequence E = E([Cn−∗]) of 4.6 is the spectral sequence of the
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double complex D with

Dp,q =
∑

σ∈K,|σ|=p
∆(X[σ], X[∂σ])n−p−q ,

d
′

=
∑

σ

∑

i

(−)i(σ−→δiσ)∗ : Dp,q −−→ Dp−1,q ,

d
′′

=
∑

σ

d∗∆(X[σ],∂X[σ]) : Dp,q −−→ Dp,q−1 .

The E
2
-terms are given by

E
2

p,q = Hp(K; {Hn−|σ|−q(X[σ], ∂X[σ])}) ,
and E converges to

H∗([C
n−∗]∗[K]) = Hn−∗(X)

with respect to the filtration

FpH
n−∗(X) = ker

(
Hn−∗(X)−−→Hn−∗( ⋃

σ∈K,|σ|>p
X[σ]

))
.

Cap product with [X] ∈ [C]∗[K]n defines a map of double complexes

[X] ∩ − : D −−→ D

given on the E2-level by the cap products

{[X[σ]] ∩ −} : E
2

p,q = Hp(K; {Hn−|σ|−q(X[σ], ∂X[σ])})
−−→ E2

p,q = Hp(K; {Hq(X[σ])})
and converging to the cap product

[X] ∩ − : Hn−∗(X) −−→ H∗(X)

on the E∞-level. In particular, if each (X[σ], ∂X[σ]) (σ ∈ K) is an (n −
|σ|)-dimensional Z-coefficient geometric Poincaré pair then (C, φ) is an n-

dimensional symmetric Poincaré complex in A (Z)∗(K) and X is an n-
dimensional Z-coefficient geometric Poincaré complex. This is a general-
ization of the familiar result that a homology manifold is a Poincaré space.

Example 6.3 Let {X[σ] |σ ∈ K} be the K-dissection of the barycentric
subdivision X = K ′ defined by the dual cells

X[σ] = D(σ,K) (σ ∈ K) ,

which are contractible. In this case the Leray–Serre spectral sequence E of

4.15 collapses, with

E2
p,q = Hp(K; {Hq(D(σ,K))}) =

{
Hp(K) if q = 0
0 if q 6= 0
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and 5.5 gives the Zeeman dihomology spectral sequence E (already discussed
in 4.11) converging to Hn−∗(K), with

E
2

p,q = Hp(K; {Hn−|σ|−q(D(σ,K), ∂D(σ,K))}) .

Remark 6.4 The assembly functor A ∗(K)−−→A is defined in 6.1 using
actual colimits, but there is also an assembly functor

A ∗[K] −−→ B (A) ; M −−→ M∗[K] ,

using chain homotopy colimits. By an abstract version of the Eilenberg–
Zilber theorem there is defined for any chain complex C in A ∗[K] an as-
sembly Z-module chain map

α0 : (C ⊗A C)∗[K] −−→ C∗[K]⊗A C∗[K] .

As for the construction of the Steenrod squares α0 is only Z2-equivariant
up to a chain homotopy α1:α0T ' Tα0, with α1 Z2-equivariant up to
a higher chain homotopy α2:α1T ' Tα1, and so on . . . , defining a ‘Z2-

isovariant chain map’ {αs | s ≥ 0} in the sense of Ranicki [144, §1]. The
simply connected assembly of an n-dimensional symmetric complex (C, φ)
in A ∗[K] is an n-dimensional symmetric complex in A

(C, φ)∗[K] = (C∗[K], φ∗[K]) .

In particular, for any n-cycle

[K] =
∑

τ∈K,|τ |=n
rττ ∈ Z ∗[K]n = ∆(K)n (rτ ∈ Z)

there is defined an n-dimensional symmetric complex (Z, φ) in A (Z)∗[K],
with

Z k[σ] =

{
Z if k = 0
0 if k 6= 0

(σ ∈ K) , Z ∗[K] = ∆(K) ,

φ0 =
∑

τ∈K,|τ |=n
rτ (1⊗ 1) ∈ (Z⊗Z Z)∗[K]n =

∑

σ∈K
(Z[σ]⊗Z Z[σ])n−|σ| ,

φs = 0 ∈ (Z⊗Z Z)∗[K]n+s (s ≥ 1)

such that the assembly in A (Z) is the n-dimensional symmetric complex

(Z, φ)∗[K] = (∆(K), φK([K]))

considered in Ranicki [145]. By 5.10 the n-dual of Z is the chain complex

in A (Z)∗[K]

Zn−∗ = SnTZ = [C]

associated to the chain complex C in A (Z)∗(K) with

C(σ) = Sn−|σ|Z , C∗(K) = ∆(K)n−∗ ,

Zn−∗[σ] = [C][σ] = ∆(K,K\stK(σ))n−∗ (σ ∈ K) .
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The duality chain map in A (Z)∗[K]

φ0 = [K] ∩ − : Zn−∗ −−→ Z
has components

φ0[σ] = 〈[K][σ],−〉 :Zn−∗[σ] = ∆(K,K\stK(σ))n−∗ −−→ Z[σ] = Z ;

τ −−→
{
rτ if τ ≥ σ, |τ | = n
0 otherwise

with [K][σ] the image of [K]

[K][σ] =
∑

τ≥σ,|τ |=n
rττ ∈ ∆(K,K\stK(σ))n (σ ∈ K) .

The assembly duality chain map φ0[K]: (Zn−∗)∗[K]−−→Z ∗[K] in A (Z) fits
into a chain homotopy commutative diagram
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The duality chain map in A (Z)∗[K]

ϕ0 = [K] ∩ − : Zn−∗ −−→ Z
has components

ϕ0[σ] = ⟨[K][σ],−⟩ : Zn−∗[σ] = ∆(K,K\stK(σ))n−∗ −−→ Z[σ] = Z ;

τ −−→
{
rτ if τ ≥ σ, |τ | = n
0 otherwise

with [K][σ] the image of [K]

[K][σ] =
∑

τ≥σ,|τ |=n
rττ ∈ ∆(K,K\stK(σ))n (σ ∈ K) .

The assembly duality chain map ϕ0[K]: (Zn−∗)∗[K]−−→Z ∗[K] in A (Z) fits
into a chain homotopy commutative diagram

(Zn−∗)∗[K] = [C]∗[K] w
ϕ0[K]

h
h
h
hhj
≃

βC

Z ∗[K] = ∆(K)

C∗(K) = ∆(K)n−∗
�
�
�
��

[K] ∩ −

with βC the chain equivalence given by 4.9. Thus K is an n-dimensional Z-

coefficient homology manifold (resp. Poincaré complex) with fundamental
cycle [K] ∈ ∆(K)n if and only if the chain map ϕ0: Zn−∗−−→Z in A (Z)∗[K]
is such that each

ϕ0[σ] : Zn−∗[σ] −−→ Z[σ] (σ ∈ K)

is a Z-module chain equivalence (resp. the assembly ϕ0[K]: (Zn−∗)∗[K]−−→
Z ∗[K] is a Z-module chain equivalence). Identifying

H∗(Zn−∗[σ]) = Hn−∗(K,K\stK(σ)) = Hn−∗(|K|, |K|\{σ̂})
= Hn−|σ|−∗(starK′(σ̂), linkK′(σ̂)) (σ ∈ K) ,

we again recover the result that a homology manifold is a geometric Poincaré
complex. This is the chain homotopy theoretic version of the spectral se-
quence argument of 6.2.

with βC the chain equivalence given by 4.9. Thus K is an n-dimensional Z-

coefficient homology manifold (resp. Poincaré complex) with fundamental
cycle [K] ∈ ∆(K)n if and only if the chain map φ0:Zn−∗−−→Z in A (Z)∗[K]
is such that each

φ0[σ] : Zn−∗[σ] −−→ Z[σ] (σ ∈ K)

is a Z-module chain equivalence (resp. the assembly φ0[K]: (Zn−∗)∗[K]−−→
Z ∗[K] is a Z-module chain equivalence). Identifying

H∗(Zn−∗[σ]) = Hn−∗(K,K\stK(σ)) = Hn−∗(|K|, |K|\{σ̂})
= Hn−|σ|−∗(starK′(σ̂), linkK′(σ̂)) (σ ∈ K) ,

we again recover the result that a homology manifold is a geometric Poincaré
complex. This is the chain homotopy theoretic version of the spectral se-

quence argument of 6.2.
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§7. Derived product and Hom

Borel and Moore [11] defined derived duality in the category of chain com-
plexes of sheaves of R-modules for a Dedekind ring R, using it to prove
Poincaré duality for R-coefficient homology manifolds. It is a special case

of the Verdier duality for chain complexes of sheaves, which plays an impor-
tant role in intersection homology theory – see Goresky and MacPherson
[63, 1.12]. The chain duality defined in §5 on the category of chain complexes

in A (R)∗(K) (for any commutative ring R and finite simplicial complex K)
will now be interpreted as a Verdier duality, with ∆(K ′;R) as the dualizing
complex.

For a Dedekind ring R with field of fractions F the derived dual of an
R-module M is defined to be the R-module chain complex

TM : . . . −−→ 0 −−→ HomR(M,F ) −−→ HomR(M,F/R) ,

using the injective resolution F−−→F/R ofR. The derived dualityM−−→TM
has better homological properties than the ordinary duality M−−→M∗ =
HomR(M,R). The homology H∗(TC) of the derived dual TC of an R-
module chain complex C depends only on the homology H∗(C), with uni-

versal coefficient theorem split exact sequences

0 −−→ ExtR(Hn−1(C), R) −−→ Hn(TC) −−→ HomR(Hn(C), R) −−→ 0 .

For a finite f.g. free R-module chain complex C the derived dual TC is

homology equivalent to the ordinary dual C∗ = HomR(C,R).
Let A = A (R) = {f.g. free R-modules} for a commutative ring R. From

now on, the additive category

{
A (R)∗[K]
A (R)∗(K)

defined in §6 will be denoted

by

{
A[R,K]
A (R,K),

and its objects will be called (f.g. free)

{
[R,K]-
(R,K)-

modules.

Given an

{
[R,K]
(R,K)

-module chain complex C denote the corresponding R-

module chain complex by

{
C[K]
C(K)

rather than by

{
C∗[K]
C∗(K).

The abelian groups HomR(M,N), M ⊗R N are R-modules, for any R-

modules M,N , since the ground ring R is commutative. Thus for

{
[R,K]-
(R,K)-

modules M,N there are defined R-modules and R-module chain complexes
{

Hom[R,K](M,N) = HomA [R,K](M,N)

Hom(R,K)(M,N) = HomA (R,K)(M,N) ,

{
M ⊗[R,K] N = M ⊗A [R,K] N

M ⊗(R,K) N = M ⊗A (R,K) N .

Given (R,K)-module morphisms f :M−−→M ′, g:N−−→N ′ there is defined
an R-module morphism

(f∗, g∗) : Hom(R,K)(M
′, N) −−→ Hom(R,K)(M,N ′) ; h −−→ ghf .
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By the definition of (R,K)-module morphisms

Hom(R,K)(M,N) =
∑

σ∈K
HomR(M(σ), [N ][σ]) .

Thus it is possible to give the R-module Hom(R,K)(M,N) the structure of
an (R,K)-module by setting

Hom(R,K)(M,N)(σ) = HomR(M(σ), [N ][σ]) (σ ∈ K) ,

but this is unnatural: if f is not the identity theR-module morphism (f∗, g∗)
is not an (R,K)-module morphism.

The following derived products and Hom functors are modelled on the

derived functors appearing in sheaf theory, and allow the resolution of
Hom(R,K)(M,N) by an (R,K)-module chain complex RHom(R,K)(M,N)
which is natural in both M and N .

Definition 7.1 The derived product M �R N of (R,K)-modules M , N is
the (R,K)-module with

(M �R N)(K) =
∑

λ,µ∈K,λ∩µ 6=∅
M(λ)⊗R N(µ) ⊆M(K)⊗R N(K) ,

(M �R N)(σ) =
∑

λ∩µ=σ

M(λ)⊗R N(µ) (σ ∈ K) .

The associated [R,K]-module [M �R N ] is such that

[M �R N ][σ] = [M ][σ]⊗R [N ][σ] (σ ∈ K) ,

[M �R N ][K] = M ⊗(R,K) N = Hom(R,K)(TM,N) ,

with 4.9 giving an R-module chain equivalence

βM�RN : M ⊗(R,K) N
'−−→ (M �R N)(K) .

The derived product C �R D of (R,K)-module chain complexes C,D is

the (R,K)-module chain complex

(C �R D)r =
∑

p+q=r

Cp �R Dq , d(x � y) = x � dy + (−)qdx � y .

The R-module chain complex (C �R D)(K) is a subcomplex of C(K) ⊗R
D(K) such that there is defined a chain equivalence

βC�RD : C ⊗(R,K) D = [C �R D][K] = Hom(R,K)(TC,D)

'
−−→ (C �R D)(K)

and

Hn((C �R D)(K)) = Hn(C ⊗(R,K) D)

= H0(Hom(R,K)(C
n−∗, D)) (n ∈ Z) .
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Example 7.2 Let f :X−−→K ′, g:Y−−→K ′ be simplicial maps, so that there
are defined (R,K)-module chain complexes C,D as in 4.16, with

C = ∆(X;R) , [C][σ] = ∆(f−1D(σ,K);R) (σ ∈ K) ,

D = ∆(Y ;R) , [D][τ ] = ∆(g−1D(τ,K);R) (τ ∈ K) .

The derived product C�RD is chain equivalent to the (R,K)-module chain
complex ∆(Z;R) associated to a simplicial map h:Z−−→K ′, with Z a tri-

angulation of the pullback polyhedron

|Z| = { (x, y) ∈ |X| × |Y | | f(x) = g(y) ∈ |K ′| }
and h a simplicial approximation of the map

|Z| −−→ |K ′| ; (x, y) −−→ f(x) = g(y) .

TheR-module chain complex Hom(R,K)(∆(X;R),∆(Y ;R)−∗) is chain equiv-
alent to ∆(X × Y,X × Y \Z;R)−∗, with

∆(Y ;R)−∗(τ) = ∆(g−1D(τ,K);R)−|τ |−∗ (τ ∈ K) .

Example 7.3 The adjoint of the Flexner chain level cap product (4.13) is
a Z-module chain equivalence

A∆F : ∆(K)
'−−→ Hom(Z,K)(∆(K)−∗,∆(K ′)) ' ∆(K ′) �Z ∆(K ′) ,

by the special case f = g = 1:X = Y = K−−→K of 7.2.

Example 7.4 The Alexander–Whitney diagonal chain approximation for
K is defined by

∆K : ∆(K) −−→ ∆(K)⊗∆(K) ;

(v0v1 . . . vn) −−→
n∑

i=0

(v0v1 . . . vi)⊗ (vivi+1 . . . vn) .

Let C be the (Z,K)-module chain complex defined as in 4.15 by

C(K) = ∆(K ′) , C(σ) = ∆(D(σ,K), ∂D(σ,K)) (σ ∈ K) .

The Alexander–Whitney diagonal chain map forK ′ factors through a (Z,K)-
module chain equivalence

∆K′ : ∆(K ′)
'−−→ ∆(K ′) �Z ∆(K ′) ⊆ ∆(K ′)⊗Z ∆(K ′) .

Definition 7.5 The derived Hom RHom(R,K)(M,N) of (R,K)-modules
M,N is the (R,K)-module chain complex

RHom(R,K)(M,N) = TM �R N .
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The derived Hom defined for any (R,K)-module chain complexes C,D by

RHom(R,K)(C,D) = TC �R D ,

is such that there is defined an R-module chain equivalence

βTC�RD : Hom(R,K)(C,D) = [RHom(R,K)(C,D)][K] = [TC �R D][K]

'−−→ RHom(R,K)(C,D)(K) = (TC �R D)(K) .

Proposition 7.6 * The (R,K)-module chain complex ∆(K ′;R) with

∆(K ′;R)(σ) = ∆(D(σ,K), ∂D(σ,K);R) (σ ∈ K)

is a dualizing complex for the chain duality T :A (R,K)−−→B (A (R,K)) with
respect to the derived Hom, meaning that T is naturally chain equivalent to

the contravariant functor

T ′ = RHom(R,K)(−,∆(K ′;R)) : A (R,K) −−→ B (A (R,K)) ;

M −−→ T ′M = RHom(R,K)(M,∆(K ′;R)) .

Proof Use the augmentation R-module chain maps ε: ∆(K ′;R)(σ)−−→R
to define a natural transformation T ′−−→T

T ′M(σ) = (TM �R ∆(K ′;R))(σ) −−→ TM(σ)⊗R R = TM(σ) ;

x(λ)⊗ y(µ) −−→ x(λ)⊗ εy(µ) .

This is a natural chain equivalence, since the R-module chain maps

1⊗ ε : [T ′M ][σ] = [TM ][σ]⊗R [∆(K ′;R)][σ]

= [TM ][σ]⊗R ∆(D(σ,K);R) −−→ [TM ][σ]⊗R R = [TM ][σ]

are chain equivalences.

More generally, for any (R,K)-module chain complex C 7.6 gives a natural
(R,K)-module chain equivalence

TC ' RHom(R,K)(C,∆(K ′;R)) .

A simplicial map f :K−−→L induces a pullback functor

f∗ : A [R,L] −−→ A [R,K] ; M −−→ f∗M , f∗M [σ] = M [fσ] .

Example 7.7 The [R,K]-module chain complex associated to the dualizing
(R,K)-module chain complex ∆(K ′;R) is chain equivalent in A [R,K] to

* See Proposition 4.1 of A.Ranicki, Singularities, double points, controlled

topology and chain duality, Documenta Mathematica 4, 1–59 (1999) for the
expression of the chain dual of an (R,K)-module chain complex C as

T (C) = HomR(Hom(R,K)(∆(K;R)−∗, C), R) ,

which can also be expressed as HomR([C]∗[K], R).
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the pullback f∗R along the simplicial map f :K−→{∗} of the [R, {∗}]-module
R

[∆(K ′;R)] ' f∗R .

Specifically, the augmentation maps define chain equivalences

ε[σ] : [∆(K ′;R)][σ] = ∆(D(σ,K);R)
'−−→ f∗R[σ] = R (σ ∈ K) .
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§8. Local Poincaré duality

The following notion of local Poincaré duality is an abstraction of the local
Poincaré duality properties of a homology manifold, and in fact serves to
characterize the geometric Poincaré complexes which are homology mani-

folds. The universal algebraic L-theory assembly map will be defined in §9
by passing from local Poincaré complexes to global Poincaré complexes.

Let R,K be as in §7, with R a commutative ring, K a finite simplicial
complex and A (R,K) the additive category with chain duality defined in

5.1.

Definition 8.1 An n-dimensional

{
symmetric
quadratic

complex

{
(C, φ)
(C,ψ)

in

A (R,K) is locally Poincaré if it is C (R)∗(K)-Poincaré, i.e. if the dual-
ity is given by an (R,K)-module chain equivalence

{
φ0 : Cn−∗

'−−→ C

(1 + T )ψ0 : Cn−∗
'−−→ C .

The derived product � of §7 will now be used to associate to an n-

dimensional

{
symmetric
quadratic

complex

{
(C, φ)
(C,ψ)

in A (R,K) a collection
{
{(C, φ)[σ] |σ ∈ K}
{(C,ψ)[σ] |σ ∈ K} of (n − |σ|)-dimensional

{
symmetric
quadratic

pairs in A (R),

such that

{
(C, φ)
(C,ψ)

is locally Poincaré if and only if each

{
(C, φ)[σ]
(C,ψ)[σ]

is a

Poincaré pair in A (R).

Note that for any (R,K)-module chain complex C there is an identification
of R-module chain complexes

[C]∗[K] = Hom(R,K)(∆(K;R)−∗, C)

and also identifications of Z[Z2]-module chain complexes

C ⊗(R,K) C = Hom(R,K)(TC,C)

= [C �R C]∗[K] = Hom(R,K)(∆(K;R)−∗, C �R C) .

By definition, an n-dimensional

{
symmetric
quadratic

complex

{
(C, φ)
(C,ψ)

in A (R,K)

is an n-dimensional chain complex C in A (R,K) together with an n-cycle{
φ ∈ (W%C)n = HomZ[Z2](W, [C �R C]∗[K])n

ψ ∈ (W%C)n = W ⊗Z[Z2] [C �R C]∗[K]n .
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Definition 8.2* (i) Given an (R,K)-module chain complex C define for
each σ ∈ K the Z[Z2]-module chain map

∂σ = projection : C⊗(R,K)C = [C�RC]∗[K]−−→[C�RC]∗[K,K\stK(σ)]

(as in Remark 4.10 (i)) with

[C �R C]∗[K,K\stK(σ)]n =
∑

λ≥σ,µ≥σ
(C(λ)⊗R C(µ))n−|λ∩µ|

and a Z-module projection chain map

[C �R C]∗[K,K\stK(σ)]→ S|σ|C(σ)⊗R [C][σ] .

(ii) Given an n-dimensional

{
symmetric
quadratic

complex

{
(C, φ)
(C,ψ)

in A (R,K) de-

fine for each σ ∈ K an (n− |σ|)-dimensional

{
symmetric
quadratic

pair in A (R)

{
(C, φ)[σ] = (i[σ]: ∂[C][σ]−−→[C][σ], ∂σ(φ))

(C,ψ)[σ] = (i[σ]: ∂[C][σ]−−→[C][σ], ∂σ(ψ))

with

i[σ] = inclusion : ∂[C][σ]r =
∑

τ>σ

C(τ)r −−→ [C][σ]r =
∑

τ≥σ
C(τ)r

such that coker(i[σ]) = C(σ).

Example 8.3 Let C be the (Z,K)-module chain complex defined as in 4.13
by

C(K) = ∆(K ′) , C(σ) = ∆(D(σ,K), ∂D(σ,K)) (σ ∈ K) .

The Z-module chain map

∂σ = projection : C(K) ' ∆(K)−−→S|σ|C(σ) ' ∆(K,K\stK(σ))

induces the natural maps passing from the global (= ordinary) homology of
|K| to the local homology at σ̂ ∈ |K|

∂σ : H∗(C(K)) = H∗(K
′) = H∗(K) = H∗(|K|)

projection∗−−−−−−−−−→
H∗(|K|, |K|\{σ̂}) = H∗(K,K\stK(σ))

= H∗(starK′(σ̂), linkK′(σ̂)) = H∗(∂σ
′ ∗ (D(σ,K), ∂D(σ,K)))

= H∗−|σ|(D(σ,K), ∂D(σ,K)) = H∗−|σ|(C(σ)) .

If K is an n-dimensional homology manifold the images of the fundamental
class [K] ∈ Hn(K)

∂σ([K]) = [D(σ,K)] ∈ Hn−|σ|(D(σ,K), ∂D(σ,K)) (σ ∈ K)

* I am grateful to Frank Connolly for pointing out that the definition of ∂σ
in the original 1992 edition of the book was wrong.
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are the fundamental classes of the (n−|σ|)-dimensional geometric Poincaré
pairs (D(σ,K), ∂D(σ,K)).

Proposition 8.4 An n-dimensional

{
symmetric
quadratic

complex

{
(C, φ)
(C,ψ)

in

A (R,K) is locally Poincaré if and only if each

{
(C, φ)[σ]
(C,ψ)[σ]

(σ ∈ K) is

an (n− |σ|)-dimensional

{
symmetric
quadratic

Poincaré pair in A (R).

Proof By 4.7 a chain map f :C−−→D in A (R,K) is a chain equivalence if
and only if the (σ, σ)-component f(σ, σ):C(σ)−−→D(σ) is a chain equiva-

lence in A (R) for each σ ∈ K. The duality R-module chain map

[C][σ]n−|σ|−∗ = Cn−∗(σ) −−→ [C][σ]/∂[C][σ] = C(σ)

of

{
(C, φ)[σ]
(C,ψ)[σ]

is the (σ, σ)-component of the duality (R,K)-module chain

map

{
φ0:Cn−∗−−→C
(1 + T )ψ0:Cn−∗−−→C of

{
(C, φ)
(C,ψ)

.

Remark 8.5 An n-dimensional pseudomanifold is a finite n-dimensional
simplicial complex K such that

(i) every simplex of K is a face of an n-simplex,

(ii) every (n− 1)-simplex of K is a face of exactly two n-simplexes.
The result of McCrory [105] that K is a homology manifold with fun-
damental class [K] ∈ Hn(K) if and only if there exists a cohomology

class U ∈ Hn(K × K,K × K\∆) with the image in Hn(K × K) dual to
∆∗[K] ∈ Hn(K × K) can now be proved directly, using the chain duality
theory of §5 and the derived product � of §7.

Assume (for simplicity) that K is oriented and connected, so that the
sum of the n-simplexes is a cycle representing the fundamental class [K] ∈
Hn(K)

[K] =
∑

τ∈K(n)

τ ∈ ker(d: ∆n(K)−−→∆n−1(K)) .

For each simplex σ ∈ K the pair (D(σ,K), ∂D(σ,K)) is an (n − |σ|)-
dimensional pseudomanifold with boundary. As in 6.2 there is defined an

n-dimensional symmetric complex in A (Z,K)

(C, φ) = (∆(K ′),∆∗[K])

such that

φ0(σ) = [D(σ,K)] ∩ − : Cn−∗(σ) = ∆(D(σ,K))n−|σ|−∗

−−→ C(σ) = ∆(D(σ,K), ∂D(σ,K))
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with assembly

φ0(K) = [K] ∩ − : Cn−∗(K) ' ∆(K)n−∗ −−→ C(K) ' ∆(K) .

K is a homology manifold if and only if (C, φ) is locally Poincaré. The
diagonal chain approximations are chain equivalences

[∆0][σ] : [C][σ] = ∆(D(σ,K))

'−−→ [C �Z C][σ] = ∆(D(σ,K))⊗Z ∆(D(σ,K)) ,

so that each of the chain maps in the commutative diagram
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with assembly

ϕ0(K) = [K] ∩ − : Cn−∗(K) ≃ ∆(K)n−∗ −−→ C(K) ≃ ∆(K) .

K is a homology manifold if and only if (C, ϕ) is locally Poincaré. The
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≃−−→ [C �Z C][σ] = ∆(D(σ,K))⊗Z ∆(D(σ,K)) ,

so that each of the chain maps in the commutative diagram

[C][K] w
[∆0]

u

βC

[C�ZC][K]

u

βC�ZC

C(K) w
∆0 (C�ZC)(K)

is a chain equivalence, and

(C ⊗(Z,K) C)(K) ≃ ∆(K) , C(K)⊗Z C(K) ≃ ∆(K ×K) .

By 5.5 the dual (Z,K)-module chain complex TC is such that

TC(σ) = ∆(D(σ,K))−|σ|−∗ ≃ S−|σ|Z (σ ∈ K) , TC(K) ≃ ∆(K)−∗ ,

and
(TC ⊗(Z,K) TC)(K) ≃ ∆(K ×K,K ×K\∆)−∗ ,

TC(K)⊗Z TC(K) ≃ ∆(K ×K)−∗ .

The product K×K (or rather K⊗K) is a 2n-dimensional pseudomanifold,

and the diagonal map of polyhedra

∆ : |K| −−→ |K| × |K| ; x −−→ (x, x)

induces a diagonal map in homology

∆∗ : H∗(K) = H∗(|K|) −−→ H∗(K ×K) = H∗(|K| × |K|) .
A geometric Thom class for K is an element

U ∈ Hn(K ×K,K ×K\∆) = Hn((TC ⊗(Z,K) TC)(K))

= Hn(Hom(Z,K)(C, TC))

satisfying one of the equivalent conditions:
(i) the image of U under

j∗ = inclusion∗ : Hn(K ×K,K ×K\∆)

−−→ Hn(K ×K) = Hn(TC(K)⊗Z TC(K))

is an element j∗U ∈ Hn(K ×K) such that

⟨j∗U,∆∗[K]⟩ = 1 ∈ Z ,

is a chain equivalence, and

(C ⊗(Z,K) C)(K) ' ∆(K) , C(K)⊗Z C(K) ' ∆(K ×K) .

By 5.5 the dual (Z,K)-module chain complex TC is such that

TC(σ) = ∆(D(σ,K))−|σ|−∗ ' S−|σ|Z (σ ∈ K) , TC(K) ' ∆(K)−∗ ,

and

(TC ⊗(Z,K) TC)(K) ' ∆(K ×K,K ×K\∆)−∗ ,

TC(K)⊗Z TC(K) ' ∆(K ×K)−∗ .

The product K×K (or rather K⊗K) is a 2n-dimensional pseudomanifold,
and the diagonal map of polyhedra

∆ : |K| −−→ |K| × |K| ; x −−→ (x, x)

induces a diagonal map in homology

∆∗ : H∗(K) = H∗(|K|) −−→ H∗(K ×K) = H∗(|K| × |K|) .
A geometric Thom class for K is an element

U ∈ Hn(K ×K,K ×K\∆) = Hn((TC ⊗(Z,K) TC)(K))

= Hn(Hom(Z,K)(C, TC))

satisfying one of the equivalent conditions:
(i) the image of U under

j∗ = inclusion∗ : Hn(K ×K,K ×K\∆)

−−→ Hn(K ×K) = Hn(TC(K)⊗Z TC(K))

is an element j∗U ∈ Hn(K ×K) such that

〈j∗U,∆∗[K]〉 = 1 ∈ Z ,
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(ii) the (Z,K)-module chain map U :C−−→Cn−∗ is such that

[φ0][σ] [U ][σ] ' 1 : [C][σ] −−→ [Cn−∗][σ] −−→ [C][σ] (σ ∈ K) ,

with [C][σ] = ∆(D(σ,K)) ' Z.

We shall now prove the result of McCrory [105] that K is a homology
manifold if and only if there exists a geometric Thom class U .

If K is a homology manifold then (C, φ) is locally Poincaré, and the inverse
of the (Z,K)-module chain equivalence φ0:Cn−∗−−→C defines a geometric
Thom class

U = (φ0)−1 ∈ Hn(Hom(Z,K)(C, TC)) = Hn(K ×K,K ×K\∆) .

This is the Thom class of the homology tangent bundle τK of K (Spanier

[163, p. 294]), the fibration

(K,K\{∗}) −−→ (K ×K,K ×K\∆) −−→ K .

The homology block bundle τK is the normal bundle of the diagonal em-
bedding ∆ ⊂ K × K, with U ∈ H̃n(T (τK)) the Thom class of the Thom

space T (τK) = (K ×K)/(K ×K\∆).
Conversely, suppose that (C, φ) admits a geometric Thom class U . Each

[φ0][σ] has a right chain homotopy inverse, and since φ0 ' Tφ0 : Cn−∗−−→C

each [φ0][σ] also has a left chain homotopy inverse. It follows that each
[φ0][σ] is a chain equivalence, so that φ0 is a (Z,K)-module chain equiva-
lence and K is a homology manifold.

Note that for a pseudomanifold K the composite

Hn(K ×K)
∆∗

−−→ Hn(K)
[K]∩−
−−−→ H0(K) = Z

sends any element x ∈ Hn(K ×K) with 〈x,∆∗[K]〉 = 1 ∈ Z to the Euler
characteristic of K

[K] ∩∆∗(x) = χ(K) ∈ Z .

If K admits a geometric Thom class U ∈ Hn(K×K,K×K\∆) then U has
image the Euler number of the homology tangent bundle τK of K

∆∗j∗(U) = χ(τK) ∈ Hn(K) = Z ,

and x = j∗(U) ∈ Hn(K ×K) is such that 〈x,∆∗[K]〉 = 1 ∈ Z. Thus if K is
a homology manifold the Euler characteristic of K is the Euler number of

τK

χ(K) = χ(τK) ∈ Hn(K) = H0(K) = Z .

(For a differentiable manifold K this is proved in Milnor and Stasheff
[112, pp. 124-130]).
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§9. Universal assembly

Universal assembly is the forgetful map from the L-groups of ‘local’ algebraic
bordism categories to the L-groups of ‘global’ algebraic bordism categories,

such as

A : L∗(Λ(R)∗(K)) = H∗(K;L.(R)) −−→ L∗(Λ(R,K)) = L∗(R[π1(K)]) .

In §9 only the oriented case is considered; the modifications required for the
nonorientable case are dealt with in Appendix A.

With R, K as in §8, let π = π1(K) be the fundamental group, and let R[π]

be the fundamental group ring. The assembly functor B (A[R,K])−−→B (R)
of 4.4 can be lifted to the universal cover K̃ of K:

Definition 9.1 (i) The [R,K]-module chain complex universal assembly is
the functor

B [R,K] = B (A[R,K]) −−→ B (R[π]) ; C −−→ C[K̃]

with

C[K̃]r =
∑

σ̃∈K̃

C[p σ̃]r−|σ| .

Here, p : K̃−−→K is the covering projection.
(ii) The (R,K)-module universal assembly is the functor

A (R,K) −−→ A (R[π]) ; M −−→ M(K̃) =
∑

σ̃∈K̃

M(pσ̃) ,

with the R[π]-module structure induced from the action of π on the universal
cover K̃ by covering translations. An (R,K)-module morphism f :M−−→N
assembles to the R[π]-module morphism f̃ :M(K̃)−−→N(K̃) with compo-
nents

f̃(τ̃ , σ̃) =

{
f(τ, σ) if σ̃ ≤ τ̃
0 otherwise

: M(σ̃) = M(σ) −−→ N(τ̃) = N(τ) .

Let C be a f.g. free (R,K)-module chain complex. The R-module chain

equivalence βC : [C][K]−−→C(K) of 4.9 lifts to an R[π]-module chain equiv-
alence

β̃C : [C][K̃] −−→ C(K̃) ,

so that the universal assembly constructions of 9.1 (i) and (ii) agree up to
chain equivalence.

Proposition 9.2 If f :C−−→D is a chain map of finite [R,K]-module chain
complexes such that each f [σ]:C[σ]−−→D[σ] (σ ∈ K) is an R-module chain
equivalence then the universal assembly f [K̃]:C[K̃]−−→D[K̃] is an R[π]-

module chain equivalence.
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Proof A chain map of finite chain complexes in an additive category is a
chain equivalence if and only if the algebraic mapping cone is chain con-
tractible. Thus it suffices to prove that a locally contractible finite [R,K]-
module chain complex C assembles to a contractible R[π]-module chain

complex C[K̃]. The first quadrant spectral sequence E(C) of 4.6 has E2-
terms

E2
p,q = Hp(K̃; {Hq(C[σ])}) ,

and converges to H∗(C[K̃]). If C is locally contractible then H∗(C[σ]) =

0 (σ ∈ K), so that H∗(C[K̃]) = 0 and C is globally contractible.

Example 9.3 The universal assembly of the f.g. free [R,K]-module chain
complex R defined as in 4.5 by

R[σ] = R (σ ∈ K)

is the simplicial R[π]-module chain complex of the universal cover K̃

R[K̃] = ∆(K̃;R) .

Example 9.4 The Alexander–Whitney–Steenrod diagonal chain approxi-
mation for the universal cover K̃

∆
K̃

: ∆(K̃;R) −−→ HomZ[Z2](W,∆(K̃;R)⊗R ∆(K̃;R))

projects to an R-module chain map

∆̃K = 1⊗∆
K̃

: ∆(K;R) = R⊗R[π] ∆(K̃;R)

−−→ R⊗R[π] (HomZ[Z2](W,∆(K̃;R)⊗R ∆(K̃;R)))

= HomZ[Z2](W,∆(K̃;R)⊗R[π] ∆(K̃;R)) = W%∆(K̃;R) ,

with R[π] acting on the left of ∆(K̃;R) via the covering translation action

of π on K̃, and on the right via the composition of the left action and the
involution

R[π] −−→ R[π] ; rg −−→ rg−1 (r ∈ R, g ∈ π) .

As in Ranicki [145] for any n-cycle [K] ∈ ∆(K;R)n there is defined an
n-dimensional symmetric complex (∆(K;R), ∆̃K([K])) in A (R[π]) with

∆̃K([K])0 = [K] ∩ − : ∆(K̃;R)n−∗ −−→ ∆(K̃;R) .

As in the simply connected case already considered in 6.4 the geometric
nature of ∆

K̃
allows (∆(K̃;R), φ) to be expressed as the assembly of an n-

dimensional symmetric complex (R,φ) in A[R,K], with R the 0-dimensional

[R,K]-module chain complex given by

Rk[σ] =

{
R if k = 0

0 if k 6= 0
(σ ∈ K) , R[K] = ∆(K;R) .
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By 5.6 the n-dual of R is the [R,K]-module chain complex

Rn−∗ = ΣnTR = [C]

associated to the (R,K)-module chain complex C with

C(σ) = Sn−|σ|R , C(K) = ∆(K;R)n−∗ ,

Rn−∗[σ] = [C][σ] = ∆(K,K\stK(σ);R)n−∗ (σ ∈ K) .

Write the n-cycle as

[K] =
∑

τ∈K,|τ |=n
rττ ∈ R[K]n = ∆(K;R)n (rτ ∈ R) .

The assembly of the n-dimensional symmetric complex (R,φ) in A[R,K]
defined by

φ0 =
∑

τ∈K,|τ |=n
rτ (1⊗ 1) ∈ (R⊗R R)[K]n =

∑

σ∈K
(R[σ]⊗R R[σ])n−|σ| ,

φs = 0 ∈ (R⊗R R)[K]n+s (s ≥ 1)

is the n-dimensional symmetric complex in A (R[π]) defined above

(R,φ)[K̃] = (∆(K̃;R), ∆̃K([K]))

and there is defined a chain homotopy commutative diagram
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ϕ0 =
∑

τ∈K,|τ |=n
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Rn−∗[K̃] = [C][K̃] w
ϕ0[K̃]

h
h
h
hhj
≃

β̃C

R[K̃] = ∆(K̃;R)

C(K̃) = ∆(K̃;R)n−∗
�
�
�
��

[K] ∩ −

with β̃C the chain equivalence given by 4.9. Here, ϕ0[K] is the assembly of
the [R,K]-module chain map ϕ0:R

n−∗−−→R with the components

ϕ0[σ] = ⟨[K][σ],−⟩ :

Rn−∗[σ] = ∆(K,K\stK(σ);R)n−∗ −−→ R[σ] = R ;

τ −−→
{
rτ if τ ≥ σ, |τ | = n

0 otherwise

with [K][σ] the image of [K]

[K][σ] =
∑

τ≥σ,|τ |=n
rττ ∈ ∆(K,K\stK(σ);R)n (σ ∈ K) .

K is an n-dimensional R-coefficient homology manifold (resp. Poincaré
complex) with fundamental cycle [K] ∈ ∆(K;R)n if and only if the [R,K]-
module chain map ϕ0:R

n−∗−−→R is such that each

ϕ0[σ] : Rn−∗[σ] −−→ R[σ] (σ ∈ K)

with β̃C the chain equivalence given by 4.9. Here, φ0[K] is the assembly of

the [R,K]-module chain map φ0:Rn−∗−−→R with the components

φ0[σ] = 〈[K][σ],−〉 :

Rn−∗[σ] = ∆(K,K\stK(σ);R)n−∗ −−→ R[σ] = R ;

τ −−→
{
rτ if τ ≥ σ, |τ | = n

0 otherwise

with [K][σ] the image of [K]

[K][σ] =
∑

τ≥σ,|τ |=n
rττ ∈ ∆(K,K\stK(σ);R)n (σ ∈ K) .

K is an n-dimensional R-coefficient homology manifold (resp. Poincaré
complex) with fundamental cycle [K] ∈ ∆(K;R)n if and only if the [R,K]-

module chain map φ0:Rn−∗−−→R is such that each

φ0[σ] : Rn−∗[σ] −−→ R[σ] (σ ∈ K)
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is an R-module chain equivalence (resp. the assembly R[π]-module chain
map

φ0[K] : Rn−∗[K] −−→ R[K]

is a chain equivalence). In particular, if (R,φ) is a Poincaré complex in

A [R,K], then the assembly (R,φ)[K̃] is a Poincaré complex in A (R[π]), by
9.2. The identifications

H∗(R
n−∗[σ]) = Hn−∗(K,K\stK(σ);R))

= Hn−∗(starK′(σ̂), linkK′(σ̂);R)

= Hn−∗(|K|, |K|\{σ̂};R) (σ ∈ K)

again recover the familiar result that a homology manifold is a geometric
Poincaré complex. This is the chain homotopy theoretic version of the

spectral sequence argument of 5.6.

Let B (R,K) = B (A (R,K)) be the category of finite chain complexes of
f.g. free (R,K)-modules.

Definition 9.5 Given R,K, π as above define three algebraic bordism cat-
egories:

(i) The f.g. free R[π]-module category of 3.6

Λ(R[π]) = (A (R[π]),B (R[π]),C (R[π])) .

(ii) The local f.g. free (R,K)-module bordism category given by 4.1

Λ(R)∗(K) = (A (R,K),B (R,K),C (R)∗(K)) ,

with C (R)∗(K)-equivalences called local equivalences.
(iii) The global f.g. free (R,K)-module bordism category

Λ(R,K) = (A (R,K),B (R,K),C (R,K))

with C (R,K) ⊆ B (R,K) the subcategory of the finite f.g. free (R,K)-
module chain complexes C which assemble to contractible f.g. free R[π]-
module chain complexes C(K̃). C (R,K)-equivalences are called global

equivalences.

Proposition 9.6 Local equivalences are global, and inclusion defines an
assembly functor of algebraic bordism categories

Λ(R)∗(K) −−→ Λ(R,K) .

Proof The universal assembly of a finite chain complex C in A (R,K) is a

finite chain complex C(K̃) in A (R[π]) which is chain equivalent (by 4.9) to
the assembly [C][K̃] of the finite chain complex [C] in A[R,K]. Now apply
9.2.
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Definition 9.7

The





symmetric
visible symmetric
quadratic
normal

L-groups of (R,K) are the





symmetric
normal
quadratic
normal

L-groups





Ln(R,K) = Ln(Λ(R,K))

V Ln(R,K) = NLn(Λ(R,K))

Ln(R,K) = Ln(Λ(R,K))

NLn(R,K) = NLn(Λ̂(R,K))

(n ∈ Z)

with

Λ(R,K) = (A (R,K),B (R,K),C (R,K)) ,

Λ̂(R,K) = (A (R,K),B (R,K),B (R,K)) .

The L-groups defined in 9.7 are all 4-periodic via the double skew-suspen-
sion maps, because the underlying chain complexes are only required to be
finite, allowing non-zero chain objects in negative dimensions. The (poten-
tially) aperiodic versions defined using positive chain complexes are dealt

with in §15.
The exact sequence of 3.10 can be written as

. . . −−→ Ln(R,K)
1+T
−−→ V Ln(R,K)

J
−−→ NLn(R,K)

∂
−−→ Ln−1(R,K) −−→ . . . .

The





symmetric
visible symmetric
quadratic
normal

L-theory universal assembly maps





A:L∗(R,K)−−→L∗(R[π])
A:V L∗(R,K)−−→V L∗(R[π])
A:L∗(R,K)−−→L∗(R[π])
A:NL∗(R,K)−−→NL∗(R[π])

are defined in 9.11 below. The quadratic L-

theory universal assembly maps are shown to be isomorphisms in §10 below,

so that the quadratic L-groups of (R,K) are isomorphic to the surgery
obstruction groups

L∗(R,K) ∼= L∗(R[π]) .

(Warning: the quadratic L-theory assembly isomorphisms A:L∗(R,K) ∼=
L∗(R[π]) are not to be confused with the quadratic L-theory assembly maps
A:H∗(K;L.(R))−−→L∗(R[π]) defined in 14.5 below, which are not in general
isomorphisms. See 9.17 below for an explicit example where the latter A is

not an isomorphism.)
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Remark 9.8 The visible symmetric Q-groups of Weiss [187] are defined for
any finite f.g. free R[π]-module chain complex C to be

V Q∗(C) = H∗(P ⊗R[π] (HomZ[Z2](W,C ⊗R C))) ,

with P a projective R[π]-module resolution of R, and there are defined
natural maps

1 + T : Q∗(C) −−→ V Q∗(C) , V Q∗(C) −−→ Q∗(C) .

In particular, the visible symmetric Q-group V Q0(C) of a 0-dimensional
R[π]-module chain complex C consists of the visible symmetric forms on

C0, which are the symmetric forms φ = φ∗ ∈ HomR[π](C
0, C0) such that

φ(x)(x) ∈ Ĥ0(Z2;R) ⊆ Ĥ0(Z2;R[π]) (x ∈ C0) .

The visible symmetric L-groups V Ln(R[π]) (n ∈ Z) of [187] are the cobor-

dism groups of n-dimensional visible symmetric Poincaré complexes (C, φ ∈
V Qn(C)) over R[π]. The symmetric construction of Ranicki [145] has a
visible version

φX : Hn(X) −−→ V Qn(∆(X̃))

for any space X with universal cover X̃, so that an n-dimensional geometric
Poincaré complex X has a visible symmetric signature

σ∗(X) = (∆(X̃), φX([X])) ∈ V Ln(Z[π1(X)]) .

By Ranicki and Weiss [150] every finite f.g. free R[π]-module chain complex

is chain equivalent to the universal assembly C(K̃) of a finite f.g. free
(R,K)-module chain complex C, with K = Bπ the classifying space of π.
It is proved in [187] that for any such C the Q-group universal assembly
maps are isomorphisms

Q∗(C)
'−−→ V Q∗(C(K̃)) , Q∗(C)

'−−→ Q∗(C(K̃)) ,

and hence that the L-group universal assembly maps are isomorphisms

V L∗(R,K(π, 1))
'−−→ V L∗(R[π]) , L∗(R,K(π, 1))

'−−→ L∗(R[π]) .

It is also proved in [187] that Q̂∗(C) = 0 for any globally contractible finite
f.g. free (R,K)-module chain complex C, for any K, so that symmetric
complexes in Λ(R,K) have canonical normal structures and the forgetful

maps are isomorphisms

V L∗(R,K) = NL∗(Λ(R,K))
'−−→ L∗(R,K) = L∗(Λ(R,K))

(see 3.5). In the special case K = {∗} already considered in 3.6

V L∗(R, {∗}) = NL∗(Λ(R)) = L∗(Λ(R)) = L∗(R) .

The visible symmetric L-groups V L∗(Z[π]) are closely related to the R.L.

symmetric L-groups L∗R.L.(Z[π]) of Milgram [108]. For K = {∗}
V Ln(R, {∗}) = lim−→

k
Ln+4k(R) ,
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the free symmetric L-groups made 4-periodic. R.L. stands for Ronnie Lee,
because visible symmetric forms over group rings were first used by Lee
[90].

Remark 9.9 It will be shown in §13 below that the L-groups of the local
algebraic bordism categories are generalized homology groups




Ln(Λ(R)∗(K)) = Hn(K;L.
(R))

Ln(Λ(R)∗(K)) = Hn(K;L.(R))

NLn(R,K) = Hn(K;NL.(R))

(n ∈ Z)

with coefficients in algebraic L-spectra. In particular, for a classifying space
K = Bπ these are the generalized homology groups of the group π.

Definition 9.10 Given (R,K)-module chain complexes C, D define the

universal assembly Z-module chain map

αC,D : C ⊗(R,K) D = [C �R D][K]
βC�RD−−−−−→ (C �R D)(K)

γC,D−−−−−→ C(K̃)⊗R[π] D(K̃) ; φ −−→ φ(K̃)

with βC�RD the chain equivalence given by 4.9 and

γC,D : (C �RD)(K) −−→ C(K̃)⊗R[π]D(K̃) ; x(λ)� y(µ) −−→ x(λ̃)⊗ y(µ̃)

the injection constructed using any lifts of the simplexes λ, µ ∈ K with
λ ∩ µ 6= ∅ to simplexes λ̃, µ̃ ∈ K̃ with λ̃ ∩ µ̃ 6= ∅.

The duality R-module isomorphism

TC(K),D(K) : C(K)⊗R D(K)
'−−→ D(K)⊗R C(K) ;

x⊗ y −−→ (−)pqy ⊗ x (x ∈ C(K)p, y ∈ D(K)q)

restricts to define a duality isomorphism of (R,K)-module chain complexes

TC,D : C �R D
'−−→ D �R C ; x� y −−→ (−)pqy � x ,

such that there is defined a commutative diagram
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

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with coefficients in algebraic L-spectra. In particular, for a classifying space
K = Bπ these are the generalized homology groups of the group π.

Definition 9.10 Given (R,K)-module chain complexes C, D define the
universal assembly Z-module chain map

αC,D : C ⊗(R,K) D = [C �R D][K]
βC�RD−−−−−→ (C �R D)(K)

γC,D−−−−−→ C(K̃)⊗R[π] D(K̃) ; ϕ −−→ ϕ(K̃)

with βC�RD the chain equivalence given by 4.9 and

γC,D : (C �RD)(K) −−→ C(K̃)⊗R[π]D(K̃) ; x(λ) � y(µ) −−→ x(λ̃)⊗ y(µ̃)

the injection constructed using any lifts of the simplexes λ, µ ∈ K with
λ ∩ µ ̸= ∅ to simplexes λ̃, µ̃ ∈ K̃ with λ̃ ∩ µ̃ ̸= ∅.

The duality R-module isomorphism

TC(K),D(K) : C(K)⊗R D(K)
≃−−→ D(K)⊗R C(K) ;

x⊗ y −−→ (−)pqy ⊗ x (x ∈ C(K)p, y ∈ D(K)q)

restricts to define a duality isomorphism of (R,K)-module chain complexes

TC,D : C �R D
≃−−→ D �R C ; x� y −−→ (−)pqy � x ,

such that there is defined a commutative diagram

C ⊗(R,K) D w
αC,D

u

TC,D

C(K̃)⊗R[π] D(K̃)

u

T
C(K̃),D(K̃)

D ⊗(R,K) C w
αD,C

D(K̃)⊗R[π] C(K̃) .

For C = D universal assembly is a Z[Z2]-module chain map

α = αC,C : C ⊗(R,K) C −−→ C(K̃)⊗R[π] C(K̃) ; ϕ −−→ ϕ(K̃)
For C = D universal assembly is a Z[Z2]-module chain map

α = αC,C : C ⊗(R,K) C −−→ C(K̃)⊗R[π] C(K̃) ; φ −−→ φ(K̃)
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inducing abelian group morphisms

α% : Qn(C) = Hn(HomZ[Z2](W, (C ⊗(R,K) C))) −−→
Qn(C(K̃)) = Hn(HomZ[Z2](W,C(K̃)⊗R[π] C(K̃))) ,

α% : Qn(C) = Hn(W ⊗Z[Z2] (C ⊗(R,K) C)) −−→
Qn(C(K̃)) = Hn(W ⊗Z[Z2] (C(K̃)⊗R[π] C(K̃))) (n ∈ Z) .

Proposition 9.11 Universal assembly defines functors of algebraic bordism

categories

A : Λ(R,K) −−→ Λ(R[π]) , A : Λ̂(R,K) −−→ Λ̂(R[π])

inducing universal assembly maps in the





symmetric
visible symmetric
quadratic
normal

L-groups





A : Ln(R,K) −−→ Ln(R[π]) ; (C, φ) −−→ (C, φ)(K̃)

A : V Ln(R,K) −−→ V Ln(R[π]) ; (C, φ) −−→ (C, φ)(K̃)

A : Ln(R,K) −−→ Ln(R[π]) ; (C,ψ) −−→ (C,ψ)(K̃)

A : NLn(R,K) −−→ NLn(R[π]) ; (C, φ) −−→ (C, φ)(K̃) .

Proof The universal assembly functor of the additive categories

A : A (R,K) −−→ A (R[π]) ; M −−→ M(K̃)

satisfies condition 3.1 (i), since A(C (R,K)) ⊆ C (R[π]) by the definition of

Λ(R,K). For any object M in A (R,K) the assembly of the 0-cycle

1 ∈ (M ⊗(R,K) TM)0 = Hom(R,K)(TM, TM)0

is a 0-cycle

1(K̃) ∈ (M(K̃)⊗(R,K) (TM)(K̃))0 = HomR[π](T (M(K̃)), (TM)(K̃))0

defining a natural C (R[π])-equivalence

B(M) = 1(K̃) : TA(M) = T (M(K̃))
'−−→ AT (M) = (TM)(K̃)

satisfying condition 3.1 (ii).

For finite chain complexes C,D in A (R,K) an n-cycle φ ∈ (C ⊗(R,K)

D)n is an (R,K)-module chain map φ: ΣnTC−−→D. The assembly n-cycle
φ(K̃) ∈ (C(K̃) ⊗R[π] D(K̃))n is the R[π]-module chain map given by the

composite

φ(K̃) : C(K̃)n−∗ = ΣnT (C(K̃))
ΣnB(C)
−−−−−−−→

Σn(TC)(K̃) = (ΣnTC)(K̃)
A(φ)
−−−−−→ D(K̃) .
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Thus φ: ΣnTC−−→D is a C (R,K)-equivalence if and only if φ(K̃):C(K̃)n−∗

−−→D(K̃) is a C (R[π])-equivalence. The universal assembly of an n-dimen-
sional symmetric complex (C, φ) in Λ(R,K) is an n-dimensional symmetric
complex in Λ(R[π])

(C, φ)(K̃) = (C(K̃), φ(K̃)) ,

with φ(K̃) ∈ W%C(K̃)n the n-cycle defined by the image of the n-cycle
φ ∈ (W%C)n under the Z-module chain map

α% : W%C = HomZ[Z2](W,C ⊗(R,K) C) −−→
W%C(K̃) = HomZ[Z2](W,C(K̃)⊗R[π] C(K̃)) .

Similarly for the quadratic and normal cases.

Example 9.12 As in 4.15 let X be a simplicial complex with a K-dissection
{X[σ] |σ ∈ K}, and regard the R-coefficient simplicial chain complex ∆(X;

R) as a f.g. free (R,K)-module chain complex C with

C(σ) = ∆(X[σ],∂X[σ];R) , [C][σ] = ∆(X[σ];R) ,

∂X[σ] =
⋃

τ>σ

X[τ ] (σ ∈ K) .

The Alexander–Whitney–Steenrod diagonal chain approximation of X is an
(R,K)-module chain map

∆K = ∆ : C(K) = ∆(X;R) −−→
(W%C)(K) = HomZ[Z2](W, (C �R C)(K))

(⊆W%(C(K)) = HomZ[Z2](W,∆(X;R)⊗R ∆(X;R)))

with

∆0(x) =

n∑

i=0

(x0x1 . . . xi)⊗ (xixi+1 . . . xn) ∈ (C �R C)(K)n

(x = (x0x1 . . . xn) ∈ X(n)) .

By the naturality of ∆ there is defined a commutative diagram of R-module
chain complexes and chain maps
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u

βC
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u

βW%C

C(K) w
∆ (W%C)(K) .
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Given an n-cycle

[X] =
∑

σ∈K
xσσ ∈ C(K)n = ∆(X;R)n =

∑

σ∈K
∆(X[σ], ∂X[σ];R)n

use the chain maps ∂σ: ∆(X;R)−−→S|σ|∆(X[σ], ∂X[σ];R) given by 9.5 to
define (n− |σ|)-cycles

[X(σ)] = ∂σ([X]) ∈ ∆(X[σ], ∂X[σ];R)n−|σ| (σ ∈ K) .

The n-cycle

φ = ∆([X]) ∈ (W%C)(K)n

defines an n-dimensional symmetric complex in A (R,K)

σ∗(X) = (C, φ)

such that

σ∗(X)[τ ] = σ∗(X[τ ], ∂X[τ ]) (τ ∈ K) .

The assembly of σ∗(X) is an n-dimensional symmetric complex in A (R[π])

(C(K̃), φ(K̃)) with a chain homotopy commutative diagram
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C(K̃)n−∗ = ∆(X̃;R)n−∗ w
[X] ∩ −

C(K̃) = ∆(X̃;R)

([C][K̃])n−∗ = Cn−∗(K̃)

][
[

[
[

β̃∗
C

�
�
�
��

ϕ0(K̃)

where ∆(X̃;R) is the simplicial R[π]-module chain complex of the pullback
X̃ to X of the universal cover K̃ of K, and β̃∗

C is the n-dual of the R[π]-

module chain equivalence β̃C : [C][K̃]−−→C(K̃) = ∆(X̃;R) given by 4.9. A
normal structure realizing [X] ∈ Hn(X;R) is a pair

( νX :X −−→BG(k) , ρX :Sn+k−−→T (νX) ) (k ≫ 0)

such that [X] is the image of the homotopy class of ρX under the composite

πn+k(T (νX))
h
−−→ Ḣn+k(T (νX))

t
−−→ Hn(X)

c
−−→ Hn(X;R)

with h the Hurewicz map, t the Thom isomorphism and c the change of rings
for the morphism Z−−→R; 1−−→1. Use the Pontrjagin-Thom isomorphism

to represent

ρX ∈ πsn+k(T (νX)) = πsn+k(D(νX), S(νX)) = Ωfrn+k(D(νX), S(νX))

by a map (W,∂W ) → (D(νX), S(νX)) from a framed (n + k)-dimensional
manifold. The inverse images of the dual cells D(σ,K) ⊂ K ′ (σ ∈ K)
define a K-dissection {(W [σ], ∂W [σ]) |σ ∈ K} of (W,∂W ) with each W (σ)

an (n+ k − |σ|)-dimensional framed manifold. The composite

(W,∂W )→ (D(νX), S(νX))→ X → K ′

where ∆(X̃;R) is the simplicial R[π]-module chain complex of the pullback
X̃ to X of the universal cover K̃ of K, and β̃∗C is the n-dual of the R[π]-
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h
−−→ Ḣn+k(T (νX))

t
−−→ Hn(X)

c
−−→ Hn(X;R)

with h the Hurewicz map, t the Thom isomorphism and c the change of rings
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to represent

ρX ∈ πsn+k(T (νX)) = πsn+k(D(νX), S(νX)) = Ωfrn+k(D(νX), S(νX))
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(W,∂W )→ (D(νX), S(νX))→ X → K ′
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can be approximated by a simplicial map, and by the homotopy exten-
sion property of a Hurewicz fibration it may be arranged for this simplicial
map to also factor in this way. Thus each (X[σ], ∂X[σ]) is an (n − |σ|)-
dimensional normal pair, justifying the statement that the n-dimensional

normal complex σ̂∗(X) is defined in A(R,K). The geometric normal struc-
ture (νX , ρX) thus determines an algebraic normal structure (γ, χ) for the
symmetric complex σ∗(X) = (C, φ) in A (R,K), and

σ̂∗(X) = (C, φ, γ, χ)

is an n-dimensional normal complex in A (R,K) with chain bundle (C, γ) =

σ̂∗(νX).

Example 9.13 Given a simplicial complex K set

X = K ′ , X[σ] = D(σ,K) (σ ∈ K) , R = Z ,

in 9.12, so that C is the (Z,K)-module chain complex of 4.15 with

C(K) = ∆(K ′) , C(σ) = ∆(D(σ,K), ∂D(σ,K)) (σ ∈ K) .

For any n-cycle [K] ∈ ∆(K ′)n there is defined an n-dimensional normal
complex (C, φ) in A (Z,K) with

φ = ∆([K]) ∈ Hn((W%C)(K)) ,

φ0(K) = [K] ∩ − : ΣnTC(K) ' ∆(K ′)n−∗ −−→ C(K) = ∆(K ′) ,

φ0(σ) = [D(σ,K)] ∩ − : ΣnTC(σ) = ∆(D(σ,K))n−|σ|−∗

−−→ C(σ) = ∆(D(σ,K), ∂D(σ,K)) (σ ∈ K) .

K is an n-dimensional

{
geometric Poincaré complex
homology manifold

with the fundamental

cycle [K] ∈ ∆(K ′)n if and only if the symmetric complex (C, φ) is Poincaré.
In both cases there is defined an algebraic normal structure (γ, χ), and hence

a visible symmetric signature invariant

σ∗(K) = (C, φ, γ, χ) ∈
{
V Ln(Z,K)
Ln(Λ(Z)∗(K)) .

The image of (C, φ) under the full embedding

A (Z,K) −−→ A[Z,K] ; M −−→[M ]

is homotopy equivalent to the symmetric complex (Z, φ) of 9.4.

Example 9.14 Let (f, b):M−−→K ′ be a normal map from a compact n-

dimensional homology manifold M to the barycentric subdivision K ′ of an

n-dimensional

{
geometric Poincaré complex
homology manifold

K, so that for each τ ∈ K the
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restriction
(f [τ ], b[τ ]) = (f, b)| :

(M [τ ], ∂M [τ ]) = f−1(D(τ,K), ∂D(τ,K)) −−→ (D(τ,K), ∂D(τ,K))

is a normal map from an (n − |τ |)-dimensional homology manifold with

boundary to an (n− |τ |)-dimensional geometric
{

normal
Poincaré

pair. The quadratic construction of Ranicki [145] associates to (f, b) an

n-dimensional quadratic

{
globally
locally

Poincaré complex in A (Z,K)

σ∗(f, b) = (C(f !), ψ)

with C(f !) the algebraic mapping cone of the Umkehr chain map in A (Z,K)

f ! : ∆(K ′)
([K′]∩−)−1

−−−−−−→ ∆(K ′)n−∗
f∗

−−−−−→ ∆(M)n−∗
[M ]∩−
−−−−−→ ∆(M) ,

such that

σ∗(f, b)[τ ] = σ∗(f [τ ], b[τ ]) (τ ∈ K) .

The quadratic signature of (f, b) is the cobordism class

σ∗(f, b) ∈
{
Ln(Λ(Z,K))

Ln(Λ(Z)∗(K)) .

Example 9.15 An n-dimensional normal complex

(K , νK :K−−→BG(k) , ρK :Sn+k−−→T (νK) )

determines (as in 9.13) an n-dimensional normal complex σ̂∗(K) = (C, φ)

in A (Z,K) with C(K̃) = ∆(K̃ ′), and such that

σ̂∗(K)[τ ] = σ̂∗(D(τ,K), ∂D(τ,K)) (τ ∈ K) .

The normal signature of K is the cobordism class

σ̂∗(K) ∈ NLn(Z,K) .

Example 9.16 The assembly of the

{
visible symmetric
quadratic
normal

signature given by

{
9.13
9.14
9.15

for an n-dimensional geometric





Poincaré complex K

normal map (f, b):M−−→K ′
normal complex K

is the

{
visible symmetric
quadratic
normal

signature





σ∗(K) ∈ im(A:V Ln(Z,K)−−→V Ln(Z[π1(K)]))

σ∗(f, b) ∈ im(A:Ln(Z,K)−−→Ln(Z[π1(K)]))

σ̂∗(K) ∈ im(A:NLn(Z,K)−−→NLn(Z[π1(K)]))
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of





Weiss [187]
Wall [180]
Ranicki [146].

Also, σ∗(K) ∈ Ln(Z[π1(K)]) for geometric Poincaré K

is the symmetric signature of Mishchenko [115] and Ranicki [145].

Example 9.17 The universal assembly maps

A : H∗(Bπ;L.(Z)) −−→ L∗(Z[π]) ,

A : H∗(Bπ;L.
(Z)) −−→ V L∗(Z, Bπ)

will now be described in the special case π = Z2 , BZ2 = RP∞, assuming
the identifications obtained in §10 and §13

L∗(Z, Bπ) = L∗(Z[π]) , V L∗(Z, Bπ) = V L∗(Z[π]) ,

L∗(Λ(Z)∗(Bπ)) = H∗(Bπ;L.(Z)) , L∗(Λ(Z)∗(Bπ)) = H∗(Bπ;L.(Z)) .

The computations have been carried out by Wall [180, §14D], Conner (Dover-
mann [46]) and Weiss [187, §7]. The Witt groups of the group ring

Z[Z2] = Z[T ]/(T 2 − 1)

with the oriented involution T = T are computed using the cartesian square

of rings with involution
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is the symmetric signature of Mishchenko [115] and Ranicki [145].

Example 9.17 The universal assembly maps

A : H∗(Bπ; L.(Z)) −−→ L∗(Z[π]) ,

A : H∗(Bπ; L.
(Z)) −−→ V L∗(Z, Bπ)

will now be described in the special case π = Z2 , BZ2 = RP∞, assuming
the identifications obtained in §10 and §13

L∗(Z, Bπ) = L∗(Z[π]) , V L∗(Z, Bπ) = V L∗(Z[π]) ,

L∗(Λ(Z)∗(Bπ)) = H∗(Bπ; L.(Z)) , L∗(Λ(Z)∗(Bπ)) = H∗(Bπ; L.
(Z)) .

The computations have been carried out by Wall [180, §14D], Conner (Dover-
mann [46]) and Weiss [187, §7]. The Witt groups of the group ring

Z[Z2] = Z[T ]/(T 2 − 1)

with the oriented involution T = T are computed using the cartesian square
of rings with involution

Z[Z2] w
j+

u

j−

Z

u
Z w Z2

where

j± : Z[Z2] −−→ Z ; a+ bT −−→ a± b .
The quadratic L-groups L∗(Z[Z2]) fit into the Mayer–Vietoris exact se-
quence of Ranicki [146, 6.3.1]

. . . −−→ Ln(Z[Z2])
(j+ j−)
−−−−−→ Ln(Z)⊕ Ln(Z)

−−→ Ln(Z2 ) −−→ Ln−1(Z[Z2]) −−→ . . . .

Although there is no such Mayer–Vietoris exact sequence for the symmet-
ric L-groups in general (Ranicki [146, 6.4.2]) the symmetric Witt group
L0(Z[Z2]) fits into the exact sequence

0 −−→ L0(Z[Z2])
(j+ j−)
−−−−−→ L0(Z)⊕ L0(Z) −−→ L0(Z2 ) −−→ 0

such that up to isomorphism

L0(Z) = Z , L0(Z[Z2]) = Z⊕ Z , L0(Z2 ) = Z2 .

where

j± : Z[Z2] −−→ Z ; a+ bT −−→ a± b .
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(j+ j−)
−−−−−→ Ln(Z)⊕ Ln(Z)

−−→ Ln(Z2 ) −−→ Ln−1(Z[Z2]) −−→ . . . .

Although there is no such Mayer–Vietoris exact sequence for the symmet-
ric L-groups in general (Ranicki [146, 6.4.2]) the symmetric Witt group
L0(Z[Z2]) fits into the exact sequence

0 −−→ L0(Z[Z2])
(j+ j−)
−−−−−→ L0(Z)⊕ L0(Z) −−→ L0(Z2 ) −−→ 0

such that up to isomorphism

L0(Z) = Z , L0(Z[Z2]) = Z⊕ Z , L0(Z2 ) = Z2 .
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The Witt group V L0(Z[Z2], 1) of nonsingular visible symmetric forms over
Z[Z2] fits into the exact sequences

0 −−→ V L0(Z[Z2], 1)
(j+ j−)
−−−−−→ L0(Z)⊕ L0(Z) −−→ L̂0(Z) −−→ 0

0 −−→ L0(Z[Z2]) −−→ V L0(Z[Z2], 1) −−→ L̂0(Z) −−→ 0

such that up to isomorphism

L0(Z[Z2]) = V L0(Z[Z2], 1) = Z⊕ Z , L̂0(Z) = NL0(Z) = Z8 .

The quadratic L-theory assembly maps are given by:

A : Hn(BZ2;L.(Z)) =
∑

k∈Z
Hn−k(BZ2;Lk(Z))

−−→Ln(Z[Z2]) =





Z⊕ Z
0
Z2

Z2

if n =





0

1

2

3
are given by

A : H0(BZ2;L.(Z)) = H0(BZ2;L0(Z)) = Z
1⊕1
−−→L0(Z[Z2]) = Z⊕ Z ,

A : H2(BZ2;L.(Z)) = H2(BZ2;L0(Z))⊕H0(BZ2;L2(Z)) = Z⊕ Z2

0⊕1
−−→L2(Z[Z2]) = Z2 ,

A : H3(BZ2;L.(Z)) = H3(BZ2;L0(Z))⊕H1(BZ2;L2(Z)) = Z2

0⊕1
−−→L3(Z[Z2]) = Z2

(Hambleton, Milgram, Taylor and Williams [69]). The visible symmetric
L-theory assembly maps are given by

A : Hn(BZ2 ;L.(Z)) =
∑

k∈Z
Hn−k(BZ2 ;Lk(Z)) −−→

V Ln(Z[Z2]) =





V L0(Z[Z2], 1)⊕ ∑
k 6=−1,0

Hn−k(BZ2 ; L̂k(Z))

∑
k

Hn−k(BZ2 ; L̂k(Z))

∑
k 6=3

Hn−k(BZ2 ; L̂k(Z))

if n ≡
{

0
1, 2
3

(mod 4) .

The symmetric L-groups L∗(Z[Z2]) are not 4-periodic.

Given a nonsingular symmetric form (M,φ) over Z[Z2] let

s±(M,φ) = signature j±(M,φ) ∈ L0(Z) = Z .
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In terms of the signatures

L0(Z[Z2]) = { (s+, s−) ∈ Z⊕ Z | s+ ≡ s− (mod 2) } ,
V L0(Z[Z2], 1) = { (s+, s−) ∈ Z⊕ Z | s+ ≡ s− (mod 8) } ,
L0(Z[Z2]) = { (s+, s−) ∈ Z⊕ Z | s+ ≡ s− ≡ 0 (mod 8) }

and in each case the image of the assembly map A is

im(A) = { (s+, s−) | s+ = s− ∈ Z } .
For example

s±(Z[Z2], 1) = 1 , (Z[Z2], 1) ∈ im(A) ⊂ V L0(Z[Z2]) ,

s±(Z[Z2], T ) = ±1 , (Z[Z2], T ) /∈ im(A) ⊂ L0(Z[Z2]) .

The effect of the restriction map

i ! : L0(Z[Z2]) −−→ L0(Z) ; (M,φ) −−→ (i !M, i !φ)

is given by

i !(s+, s−) = s+ + s− ∈ L0(Z) = Z ,

since for any a+ bT ∈ Z[Z2] the eigenvalues of

i!(a+ bT ) =

(
a b
b a

)
: i !Z[Z2] = Z⊕ Z −−→ Z⊕ Z

are j±(a+ bT ) = a± b. Thus for a nonsingular symmetric form (M,φ) over

Z[Z2] the following conditions are equivalent:

(i) i !(M,φ) = 2 j+(M,φ) ∈ Z ,

(ii) s+(M,φ) = s−(M,φ) ∈ Z ,

(iii) (M,φ) ∈ im(A:H0(BZ2 ;L.(Z))−−→L0(Z[Z2]))

and similarly for visible symmetric and quadratic forms. For the applica-

tions to topology see Example 23.5C below.
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§10. The algebraic π-π theorem

The geometric π-π theorem of Wall [180, 3.2] is that for n ≥ 6 a normal map
(f, b): (M,∂M)−−→(X, ∂X) from an n-dimensional manifold with bound-
ary (M,∂M) to an n-dimensional geometric Poincaré pair (X, ∂X) with

π1(∂X) ∼= π1(X) is normal bordant to a homotopy equivalence of pairs.
The π-π theorem was used in Chapter 9 of [180] to identify the geometric
surgery obstruction groups L∗(K) with the algebraic surgery obstruction

groups of the fundamental group ring Z[π1(K)]

Ln(K) = Ln(Z[π1(K)]) (n ≥ 5) ,

for any connected CW complex K with a finite 2-skeleton.

An algebraic π-π theorem will now be obtained, in the form of a natural
identification

Ln(Λ(R,K)) = Ln(R[π1(K)]) (n ∈ Z)

for any commutative ring R and any connected ordered simplicial complex
K, with Λ(R,K) the algebraic bordism category of 9.5 (iii).

Use the base vertex ∗ ∈ K(0) to define a f.g. free (R,K)-module Γ by

Γ0(σ) =

{
R if σ = ∗
0 otherwise .

Let K̃ be the universal cover of K. Choosing a lift ∗̃ ∈ K̃(0) there is defined
an R[π1(K)]-module isomorphism

R[π1(K)]
'−−→ Γ(K̃) ; 1 −−→ 1(∗̃) ,

which will be used as an identification.

Definition 10.1 The homology assembly maps are defined for any (R,K)-

module chain complex C to be the R[π1(K)]-module morphisms

Hr([C][∗]) −−→ Hr(C(K̃)) (r ∈ Z)

induced in homology by the chain map

Hom(R,K)(Γ, C) = [C][∗] −−→ HomR[π1(K)](Γ(K̃), C(K̃)) = C(K̃) ;

x(σ) −−→ x(σ̃) (∗ ≤ σ, ∗̃ ≤ σ̃) .

The proof of the algebraic π-π theorem requires a Hurewicz theorem to
represent homology classes in assembled R[π]-module chain complexes by

(R,K)-module morphisms, just as the proof of the geometric π-π theorem
needs the usual Hurewicz theorem to represent homology by homotopy. This
requires the results of Ranicki and Weiss [150, §4] summarized in the next

paragraph.
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An (R,K)-module chain complex C is homogeneous if the inclusions define
R-module chain equivalences

[C][σ]
'−−→ [C][τ ] (τ ≤ σ ∈ K) .

The homogeneous envelope of a finite chain complex C in A (R,K) is a

homogeneous (R,K)-module chain complex V∞C with the following prop-
erties:

(i) V∞C = lim−→
k
V kC is the direct limit (= union) of a sequence of inclu-

sions of finite chain complexes in A (R,K)

C = V 0C ⊆ V C ⊆ V 2C ⊆ . . .

such that each inclusion defines a global equivalence V kC−−→V k+1C ,

(ii) the inclusion C−−→V∞C assembles to anR[π1(K)]-module chain equiv-
alence C(K̃)−−→V∞C(K̃),

(iii) for any finite chain complex B in A (R,K) and any n ∈ Z the abelian

group Hn(Hom(R,K)(B, V
∞C)) of homotopy classes of (R,K)-module

chain maps ΣnB−−→V∞C is in one–one correspondence with the equiv-
alence classes of pairs (f : ΣnB−−→D, g:C−−→D) of homotopy classes

of (R,K)-module chain maps with D finite in A (R,K) and g a global
equivalence, subject to the equivalence relation generated by

(f : ΣnB−−→D, g:C−−→D) ∼ (hf : ΣnB−−→E, hg:D−−→E)

for any global equivalence h:D−−→E in A (R,K),
(iv) the homogeneous envelope V∞Γ of the 0-dimensional chain complex

Γ in A (R,K) is chain equivalent to the (R,K)-module chain complex

∆(EK;R) associated to a triangulation EK of the pointed path space

E|K| = |EK| = (|K|, {∗})([0,1],{0})

and the projection

p : E|K| −−→ |K| ; ω −−→ ω(1) ,

and [V∞Γ][∗] is chain equivalent to theR-module chain complex ∆(ΩK;

R) with ΩK a triangulation of the pointed loop space

Ω|K| = |ΩK| = p−1({∗}) = (|K|, {∗})([0,1],{0,1}) .

The Hurewicz map πr(X)−−→Hr(X) assembles a homology class from a

homotopy class. One version of the Hurewicz theorem states that if X
is a space with an (n − 1)-connected universal cover X̃ and n ≥ 2 then
πr(X) = πr(X̃)−−→Hr(X̃) is an isomorphism for r = n and an epimorphism

for r = n+ 1. Similarly:

Proposition 10.2 If C is a homogeneous (R,K)-module chain complex
which is bounded below and such that

Hq(C(K̃)) = 0 for q < n
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then the homology assembly R[π1(K)]-module morphism

Hr([C][∗]) −−→ Hr(C(K̃))

is an isomorphism for r = n and an epimorphism for r = n+ 1.
Proof It suffices to derive the conclusions from the hypothesis that Hq([C]

[∗]) = 0 for q < n. By 4.9 C(K̃) is chain equivalent to [C][K̃]. As in 4.6
define a filtration of [C][K̃]

F0[C][K̃] ⊆ F1[C][K̃] ⊆ F2[C][K̃] ⊆ . . . ⊆ [C][K̃]

by

Fp[C][K̃]q =
∑

σ̃∈K̃,|σ̃|≤p

[C][σ]q−|σ|

and consider the corresponding first quadrant spectral sequence (4.6). The

E2-terms are given by

E2
p,q = Hp(K̃; {Hq([C][σ])}) = Hp(K̃;Hq([C][∗])) ( = 0 for q < n ) ,

using the simple connectivity of the universal cover K̃ and the homogene-

ity of C to untwist the local coefficient systems. The spectral sequence
converges to H∗([C][K̃]) = H∗(C(K̃)) , with

E∞p,q =
im(Hp+q(Fp[C][K̃])−−→Hp+q(C(K̃)))

im(Hp+q(Fp−1[C][K̃])−−→Hp+q(C(K̃)))
( = 0 for q < n ) .

The assembly map in n-dimensional homology coincides with the isomor-

phism defined by the edge map

E2
0,n = Hn([C][∗]) '−−→ E∞0,n = Hn(C(K̃)) .

A quotient of the assembly map in (n+ 1)-dimensional homology coincides

with the edge isomorphism

coker(d:E2
2,n−−→E2

0,n+1) = coker(H2(K̃;Hn([C][∗]))−−→Hn+1([C][∗]))

−−→ E∞0,n+1 = Hn+1(C(K̃)) .

An application of 10.2 to the algebraic mapping cone gives that a chain
map f :C−−→D of homogeneous finite (R,K)-module chain complexes is
a local chain equivalence if and only if it is a global chain equivalence,

i.e. f is an (R,K)-module chain equivalence if and only if the assembly
f(K̃):C(K̃)−−→D(K̃) is an R[π]-module chain equivalence.

Example 10.3 Let f :X−−→K be a simplicial map with barycentric sub-
division f ′:X ′−−→K ′, so that as in 4.15 there is defined a K-dissection
{X[σ] |σ ∈ K} of X with

X[σ] = f ′−1D(σ,K) (σ ∈ K) ,
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and hence a (Z,K)-module chain complex C with

C(σ) = ∆(X[σ], ∂X[σ]) , [C][σ] = ∆(X[σ]) (σ ∈ K) , C(K) = ∆(K ′) .

The iterated mapping cylinder method of Hatcher [74, §2] shows that f is

a quasifibration in the sense of Dold and Thom with fibre F = f−1(∗) if
and only if the inclusions X[σ]−−→X[τ ] (τ ≤ σ ∈ K) are homotopy equiv-
alences, in which case C is a homogeneous (Z,K)-module chain complex
with [C][∗] ' ∆(F ), and the spectral sequence of 4.6 is the Serre spectral

sequence converging to H∗(X) with E2-terms

E2
p,q = Hp(K; {Hq(F )}) .

The path space fibration f :X = EK−−→K with fibre F = ΩK determines
the homogeneous (Z,K)-module chain complex B with

B(σ) = C(f ′|: ∆(f ′−1(D(σ,K), ∂D(σ,K)))−−→∆(D(σ,K), ∂D(σ,K)))

(σ ∈ K) ,

[B][∗] ' C(∆(ΩK)−−→∆({∗})) ' Σ∆(ΩK, {∗}) ,

B(K̃) ' ∆(ẼK−−→K̃) ' ∆(K̃, π) .

If K is (n− 1)-connected then Hq(B(K̃)) = 0 for q < n and 10.2 gives the

usual Hurewicz theorem, with the assembly map

Hr([B][∗]) = Hr−1(ΩK, {∗}) −−→ Hr(B(K̃)) = Hr(K̃, π)

an isomorphism for r = n and an epimorphism for r = n + 1. (Here,

π = p−1({∗}) ⊂ K̃ with p : K̃−−→K the covering projection.)

Identify Γ = TΓ using the isomorphism

Γ0(∗) = R
'−−→ TΓ0(∗) = HomR(R,R) ; r −−→ (s −−→ sr) .

An (R,K)-module chain map f : ΣnΓ−−→C assembles to anR[π1(K)]-module
chain map

f(K̃) : ΣnΓ(K̃) = ΣnR[π1(K)] −−→ C(K̃) ,

that is an n-cycle f(K̃) ∈ C(K̃)n. Dually, an (R,K)-module chain map
f :C−−→ΣnΓ assembles to an R[π1(K)]-module chain map

f(K̃) : C(K̃) −−→ ΣnΓ(K̃) = ΣnR[π1(K)] ,

defining an n-cocycle f(K̃) ∈ C(K̃)n.

Proposition 10.4 (i) If C is a finite chain complex in A (R,K) such that

Hq(C(K̃)) = 0 for q < n then every element x ∈ Hm(C(K̃)) for m = n, n+1
is represented by a pair (f : ΣmΓ−−→D, g:C−−→D) of morphisms in B (R,K)
with g a global equivalence.

(ii) If C is a finite chain complex in A (R,K) such that Hq(C(K̃)) = 0 for
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q > n then every element x ∈ Hm(C(K̃)) for m = n, n−1 is represented by
a pair (f :C−−→D, g: ΣmΓ−−→D) of morphisms in B (R,K) with g a global
equivalence.
Proof (i) By 10.2 the homology assembly map

Hm(Hom(R,K)(Γ, V
∞C)) = Hm([V∞C][∗])

−−→ Hm(V∞C(K̃)) = Hm(C(K̃))

is an isomorphism for m = n and an epimorphism for m = n+ 1.

(ii) For any finite f.g. free (R,K)-module chain complexes B,C and r ∈ Z
duality defines isomorphisms

Hr((B �R V∞C)(K)) = Hr(Hom(R,K)(TB, V
∞C))

'−−→ Hr((C �R V∞B)(K)) = Hr(Hom(R,K)(TC, V
∞B)) ;

(f : Σ−rTB−−→D, g:C−−→D) −−→ (f ′: Σ−rTC−−→D′, g′:B−−→D′)
with

D′ = Σ−rC(e(C)⊕Th:T 2C−−→C⊕T (Σ−1C(f ⊕g: Σ−rTB⊕C−−→D))) .

Here, f ′, g′ are inclusions and h: Σ−1C(f ⊕ g)−−→C is the projection. Let
now C be such that Hq(C(K̃)) = 0 for q > n, so that the dual chain complex

TC in A (R,K) is such that Hq((TC)(K̃)) = H−q(C(K̃)) = 0 for q < −n.
By the proof of (i) the assembly map

H−m(Hom(R,K)(TC, V
∞Γ)) = H−m(Hom(R,K)(TΓ, V∞C))

−−→ H−m((TC)(K̃)) = Hm(C(K̃))

is an isomorphism for m = n and an epimorphism for m = n− 1.

The quadratic kernel of an n-dimensional normal map of pairs

(f, b) : (M,∂M) −−→ (X, ∂X)

with a reference map X−−→|K| was defined in Ranicki [145] to be an n-

dimensional quadratic Poincaré pair in A (Z[π1(K)])

σ∗(f, b) = (C(∂f !)−−→C(f !), (δψ !, ψ !))

with f !:C(X̃)−−→C(M̃), ∂f !:C(∂X̃)−−→C(∂M̃) the Umkehr chain maps
between the cellular chain complexes of the covers M̃, X̃, ∂M̃, ∂X̃ of M, X,
∂M, ∂X obtained by pullback from the universal cover K̃ of K. Apply-

ing the algebraic Thom construction (as in 1.15) gives an n-dimensional
quadratic complex in A (Z[π1(K)])

(C,ψ) = (C(f !)/C(∂f !), δψ !/ψ !)

with homology and cohomology Z[π1(X)]-modules such that

H∗(C) = K∗(M,∂M) ∼= Kn−∗(M) ,

H∗(C) = K∗(M,∂M) ∼= Kn−∗(M) .
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If π1(∂X) ∼= π1(X) ∼= π1(K), n ≥ 5 and (f, b): (M,∂M)−−→(X, ∂X) is
(i − 1)-connected with 2i ≤ n an element x ∈ Ki(M) = Hn−i(C) can be
killed by geometric surgery on a framed embedded i-sphere Si in the in-

terior of M with a null-homotopy in X if and only if it can be killed by
an algebraic surgery on (C,ψ) using an (n+ 1)-dimensional quadratic pair
(x:C−−→Σn−iZ[π1(K)], (δψ, ψ)) (as in 1.12). The following result analo-
gously relates algebraic surgery on a quadratic complex in A (R,K) to al-

gebraic surgery on the assembly in A (R[π1(K)]). It is clear how to pass
from A (R,K) to A (R[π1(K)]), so only the ‘disassembly’ of a surgery in
A (R[π1(K)]) to a surgery in A (R,K) need be considered.

Proposition 10.5 Let (C,ψ) be an n-dimensional quadratic complex in
A (R,K). For every (n+ 1)-dimensional quadratic pair in A (R[π1(K)]) of
the type

B′ = ( f ′:C(K̃)−−→Σn−iR[π1(K)] , (δψ′, ψ(K̃)) )

with 2i ≤ n and Hq(C(K̃)) = 0 for q > n − i there exists an (n + 1)-

dimensional quadratic pair

B = (f :C−−→D, (δψ, ψ))

in A (R,K) with the assembly B(K̃) homotopy equivalent to B′ relative to
the boundary (C(K̃), ψ(K̃)).
Proof By 10.4 (ii) there exists an (R,K)-module chain map f :C−−→
Σn−iV∞Γ which up to R[π1(K)]-module chain homotopy assembles to

f(K̃) = f ′ : C(K̃) −−→ Σn−i(V∞Γ)(K̃) = Σn−iR[π1(K)] .

Define Z-module chain complexes

E = C(1⊗ (f � f):W ⊗Z[Z2] (C �R C)(K) −−→
W ⊗Z[Z2] (Σn−iV∞Γ �R Σn−iV∞Γ)(K)) ,

E′ = C(1⊗ (f ′ � f ′):W ⊗Z[Z2] (C �R C)(K) −−→
W ⊗Z[Z2] (Σn−iV∞R[π1(K)] �R[π1(K)] Σn−iV∞R[π1(K)])) ,

E′′ = C(W ⊗Z[Z2] (Σn−iV∞Γ �R Σn−iV∞Γ)(K) −−→
W ⊗Z[Z2] (Σn−iV∞R[π1(K)] �R[π1(K)] Σn−iV∞R[π1(K)]))

such that E′′ is chain equivalent to the algebraic mapping cone of the as-
sembly chain map E−−→E′, with an exact sequence

. . . −−→ Hr(E) −−→ Hr(E
′) −−→ Hr(E

′′) −−→ Hr−1(E) −−→ . . . (r ∈ Z) .

By the identification of V∞Γ with ∆(E|K|;R) and by 7.2 it is possible to

identify the R-module chain complex (V∞Γ �R V∞Γ)(K) with the simpli-
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cial chain complex of a triangulation EK ×K EK of the pullback

|EK| ×|K| |EK| = |EK ×K EK|
= {(ω, η) ∈ E|K| × E|K| | p(ω) = p(η) ∈ |K|} ∼= Ω|K| ,

so that up to Z[Z2]-module chain homotopy

(V∞Γ �R V∞Γ)(K) = ∆(EK ×K EK;R) = ∆(ΩK;R) = [V∞Γ][∗] .
The homology

H∗(E
′) = H∗−2(n−i)(W ⊗Z[Z2] ∆(ΩK;R)−−→W ⊗Z[Z2] R[π1(K)])

is the relative R-coefficient homology of the map

EZ2 ×Z2
ΩK −−→ EZ2 ×Z2

π1(K) ; (x, ω) −−→ (x, [ω])

with [ω] ∈ π0(ΩK) = π1(K) the path component of ω ∈ ΩK. Here EZ2

is a contractible space with a free Z2-action, the generator T ∈ Z2 acts on
the pointed loop space ΩK by the reversal of loops using

T : [0, 1] −−→ [0, 1] ; t −−→ 1− t
and on the group ring R[π1(K)] by the involution inverting group elements.
By the usual Hurewicz theorem Hr(E

′′) = 0 for r ≤ 2(n − i) + 1. Since
2i ≤ n (by hypothesis) Hn+1(E′′) = 0, and the assembly map

Hn+1(E) = Qn+1(f :C−→Σn−iV∞Γ) −−→
Hn+1(E′) = Qn+1(C−→Σn−iR[π1(K)])

is onto, allowing (δψ′, ψ) ∈ Hn+1(E′) to be lifted to an element (δψ, ψ) ∈
Hn+1(E). For sufficiently large k ≥ 0

(δψ, ψ) ∈ im(Qn+1(C−−→Σn−iV kΓ)−−→Qn+1(f :C−−→Σn−iV∞Γ))

with C−−→Σn−iV kΓ a restriction of f :C−−→Σn−iV∞Γ, so that (δψ′, ψ)
can be further lifted to an element (δψ, ψ) ∈ Qn+1(C−−→Σn−iV kΓ). The

(n+ 1)-dimensional quadratic pair in A (R,K)

B = (C−−→Σn−iV kΓ, (δψ, ψ))

assembles to an (n+ 1)-dimensional quadratic pair in A (R[π1(K)])

B(K̃) = (C(K̃)−−→Σn−iV kΓ(K̃), (δψ(K̃), ψ(K̃)))

which is homotopy equivalent to the given (n + 1)-dimensional quadratic

pair

B′ = (f ′:C(K̃)−−→Σn−iR[π1(K)], (δψ′, ψ(K̃)))

relative to the boundary (C(K̃), ψ(K̃)).
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In conclusion:

Algebraic π-π Theorem 10.6 The global assembly maps in quadratic

L-theory define isomorphisms

Ln(R,K)
'−−→ Ln(R[π1(K)]) ; (C,ψ) −−→ (C(K̃), ψ(K̃)) (n ∈ Z) .

Proof Apply the criterion (*) of 3.24 to the maps induced in quadratic L-
theory by the global assembly functor Λ(R,K)−−→Λ(R[π1(K)]), using 10.5
to lift surgeries in A (R[π1(K)]) to surgeries in A (R,K).
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§11. ∆-sets

The semi-simplicial sets in the original theory of Kan are abstractions of the
singular complex, with both face and degeneracy operations. The ∆-sets of

Rourke and Sanderson [155] are ‘semi-simplicial sets without degeneracies’.
The theory of ∆-sets is used in §12 to provide combinatorial models for
generalized homology and cohomology, and in §13 to construct the algebraic

L-spectra. In §11 only the essential results of the theory are recalled – see
[155] for a full exposition.

A ∆-set K is a sequence K(n) (n ≥ 0) of sets, together with face maps

∂i : K(n) −−→ K(n−1) (0 ≤ i ≤ n)

such that

∂i∂j = ∂j−1∂i for i < j .

A ∆-set K is locally finite if for each x ∈ K(n) and m ≥ 1 the set

{y ∈ K(m+n) | ∂i1∂i2 . . . ∂imy = x for some i1, i2, . . . , im}
is finite.

The realization of a ∆-set K is the topological space

|K| =
(∐

n≥0

∆n ×K(n)
)/
∼

with ∼ the equivalence relation generated by

(a, ∂ib) ∼ (∂ia, b) (a ∈ ∆n−1 , b ∈ K(n)) ,

with ∂i: ∆n−1−−→∆n (0 ≤ i ≤ n) the inclusion of ∆n−1 as the face opposite

the ith vertex of ∆n.
An ordering of a simplicial complex K is a partial ordering of the vertex

set K(0) which restricts to a total ordering on the vertices v0 < v1 < . . . < vn
in any simplex σ = (v0v1 . . . vn) ∈ K(n). As usual n = |σ| is the dimension

of σ, and the faces of σ are the (n− 1)-dimensional simplexes

∂iσ = (v0v1 . . . vi−1vi+1 . . . vn) (0 ≤ i ≤ n)

and their faces. In dealing with the standard n-simplex ∆n write the vertices
as 0, 1, 2, . . . , n, ordering them by 0 < 1 < 2 < . . . < n.

A simplicial complex K is locally finite if every simplex is the face of only

a finite number of simplices.

Example 11.1 A (locally finite) ordered simplicial complex K determines

a (locally finite) ∆-set K, with realization |K| the polyhedron of K.

The product of ordered simplicial complexes K,L is the simplicial complex
K ⊗ L with

(K ⊗ L)(0) = K(0) × L(0) ,
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such that the vertices (a0, b0), (a1, b1), . . . , (an, bn) span an n-simplex σ ∈
(K ⊗ L)(n) if and only if

a0 ≤ a1 ≤ . . . ≤ an , b0 ≤ b1 ≤ . . . ≤ bn , (ar, br) 6= (ar+1, br+1) (0 ≤ r < n)

and the sets {a0, a1, . . . , an}, {b0, b1, . . . , bn} span simplexes in K and L.
The geometric product of ∆-setsK,L is the ∆-setK⊗L with one p-simplex

for each equivalence class of triples

(m-simplex σ ∈ K , n-simplex τ ∈ L , p-simplex ρ ∈ ∆m ⊗∆n) ,

subject to the equivalence relation generated by

(σ, τ, ρ) ∼ (σ′, τ ′, ρ′) if there exist ∆-maps f : ∆m−−→∆m′ ,

g: ∆n−−→∆n′ such that σ = f∗σ′ , τ = g∗τ ′ , (f ⊗ g)∗(ρ) = (ρ′) .

Example 11.2 The product K ⊗ L of ordered simplicial complexes K,L
agrees with their product as ∆-sets.

Proposition 11.3 The realization of the geometric product K⊗L of ∆-sets
K,L is homeomorphic to the product |K| × |L| of the realizations |K|, |L|

|K ⊗ L| = |K| × |L| .

A ∆-map f :K−−→L of ∆-sets K,L is defined in the obvious way, with
realization a map of spaces |f |: |K|−−→|L|.

Let Λni be the subcomplex of ∆n obtained by removing the n-simplex
(0, 1, . . . , n) and the (n− 1)-simplex (0, . . . , i− 1, i+ 1, . . . , n) opposite the

ith vertex. A ∆-set K is Kan if it satisfies the Kan extension condition that
every ∆-map Λni −−→K extends to a ∆-map ∆n−−→K.

Given ∆-sets K,L define the function ∆-set LK to be the ∆-set with

(LK)(n) the set of ∆-maps K⊗∆n−−→L, with ∂i induced from ∂i: ∆n−1−−→
∆n.

Proposition 11.4 For any ∆-set K and any Kan ∆-set L the function ∆-
set LK is a Kan ∆-set such that the realization |LK | is homotopy equivalent

to the space |L||K| of functions |K|−−→|L|.

A homotopy of ∆-maps f0, f1:K−−→L is an element g ∈ (LK)(1) with
∂ig = f (i = 0, 1), that is a ∆-map g:K ⊗∆1−−→L such that

g(x⊗ i) = fi(x) ∈ L(n) (x ∈ K(n), i = 0, 1) .

Proposition 11.5 For any locally finite ∆-set K and any Kan ∆-set L ho-

motopy is an equivalence relation on the set of ∆-maps K−−→L. Realization
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defines a bijection

[K,L]
'−−→ [|K|, |L|] ; f −−→ |f |

between the set [K,L] of homotopy classes of ∆-maps K−−→L and the set
[|K|, |L|] of homotopy classes of maps |K|−−→|L|.

A ∆-set K is finite if there is only a finite number of pairs (n, x ∈ K(n))

with x 6= ∅. A ∆-map f :K−−→L is compactly supported if {x ∈ K | f(x) 6=
∅ ∈ L} is contained in a finite subobject J ⊆ K. Let [K,L]c denote the set
of compactly supported homotopy classes of compactly supported ∆-maps

K−−→L, and let LKc denote the function space of compactly supported ∆-
maps K−−→L.

A ∆-set K is pointed if there is given a base n-simplex ∅ ∈ K(n) in each
dimension n ≥0, with ∂i∅ = ∅. In dealing with pointed ∆-sets write LK

for the function ∆-set of ∆-maps K ⊗ ∆n−−→L which preserve the base
simplexes, and [K,L] for the pointed homotopy classes of pointed ∆-maps.
For any ∆-set K let K+ be the pointed ∆-set with

(K+)(n) = K(n) ∪ {∅} (n ≥ 0) .

The smash product of pointed ∆-sets K,L is defined by

K ∧ L = K ⊗ L/(K ⊗ ∅L ∪ ∅K ⊗ L) .

For a pointed Kan ∆-set K the pointed homotopy sets

πn(K) = [∂∆n+1,K] (n ≥ 0)

can be expressed as

πn(K) = {x ∈ K(n) | ∂ix = ∅ ∈ K(n−1) , 0 ≤ i ≤ n}/ ∼ ,

with the equivalence relation ∼ defined by x ∼ y if there exists z ∈ K(n+1)

such that

∂iz =

{
x if i = 0
y if i = 1
∅ otherwise.

For n ≥ 1 πn(K) is a group, with the group law defined by

πn(K)× πn(K) −−→ πn(K) ; (a, b) −−→ c

for a, b, c ∈ K(n) such that there exists d ∈ K(n+1) with

∂id =





a if i = 0
c if i = 1
b if i = 2
∅ otherwise.

For n ≥ 2, πn(K) is an abelian group, as usual.
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The following analogue of J. H. C. Whitehead’s theorem holds:

Proposition 11.6 A map of locally finite pointed Kan ∆-sets f :K−−→L is
a homotopy equivalence if and only if it induces isomorphisms of homotopy

groups f∗:π∗(K)−−→π∗(L).

Definition 11.7 The mapping fibre of a map of pointed Kan ∆-sets f :K−−→
L is the Kan ∆-set M(f) with

M(f)(n) =

{(x, y) ∈ K(n) × L(n+1) | ∂0∂1 . . . ∂ny = ∅ ∈ L(0) , ∂n+1y = fx ∈ L(n)} ,
∂i : M(f)(n) −−→ M(f)(n−1) ; (x, y) −−→ (∂ix, ∂iy) .

The map M(f)−−→K; (x, y)−−→x fits into a fibration sequence

M(f) −−→ K
f
−−→ L

inducing a long exact sequence of homotopy groups

. . . −−→ πn+1(L) −−→ πn(M(f)) −−→ πn(K)
f∗−−→ πn(L) −−→ . . . .

Definition 11.8 The loop ∆-set of a pointed Kan ∆-set K is the pointed

Kan ∆-set

ΩK = KS1

with S1 the pointed ∆-set defined by

(S1)(n) =

{
{s, ∅} if n = 1
{∅} if n 6= 1 ,

such that

πn(ΩK) = πn+1(K) (n ≥ 0) .

ΩK is the mapping fibre of the unique map {∗}−−→K, so that

ΩK(n) = {x ∈ K(n+1) | ∂0∂1 . . . ∂nx = ∅ ∈ K(0), ∂n+1x = ∅ ∈ K(n)} .

Proposition 11.9 The realization |M(f)| of the mapping fibre M(f) of a

map f :K−−→L of pointed ∆-sets with K locally finite and L Kan is homo-
topy equivalent to the mapping fibre M(|f |) of the realization |f |: |K|−−→|L|.
In particular, the realization |ΩK| of the loop ∆-set ΩK is homotopy equiv-

alent to the loop space of the realization |K|
|ΩK| ' Ω|K| .
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Definition 11.10 An Ω-spectrum

F = {F n,F n+1

'−−→ΩF n |n ∈ Z}
is a sequence of pointed Kan ∆-sets F n together with homotopy equivalences
F n+1−−→ΩF n. The homotopy groups of F are defined by

πn(F ) = πn+k(F−k) (n, k ∈ Z, n+ k ≥ 0) .

Note that the indexing of F is the negative of the usual terminology for

an Ω-spectrum

G = {Gn,Gn
'−−→ΩGn+1 |n ∈ Z} .

Definition 11.11 The mapping cofibre of a map f :K−−→L of Ω-spectra of
Kan ∆-sets is the Ω-spectrum of Kan ∆-sets

C(f) = {C(f)n = M(f :Kn−1−−→Ln−1) |n ∈ Z} .

The mapping cofibre fits into a (co)fibration sequence of Ω-spectra

K
f
−−→ L

g
−−→ C(f)

with

g = inclusion :

Ln = ΩLn−1 = M({∗}−−→Ln−1) −−→ C(f)n = M(f :Kn−1−−→Ln−1)

inducing a long exact sequence of homotopy groups

. . . −−→ πn(K)
f∗−−→ πn(L)

g∗−−→ πn(C(f))
∂
−−→ πn−1(K) −−→ . . . .

Definition 11.12 The suspension of an Ω-spectrum K = {Kn |n ∈ Z} is
the Ω-spectrum

ΣK = C(K−−→{∗})
with

(ΣK)n = Kn−1 , πn(ΣK) = πn−1(K) (n ∈ Z) .

The mapping cofibre of a map f :K−−→L of Ω-spectra is just the suspen-
sion of the mapping fibre

C(f) = ΣM(f) .
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§12. Generalized homology theory

The connection between generalized homology and stable homotopy theory
due to G. W. Whitehead [189] and the language of ∆-sets are used to con-
struct combinatorial models for both the cohomology and homology groups

of a locally finite simplicial complex K with coefficients in an Ω-spectrum
F .

Definition 12.1 Let F be an Ω-spectrum of Kan ∆-sets, and let K be a

locally finite ∆-set. The

{F -cohomology
compactly supported F -cohomology
F -homology

Ω-spectrum

of K is defined by




FK+ = { (F n)K+ |n ∈ Z }
FK+
c = { (F n)

K+
c |n ∈ Z }

K+ ∧ F = { lim−→
j

Ωj(K+ ∧ F n−j) |n ∈ Z }

with homotopy groups the

{F -cohomology
compactly supported F -cohomology
F -homology

groups of

K 



Hn(K;F ) = π−n(FK+) = [K+,F−n]

Hn
c (K;F ) = π−n(FK+

c ) = [K+,F−n]c

Hn(K;F ) = πn(K+ ∧ F ) = lim−→
j
πn+j(K+ ∧ F−j) .

Write the F -cohomology Ω-spectrum of K as

FK+ = H .(K;F ) = {H n(K;F ) |n ∈ Z} ,
with

H n(K;F ) = (F n)K+ , π−n(H .(K;F )) = Hn(K;F ) .

The n-dimensional F -cohomology group F n(K) of a locally finite ∆-set K
thus has a direct combinatorial description as the set of homotopy classes
of ∆-maps K+−−→F−n, which may be called ‘F -cocycles in K’. Similarly

for the compactly supported F -cohomology group F nc (K). There follows
a similar description for the F -homology group of a locally finite ordered
simplicial complex K, as the set of cobordism classes of ‘F -cycles in K’.
On the Ω-spectrum level it is possible to replace K+ ∧ F by a homotopy

equivalent Ω-spectrum H .(K;F ) which is defined directly in terms of the
simplexes of K and F .

Regard the standard n-simplex ∆n as the simplicial complex with one

k-simplex for each subset σ ⊆ {0, 1, . . . , n} of k + 1 elements. The bound-
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ary ∂∆n ⊂ ∆n is the subcomplex consisting of the proper subsets σ ⊂
{0, 1, . . . , n}.

A finite ordered simplicial complex J has a canonical embedding as a
subcomplex in ∂∆m+1 with m+ 1 = |J (0)|, namely

J −−→ ∂∆m+1 ; vi −−→ i ,

if J (0) = {vi | 0 ≤ i ≤ m}.
Let Σm be the simplicial complex with one k-simplex σ∗ for each (m−k)-

simplex σ in ∂∆m+1, with σ∗ ≤ τ∗ ∈ Σm if and only if τ ≤ σ ∈ ∂∆m+1.

The face maps in the ∆-set Σm are such that

∂i : (Σm)(k) −−→ (Σm)(k−1) ; σ∗ −−→ ∂i(σ
∗) = (δiσ)∗ (0 ≤ i ≤ k ≤ m)

where

δi : (∂∆m+1)(m−k) −−→ (∂∆m+1)(m−k+1) ;

σ = {0, 1, . . . ,m+ 1}\{j0, j1, . . . , jk} −−→ δiσ = σ ∪ ji (0 ≤ i ≤ k) .

The simplicial map

Σm
'−−→ ∂∆m+1 ; σ∗ −−→ {0, 1, . . . ,m+ 1}\σ

is an isomorphism of simplicial complexes. Regard Σm as the dual cell
decomposition of the barycentric subdivision (∂∆m+1)′, with σ∗ the star of

the barycentre σ̂ and (δiσ)∗ ⊂ ∂σ∗ the embedding of the star of δiσ in the
link of σ̂.

Definition 12.2 The supplement of a simplicial subcomplex K ⊆ ∂∆m+1

is the subcomplex K ⊆ Σm given by

K = {σ∗ ∈ Σm |σ ∈ ∂∆m+1\K } .

The definition of the supplement goes back to at least Blakers and Massey
[10]. In particular

∂∆m+1 = ∅ , ∅ = Σm

and if J ⊆ K ⊆ ∂∆m+1 then K ⊆ J ⊆ Σm.

Definition 12.3 Let F be an Ω-spectrum of Kan ∆-sets.

(i) Given a finite simplicial complex J define the Ω-spectrum

H .(J ;F ) = {H n(J ;F ) |n ∈ Z}
by

H n(J ;F ) = H n−m(Σm, J ;F ) ,

using the canonical embedding J ⊆ ∂∆m+1 (m+1 = |J (0)|), with homotopy

groups

πn(H .(J ;F )) = Hm−n(Σm, J ;F ) (n ∈ Z) .
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(ii) Given a locally finite ordered simplicial complexK define the Ω-spectrum

H .(K;F ) = lim−→
J

H .(J ;F )

with the direct limit over finite subcomplexes J ⊆ K. The homotopy groups
are such that

πn(H .(K;F )) = lim−→
J
Hm−n(Σm, J ;F ) (n ∈ Z) .

Given a ∆-set K let ∆(K) be the abelian group chain complex with
∆(K)n the free abelian group generated by K(n), and

d∆(K) : ∆(K)n −−→ ∆(K)n−1 ; x −−→
n∑

i=0

(−)i∂ix .

Proposition 12.4 The Ω-spectrum H .(K;F ) is homotopy equivalent to the
F -homology Ω-spectrum K+ ∧ F , with

πn(H .(K;F )) = πn(K+ ∧ F ) = Hn(K;F ) (n ∈ Z) .

Proof Since generalized homology commutes with direct limits, there is
no loss of generality in assuming that K is finite, with canonical embed-
ding K ⊆ ∂∆m+1. By construction H n(K;F )(p) consists of the ∆-maps

Σm ⊗ ∆p−−→F n−m sending K ⊗ ∆p to ∅. Approximate the reduced di-
agonal map Sm−−→|K|+ ∧ (Sm/|K|) of G.W.Whitehead [189, p. 265] by a
∆-map Σm−−→K+ ∧ (Σm/K), subdividing Σm if necessary – see Remark

12.5 below for an explicit construction. The ∆-map represents the m-cycle

∑

σ∈K
σ ⊗ σ∗ ∈ (∆(K)⊗∆(Σm,K))m

with adjoint the isomorphism ∆(K)m−∗
'−−→∆(Σm,K) sending the elemen-

tary cochain of σ ∈ K to the elementary chain of σ∗ ∈ Σm/K. Define a
map of Ω-spectra H .(K;F )−−→K+ ∧ F by

H n(K;F ) = (F n−m, ∅)(Σ
m,K)

−−→ (K+ ∧ F n−m)Σ
m
' Ωm(K+ ∧ F n−m)

−−→ (K+ ∧ F )n = lim−→
j

Ωj(K+ ∧ F n−j) ;

((Σm,K)⊗∆p−−→(F n−m, ∅))
−−→ (Σm ∧∆p

+−−→K+ ∧ (Σm/K) ∧∆p
+−−→K+ ∧ F n−m) .

This is a homotopy equivalence by J. H. C. Whitehead’s theorem, since it

induces the Alexander S-duality isomorphisms

πn(H .(K;F )) = Hm−n(Σm,K;F )
'−−→ πn(K+∧F ) = Hn(K;F ) (n ∈ Z) .
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Remark 12.5 Regard a simplicial complex K as a category with one object
for each simplex σ ∈ K and one morphism σ−−→τ for each face inclusion
σ ≤ τ . The homotopy colimit (Bousfield and Kan [13]) of a contravariant

functor

F : K −−→ {pointed ∆-sets} ; σ −−→ F [σ]

is the pointed ∆-set

F [K] =
( ∐
σ∈K

∆|σ| ⊗ F [σ]
)
/ ∼ ,

with ∼ the equivalence relation generated by

(i) f∗a⊗ b ∼ a⊗ f∗b for any morphism f :σ−−→τ , a ∈ ∆|σ| , b ∈ F [τ ] ,

(ii) ∆|σ| ⊗ ∅ ∼ ∆|σ
′| ⊗ ∅′ for any σ , σ′ ∈ K .

Given a subcomplex J ⊆ ∂∆m+1 define a contravariant functor

G : ∂∆m+1 −−→ {pointed ∆-sets} ; σ −−→ G[σ] =

{
Σm/J if σ ∈ J
∅ otherwise

with homotopy colimit

G[∂∆m+1] = J+ ∧ (Σm/J) .

Quinn [137] proved that the homotopy colimit F [∂∆m+1] of the dual simplex
functor

F : ∂∆m+1 −−→ {pointed ∆-sets} ; σ −−→ σ∗ = ∆m−|σ|

is a subdivision of Σm, allowing the construction of a combinatorial approx-

imation of the reduced diagonal map Sm−−→|J |+ ∧ (Sm/|J |) as the ∆-map

h[∂∆m+1] : F [∂∆m+1] ∼= Σm −−→ G[∂∆m+1] = J+ ∧ (Σm/J)

induced by the natural transformation h:F−−→G with

h[σ] = σ∗ : F [σ] = ∆m−|σ| −−→ G[σ] = Σm/J (σ ∈ J)

the characteristic ∆-maps.

Definition 12.6 An n-dimensional F -cycle in an ordered simplicial com-
plex K is a pair (J, x) with J ⊆ K a finite subcomplex and x a 0-simplex

x ∈ im(H n(J ;F )(0)−−→H n(K;F )(0)) ,

that is a collection

x = {x(σ) ∈ F (m−|σ|)
n−m |σ ∈ J}

defined using the canonical embedding J ⊆ ∂∆m+1, such that

∂ix(σ) =

{
x(δiσ) if δiσ ∈ J
∅ if δiσ /∈ J (0 ≤ i ≤ m− |σ|) .
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In dealing with cycles (J, x) the finite subcomplex J ⊆ K will usually be
omitted from the terminology. For finite K it is always possible to take
J = K.

Definition 12.7 A cobordism of n-dimensional F -cycles (J0, x0), (J1, x1)

in K is a 1-simplex y ∈ H n(K;F )(1) such that ∂iy = xi (i = 0, 1), that is a
compactly supported ∆-map

y : (Σm, J)⊗∆1 −−→ (F n−m, ∅) (J = J0 ∪ J1)

such that

y(σ ⊗ i) = xi(σ) ∈ F (m−|σ|)
n−m (σ ∈ J, i = 0, 1) .

Proposition 12.8 Cobordism is an equivalence relation on n-dimensional
F -cycles in K, such that the set of equivalence classes is the n-dimensional
F -homology group Hn(K;F ).

Proof Immediate from 12.4.

Example 12.9 Given an abelian group π and an integer n ≥ 0 let K(π, n)
be the Kan ∆-set defined by forgetting the degeneracies in the Eilenberg–
MacLane simplicial abelian group obtained from the abelian group chain

complex C with

Cn = π , Ci = 0 (i 6= n)

by the Kan–Dold construction. Let F be the Ω-spectrum defined by

F n = K(π,−n) (n ≤ 0) , = 0 (n > 0) .

An n-dimensional F -cycle (J, x) in a simplicial complex K is determined by
a finite subcomplex J ⊆ K, with

x = {x(σ) ∈ F (m−|σ|)
n−m |σ ∈ J} (m+ 1 = |J (0)|)

determined by a finite collection of group elements

x(σ) ∈ F (m−n)
n−m = π (σ ∈ K(n))

corresponding to an n-cycle

x =
∑

σ∈K(n)

x(σ)σ ∈ ∆n(K;π)

representing a homology class

x ∈ Hn(K;F ) = Hn(K;π) .
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The cycle approach to F -homology generalizes to the relative case. Let
(K,L ⊆ K) be a pair of ordered locally finite simplicial complexes. For
any finite subcomplex J ⊆ K with m + 1 = |J (0)| the supplements of J
and J ∩ K are such that J ⊆ J ∩ L ⊆ Σm, and H .(L;F ) ⊆ H .(K;F ) .

An n-dimensional F -cycle in L is an n-dimensional F -cycle (J, x) in K such
that x(σ) = ∅ for σ ∈ J\(J ∩ L).

Definition 12.10 (i) The relative F -homology Ω-spectrum of (K,L)

H .(K,L;F ) = {H n(K,L;F ) |n ∈ Z }
is defined by

H n(K,L;F ) = lim−→
J

(F n−m, ∅)(J ∩ L, J) (n ∈ Z) ,

with the direct limit taken over finite subcomplexes J ⊆ K. The relative

F -homology groups of (K,L) are the homotopy groups of H .(K,L;F )

πn(H .(K,L;F )) = Hn(K,L;F ) (n ∈ Z) .

(ii) A relative n-dimensional F -cycle (J, x) in (K,L) is an element of

H n(K,L;F )(0), that is a finite subcomplex J ⊆ K together with a col-
lection

x = {x(σ) ∈ F (m−|σ|)
n−m |σ ∈ J\(J ∩ L)}

such that

∂ix(σ) =

{
x(δiσ) if δiσ ∈ J\(J ∩ L)

∅ if δiσ /∈ J (0 ≤ i ≤ m− |σ|) .

By analogy with 12.8:

Proposition 12.11 Cobordism of relative cycles is defined as in the abso-
lute case, and Hn(K,L;F ) is the abelian group of cobordism classes. The
fibration sequence of Ω-spectra

H .(L;F ) −−→ H .(K;F ) −−→ H .(K,L;F )

induces the long exact sequence of F -homology groups

. . . −−→Hn(L;F )−−→Hn(K;F )−−→Hn(K,L;F )−−→Hn−1(L;F )−−→ . . . .

Proof As in the proof of 12.4 it may be assumed that K is finite, with a
canonical embedding K ⊆ ∂∆m+1. The homotopy equivalences ΩF n−m−1'−−→F n−m given by the Ω-spectrum F and the excisive inclusion

(L⊗∆1,K⊗∆1∪L⊗∂∆1) −−→ (Σm⊗∆1,K⊗∆1∪L⊗∂0∆1∪Σm⊗∂1∆1)
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may be used to define homotopy equivalences

H n(K,L;F ) = (F n−m, ∅)(L,K)

' (ΩF n−m−1, ∅)(L,K)

= (F n−m−1, ∅)(L⊗∆1,K ⊗∆1 ∪ L⊗ ∂∆1)

' (F n−m−1, ∅)(Σ
m ⊗∆1,K ⊗∆1 ∪ L⊗ ∂0∆1 ∪ Σm ⊗ ∂1∆1)

= mapping cofibre of H n(L;F )−−→H n(K;F ) ,

obtaining a homotopy equivalence between H .(K,L;F ) and the mapping
cofibre of the inclusion H .(L;F )−−→H .(K;F ).

Example 12.12 Consider H∗(K,L;F ) in the special case L ⊆ K ⊆ ∂∆m+1

with K = L ∪ ∆k obtained from L by attaching a k-simplex along a sub-
complex ∂∆k ⊆ L. An n-dimensional F -cycle x in (K,L) is an element

x(∆k) ∈ F (m−k)
n−m such that ∂ix(∆k) = ∅ for 0 ≤ i ≤ m− k, and the map

Hn(K,L;F ) −−→ πm−k(F n−m) = πn−k(F ) ; x −−→ x(∆k)

is an isomorphism.

The Kan extension condition will now be used to define the assembly map

A : H .(K;F ({∗})) −−→ F .(K ′)

for any covariant functor

F : { simplicial complexes} −−→ {Ω-spectra} ; K −−→ F (K) .

Let Λm+1 ⊂ ∂∆m+1 be the subcomplex obtained by removing the face
∆m < ∆m+1 opposite the vertex m+ 1, such that

∂∆m+1 = Λm+1 ∪∆m , Λm+1 ∩∆m = ∂Λm+1 = ∂∆m .

The inclusion

(Λm+1, ∂Λm+1) ⊂ (∆m+1, ∂Λm+1)

is a homotopy equivalence such that for a Kan ∆-set F the induced homo-

topy equivalence

(F , ∅)(∆
m+1, ∂Λm+1) '−−→ (F , ∅)(Λ

m+1, ∂Λm+1)

admits a section

β : (F , ∅)(Λ
m+1, ∂Λm+1) −−→ (F , ∅)(∆

m+1, ∂Λm+1)

verifying the Kan extension condition. The inclusion

(∆m, ∂∆m) ⊂ (∆m+1, ∂Λm+1)
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is a homotopy equivalence, inducing a homotopy equivalence

γ : (F , ∅)(∆
m+1, ∂Λm+1) '−−→ (F , ∅)(∆

m, ∂∆m) .

Proposition 12.13 For a Kan ∆-set F the composite ∆-map

α = γβ : (F , ∅)(Λ
m+1, ∂Λm+1) β

−−→ (F , ∅)(∆
m+1, ∂Λm+1)

γ
−−→ (F , ∅)(∆

m, ∂∆m)

is a homotopy equivalence of Kan ∆-sets.

Proof Both β and γ are homotopy equivalences.

The geometric realizations of Λm+1 and ∆m may be identified by means
of the homeomorphism

|Λm+1| '−−→ |∆m| ;

(λ0, λ1, . . . , λm+1) −−→
(λ0 + λm+1/(m+ 1), λ1 + λm+1/(m+ 1), . . . , λm + λm+1/(m+ 1))

(0 ≤ λ0, λ1, . . . , λm+1 ≤ 1 ,

m+1∑

i=0

λi = 1 , λ0λ1 . . . λm = 0) ,

which maps ∂Λm+1 to ∂∆m. This identification is used to visualize α as

sending a ∆-map

f : (Λm+1, ∂Λm+1) −−→ (F , ∅)
to the ∆-map

α(f) =
⋃

σ∈Λm+1

f(σ) : (∆m, ∂∆m) −−→ (F , ∅)

obtained by assembling together the pieces f(σ) ∈ F (|σ|), glueing by the
Kan extension condition.

Given an Ω-spectrum F let Θ:F n
'−−→ΩF n−1 (n ∈ Z) be the given homo-

topy equivalences. Given a subcomplex K ⊆ ∂∆m+1 define ∆-maps

φ : H n(K;F ) = (F n−m, ∅)(Σ
m,K)

−−→ (F n−m−1, ∅)(Λ
m+2, ∂Λm+2) (m ∈ Z)

by sending a ∆-map

f : (Σm,K)⊗∆p −−→ (F n−m, ∅)
to the ∆-map

φ(f) : (Λm+2, ∂Λm+2)⊗∆p −−→ (F n−m−1, ∅) ;

τ ⊗ µ −−→
{

Θ(f(σ∗ ⊗ µ)) if σ = {0, 1, . . . ,m+ 2}\τ ∈ K
∅ otherwise .
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Definition 12.14 Given an Ω-spectrum F and a locally finite simplicial
complex K define the assembly to be the map of Ω-spectra

A : H .(K;F ) = lim−→
J

H .(J ;F ) −−→ F

using the canonical embeddings J ⊆ ∂∆m+1 of the finite subcomplexes
J ⊆ K, with

A : H n(J ;F )
φ
−−→ (F n−m−1, ∅)(Λ

m+2, ∂Λm+2)

α
−−→ (F n−m−1, ∅)(∆

m+1, ∂∆m+1) = Ωm+1F n−m−1

(Θm+1)−1

−−−−−→ F n ,
inducing assembly maps in the homotopy groups

A : πn(H .(K;F )) = Hn(K;F ) −−→ πn(F ) (n ∈ Z) .

In terms of the homotopy equivalence H .(K;F )
'−−→K+ ∧ F of 12.4 the

assembly A is just the map of the F -homology Ω-spectra K+∧F−−→{∗}+∧F
induced by the unique simplicial map K−−→{∗}

A : H .(K;F ) ' K+ ∧ F −−→ {∗}+ ∧ F = F .

An element x ∈ Hn(K;F ) is represented by an F -cycle (J ⊆ K,x) with

x = {x(σ) ∈ F (m−|σ|)
n−m |σ ∈ J } .

Visualize A:Hn(K;F )−−→πn(F ) as assembling the components x(σ) to an

element

A(x) =
⋃

σ∈J
x(σ) ∈ F (0)

n

representing

A(x) ∈ Hn({∗};F ) = π0(F n) = πn(F ) .

For a subcomplex J ⊆ ∂∆m+1 and σ ∈ J let J(σ) ⊆ Σm be the subcom-
plex consisting of the dual simplexes τ∗ ∈ Σm of the simplexes τ ∈ ∂∆m+1

such that either τ /∈ J or σ 6≤ τ ∈ J , that is

J(σ) = J\stJ(σ) ⊆ Σm

with stJ(σ) = {ρ ∈ J |σ ≤ ρ}. If σ ≤ ρ ∈ J then J(ρ) ⊆ J(σ), and⋃

σ∈J
J(σ) = Σm .

The relative simplicial pair (J(σ), J) has one (m− |τ |)-simplex τ∗ for each

τ ∈ stJ(σ), with

∂i(τ
∗) = (δiτ)∗ ∈ J(σ) (0 ≤ i ≤ m− |τ |) .

Definition 12.15 Given a covariant functor

F : { simplicial complexes} −−→ {Ω-spectra} ; K −−→ F (K)
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define the local {F }-coefficient homology Ω-spectrum of a subcomplex K ⊆
∂∆m+1

H .(K; {F }) = {H n(K; {F }) |n ∈ Z}
by

H n(K; {F }) = lim−→
J

lim←−−
σ∈J

(F n−m(D(σ, J)), ∅)(J(σ), J) .

The homotopy groups of H .(K; {F }) are the local {F }-coefficient homology
groups of K

Hn(K; {F }) = πn(H .(K; {F })) (n ∈ Z) ,

which may also be written as Hn(K; {F (D(σ,K))}).

Example 12.16 If F is constant, with F (K) = F for allK, then H .(K; {F })
is the F -homology spectrum H .(K;F ) of 12.3, with

H n(K; {F }) = lim←−−
σ∈K

(F n−m(D(σ,K)), ∅)(K(σ),K)

= (F n−m, ∅)(Σ
m,K) = H n(K;F ) (n ∈ Z) .

Definition 12.17 An n-dimensional {F }-cycle in a simplicial complex K
is an element of H n(K; {F })(0), that is a collection

x = {x(σ) ∈ F n−m(D(σ, J))(m−|σ|) |σ ∈ J }
with J ⊆ K a finite subcomplex and J ⊆ ∂∆m+1 the canonical embedding,

such that

∂ix(σ) =

{
fix(δiσ) if δiσ ∈ J
∅ if δiσ /∈ J (0 ≤ i ≤ m− |σ|) ,

with fi:F (D(δiσ, J))−−→F (D(σ, J)) the map induced by the inclusion
D(δiσ, J) ⊂ D(σ, J).

As in the constant coefficient case (12.6, 12.8) there is a corresponding
notion of cobordism, such that Hn(K; {F }) is the cobordism group of n-

dimensional {F }-cycles in K.

Definition 12.18 The local {F }-coefficient assembly is the map of Ω-

spectra

A : H .(K; {F }) −−→ F (K ′)

given by the composite

A : H .(K; {F }) −−→ H .(K;F (K ′))
A
−−→ F (K ′)
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of the forgetful map H .(K; {F })−−→H .(K;F (K ′)) induced by all the inclu-
sions D(σ,K) ⊆ K ′ (σ ∈ K) and the assembly A:H .(K;F (K ′))−−→F (K ′)
of 12.14.

A functor

F : {simplicial complexes} −−→ {Ω-spectra} ; K −−→ F (K)

is homotopy invariant if a homotopy equivalence f :K
'−−→L induces a ho-

motopy equivalence of Ω-spectra

f : F (K)
'−−→ F (L) .

For such F the forgetful map from local F -coefficient homology to constant
F ({∗})-coefficient homology is a homotopy equivalence

H .(K; {F }) '−−→ H .(K;F ({∗})) ,
since each of the unique simplicial maps D(σ,K)−−→{∗} (σ ∈ K) is a ho-
motopy equivalence.

Definition 12.19 The constant F ({∗})-coefficient assembly for a homotopy

invariant functor F and a subcomplex K ⊆ ∂∆m+1 is the map of Ω-spectra

A : H .(K;F ({∗})) −−→ F (K)

given by the local {F }-coefficient assembly A of 12.18, using the homotopy

equivalences
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of the forgetful map H .(K; {F })−−→H .(K; F (K ′)) induced by all the inclu-

sions D(σ,K) ⊆ K ′ (σ ∈ K) and the assembly A: H .(K; F (K ′))−−→F (K ′)
of 12.14.

A functor

F : {simplicial complexes} −−→ {Ω-spectra} ; K −−→ F (K)

is homotopy invariant if a homotopy equivalence f :K
≃−−→L induces a ho-

motopy equivalence of Ω-spectra

f : F (K)
≃−−→ F (L) .

For such F the forgetful map from local F -coefficient homology to constant
F ({∗})-coefficient homology is a homotopy equivalence

H .(K; {F }) ≃−−→ H .(K; F ({∗})) ,
since each of the unique simplicial maps D(σ,K)−−→{∗} (σ ∈ K) is a ho-
motopy equivalence.

Definition 12.19 The constant F ({∗})-coefficient assembly for a homotopy
invariant functor F and a subcomplex K ⊆ ∂∆m+1 is the map of Ω-spectra

A : H .(K; F ({∗})) −−→ F (K)

given by the local {F }-coefficient assembly A of 12.18, using the homotopy

equivalences

H .(K; {F }) w
A

u
≃

F (K ′)

u
≃

H .(K; F ({∗})) w
A F (K) .

Remark 12.20 The assembly map A: H .(K; F ({∗}))−−→F (K) of 12.19 is a

combinatorial version of the assembly map of Anderson [4] and Quinn [137],
which is defined as follows: a functor

F : {pointed topological spaces} −−→ { spectra}
induces a natural transformation of function spectra

X = X{∗} −−→ F (X)F ({∗}) ,
with adjoint the assembly map

A : H .(X;F ({∗})) = X ∧ F ({∗}) −−→ F (X) .

Remark 12.20 The assembly map A:H .(K;F ({∗}))−−→F (K) of 12.19 is a
combinatorial version of the assembly map of Anderson [4] and Quinn [137],
which is defined as follows: a functor

F : { pointed topological spaces} −−→ { spectra}
induces a natural transformation of function spectra

X = X{∗} −−→ F (X)F ({∗}) ,
with adjoint the assembly map

A : H .(X;F ({∗})) = X ∧ F ({∗}) −−→ F (X) .
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Example 12.21 Let ΩSO. (K) = {ΩSO. (K)n |n ∈ Z} be the Ω-spectrum
with ΩSO. (K)n the Kan ∆-set defined by

ΩSO. (K)(k)
n = { (n+ k)-dimensional smooth oriented manifold k-ads

(M ; ∂0M,∂1M, . . . , ∂kM) such that

∂0M ∩ ∂1M ∩ . . . ∩ ∂kM = ∅ , with a map M−−→|K|}
with base simplex the empty manifold k-ad ∅. The homotopy groups

πn(ΩSO. (K)) = ΩSOn (K) (n ≥ 0)

are the bordism groups of maps M−−→|K| from closed smooth oriented
n-dimensional manifolds. The functor

ΩSO. : {simplicial complexes} −−→ {Ω-spectra} ; K −−→ ΩSO. (K)

is homotopy invariant, since for any k-simplex M in ΩSO. (K)n there is
defined a (k+1)-simplex M⊗I in ΩSO. (K⊗∆1)n, so that the two inclusions
K−−→K ⊗∆1 induce homotopic ∆-maps ΩSO. (K)−−→ΩSO. (K ⊗∆1). The

assembly map defines a homotopy equivalence

A : H .(K; ΩSO. ({∗})) '−−→ ΩSO. (K) ,

a combinatorial version of the Pontrjagin–Thom isomorphism and the Atiyah
formulation of bordism as generalized homology. The assembly of an n-
dimensional ΩSO. ({∗})-coefficient cycle in a subcomplex K ⊆ ∂∆m+1

x = {M(σ)n−|σ| |σ ∈ K}
is a map

A(x) : Mn =
⋃

σ∈K
M(σ) −−→ |K| = |K ′|

from a closed smooth oriented n-manifold such that

A(x)−1D(σ,K) = M(σ) (σ ∈ K) .

The smooth oriented bordism Ω-spectrum ΩSO. (K) is just a combinatorial

version of the Thom suspension spectrum |K|+ ∧MSO , with

MSO = {MSO(j) , ΣMSO(j)−−→MSO(j + 1) | j ≥ 0 } ,
ΩSO. (K)n ' H n(K; ΩSO. ({∗})) ' lim−→

j
Ωj+n(|K|+ ∧MSO(j)) (n ∈ Z) .
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§13. Algebraic L-spectra

The algebraic L-spectra consist of Kan ∆-sets with homotopy groups the

algebraic L-groups. Given an algebraic bordism category Λ = (A,B,C)
there will now be defined an Ω-spectrum




L.(Λ) = {Ln(Λ) |n ∈ Z }
L.(Λ) = {Ln(Λ) |n ∈ Z }
NL.(Λ) = {NLn(Λ) |n ∈ Z }

of Kan ∆-sets with homotopy groups the

{
symmetric
quadratic
normal

L-groups of Λ





πn(L.(Λ)) = Ln(Λ)

πn(L.(Λ)) = Ln(Λ)

πn(NL.(Λ)) = NLn(Λ)

(n ∈ Z) .

The





L.(Λ)
L.(Λ)
NL.

(Λ)
-cohomology (resp. homology) groups of a simplicial complex

K will be identified with the

{
symmetric
quadratic
normal

L-groups





Hn(K;L.(Λ)) = L−n(Λ∗(K))

Hn(K;L.(Λ)) = L−n(Λ∗(K))

Hn(K;NL.(Λ)) = NL−n(Λ∗(K))

(
resp.





Hn(K;L.
(Λ)) = Ln(Λ∗(K))

Hn(K;L.(Λ)) = Ln(Λ∗(K))

Hn(K;NL.(Λ)) = NLn(Λ∗(K))

)

of the algebraic bordism category Λ∗(K) (resp. Λ∗(K)) of §5. The various
algebraic L-spectra are used in Part II to express the geometric properties

of bundles and manifolds in terms of L-theory.

The algebraic surgery classifying spaces and spectra are analogues of the
geometric surgery classifying spaces and spectra, which arose as follows:

Remark 13.1 (i) The classifying space G/O for fibre homotopy trivialized

vector bundles and its PL analogue G/PL first appeared in the surgery
classification theory of exotic spheres (Kervaire and Milnor [86], Levine [91,
Appendix]). The fibration sequence

PL/O −−→ G/O −−→ G/PL

induces an exact sequence

. . . −−→πn+1(G/PL)−−→πn(PL/O)−−→πn(G/O)−−→πn(G/PL)−−→ . . .
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which for n ≥ 5 is isomorphic to the differentiable surgery exact sequence

. . . −−→Ln+1(Z)−−→ SO(Sn)−−→πn(G/O)−−→Ln(Z)

with πn(PL/O) = SO(Sn) = θn the groups of h-cobordism classes of n-

dimensional exotic spheres, and πn(G/PL) = Ln(Z) the simply-connected
surgery obstruction groups. An exotic sphere Σn is sent by πn(PL/O)−−→
πn(G/O) to the classifying map Sn ' Σn−−→G/O for the fibre homotopy

trivialization of its stable normal bundle determined by the trivial Spi-
vak normal fibration. This is also the classifying map of the normal map
(f, b) : Σn−−→Sn with f : Σn−−→Sn a homotopy equivalence representing
the element [f ] ∈ SO(Sn) of the differentiable structure set, corresponding

to [Σn] ∈ θn.
(ii) The topological surgery classifying space G/TOP first appeared in the
work of Casson [34] and Sullivan [167] in which block bundles were used

to obtain the obstruction to deforming a homeomorphism f : M−−→N of
compact n-dimensional PL manifolds (n ≥ 5) to a PL homeomorphism

κ(f) = κ(νM − f∗νN ) ∈ H3(M ;Z2) ,

disproving the manifold Hauptvermutung that every homeomorphism of PL
manifolds is homotopic to a PL homeomorphism – see Wall [180, §17A],
Armstrong, Cooke and Rourke [5]. The classifying spaces BPL, BTOP ,

BG for PL bundles, topological bundles and spherical fibrations are related
by a commutative braid of fibrations
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with κ ∈ [BTOP,K(Z2 , 4)] = H4(BTOP ; Z2 ) the Kirby–Siebenmann in-

variant.
(iii) Quinn [130] defined the geometric surgery spectrum L.(K) of a space
K, with homotopy groups

π∗(L.(K)) = L∗(Z[π1(K)]) .

with κ ∈ [BTOP,K(Z2 , 4)] = H4(BTOP ;Z2 ) the Kirby–Siebenmann in-

variant.
(iii) Quinn [130] defined the geometric surgery spectrum L.(K) of a space
K, with homotopy groups

π∗(L.(K)) = L∗(Z[π1(K)]) .
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The algebraic surgery spectrum L.(R) of a ring with involution R with

π∗(L.(R)) = L∗(R)

was first constructed using forms and formations (Ranicki [138], [139]), with

L.(K) ' L.(Z[π1(K)]) .

The simply-connected surgery spectrum L.({∗}) ' L.(Z) is the 4-periodic
delooping of G/TOP given by the characteristic variety theorem of Sullivan

[168], with

L0({∗}) = L0(Z) ' L0(Z)×G/TOP .

See Ranicki [143], [146], Levitt and Ranicki [94], Weiss and Williams [188]

for other accounts of the quadratic L-spectra. Also, see Siegel [162], Goresky
and Siegel [64], Pardon [125], Cappell and Shaneson [28] and Weinberger
[185] for some of the connections between L-theory, the characteristic variety
theorem, intersection homology theory and stratified spaces.

As before, let Λ = (A,B,C) be an algebraic bordism category.

Definition 13.2 Let





Ln(Λ)
Ln(Λ)
NLn(Λ)

(n ∈ Z ) be the pointed ∆-set with m-

simplexes the (m+n)-dimensional

{
symmetric
quadratic
normal

complexes in Λ∗(∆m), with

the zero complex as base m-simplex ∅. The face maps are induced from the
standard embeddings ∂i: ∆m−1−−→∆m via the functors

(∂i)
∗ : Λ∗(∆m) −−→ Λ∗(∆m−1) .

Definition 13.3 Given a pair of locally finite simplicial complexes (K,J ⊆
K) let

Λ∗(K,J) = (A∗(K,J),B ∗(K,J),C ∗(K,J))

be the algebraic bordism category defined by the full subcategory of Λ∗(K)
(5.1) with objects C such that C(σ) = 0 for σ ∈ J .

Proposition 13.4





Ln(Λ)
Ln(Λ)
NLn(Λ)

is a Kan ∆-set with homotopy groups and

loop ∆-set



πm(Ln(Λ)) = Lm+n(Λ)

πm(Ln(Λ)) = Lm+n(Λ)

πm(NLn(Λ)) = NLm+n(Λ) ,





ΩLn(Λ) = Ln+1(Λ)

ΩLn(Λ) = Ln+1(Λ)

ΩNLn(Λ) = NLn+1(Λ)



13. Algebraic L-spectra 139

for n ∈ Z, m+ n ≥ 0 .
Proof Only the quadratic case is considered, the symmetric and normal
cases being entirely similar.
The Kan extension condition is verified using the algebraic analogues of

glueing and crossing with the unit interval I = [0, 1]. See Ranicki [146, §1.7]
for the glueing of quadratic complexes. Crossing with I corresponds to the
following chain complex construction. A pair (C, ∂C) of chain complexes in

the additive category A is a chain complex C in A which is expressed as

dC =

(
d∂C eC

0 dĊ

)
: Cr = ∂Cr ⊕ Ċr −−→ Cr−1 = ∂Cr−1 ⊕ Ċr−1 ,

so that ∂C is a subcomplex of C and Ċ = C/∂C is a quotient complex.

Define

(D, ∂D) = (C, ∂C)⊗ (I, ∂I)

to be the pair with

dD =



d∂C eC eC 0

0 dĊ 0 (−)r−1

0 0 dĊ (−)r

0 0 0 dĊ


 :

Dr = ∂Cr ⊕ Ċr ⊕ Ċr ⊕ Ċr−1

−−→ Dr−1 = ∂Cr−1 ⊕ Ċr−1 ⊕ Ċr−1 ⊕ Ċr−2 ,

∂Dr = ∂Cr ⊕ Ċr ⊕ Ċr , Ḋr = Ċr−1 .

Let C ⊗ {0}, C ⊗ {1} be the subcomplexes of D defined by

(C ⊗ {0})r = {(x, y, 0, 0) ∈ Dr | (x, y) ∈ Cr = ∂Cr ⊕ Ċr} ,
(C ⊗ {1})r = { (x, 0, y, 0) ∈ Dr | (x, y) ∈ Cr = ∂Cr ⊕ Ċr } .

The inclusions

ik : C ⊗ {k} −−→ D (k = 0, 1)

are chain equivalences, with chain homotopy inverses jk:D−−→C ⊗ {k} de-
fined by

jk : Dr −−→ (C ⊗ {k})r ; (x, y, z, w) −−→
{

(x, y + z, 0, 0)

(x, 0, y + z, 0)
if k =

{
0

1
.

Let Λm ⊂ ∆m be the subcomplex of ∆m obtained by removing the in-

teriors of ∆m and of a face ∆m−1 < ∆m. Define the extension of a chain
complex C in A∗(Λm) to a chain complex C in A∗(∆m) by

(C
∗
(∆m), C

∗
(∂∆m)) = (C∗(Λm), C∗(∂Λm))⊗ (I, ∂I) ,
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with

C(σ)r =





(C(σ)⊗ {0})r if σ ∈ Λm

(Ċ∗(Λm)⊗ {1})r if σ = ∆m−1

Ċ∗(Λm)r−1 if σ = ∆m .

Use the identification of pairs of abelian group chain complexes

((W%C)∗[∆m], (W%C)∗[∂∆m]) = ((W%C)∗[Λm], (W%C)∗[∂Λm])⊗ (I, ∂I)

to define the extension of an n-dimensional quadratic complex (C,ψ) in
Λ∗(Λm) to an n-dimensional quadratic complex (C,ψ) in Λ∗(∆m) by

ψ = (j0)%(ψ) ∈ (W%C)∗[∆m]n .

The homotopy group πm(Ln(Λ)) is the group of equivalence classes of
m-simplexes (C,ψ) in Ln(Λ) such that

∂i(C,ψ) = 0 (0 ≤ i ≤ m) .

Such simplexes are n-dimensional quadratic complexes (C,ψ) in Λ∗(∆m,

∂∆m), which are just (m+ n)-dimensional quadratic complexes in Λ. The
homotopy of simplexes corresponds to the cobordism of complexes, so that

πm(Ln(Λ)) = Lm+n(Λ) (m ≥ 0, n ∈ Z) .

Let 〈i0, i1, . . . , ir〉 denote the r-simplex of ∆m with vertices i0, i1, . . . , ir
given by a sequence 0 ≤ i0 < i1 < . . . < ir ≤ m. The standard embedding
∂m+1: ∆m ⊂ ∆m+1 identifies ∆m with the face of ∆m+1 opposite the vertex
m+1. By definition, an m-simplex of ΩLn(Λ) is an n-dimensional quadratic

complex (C,ψ) in Λ∗(∆m+1,∆m ∪ {m+ 1}), so that

C(〈m+ 1〉) = 0 ,

C(〈i0, i1, . . . , ir〉) = 0 (0 ≤ i0 < i1 < . . . < ir ≤ m) .

Except for terminology this is the same as an (n+1)-dimensional quadratic

complex (C ′, ψ′) in Λ∗(∆m) with

C ′(〈i0, i1, . . . , ir〉) = C(〈i0, i1, . . . , ir,m+1〉) (0 ≤ i0 < i1 < . . . < ir ≤ m) .

This is an m-simplex of Ln+1(Λ), so that there is an identity of ∆-sets

ΩLn(Λ) = Ln+1(Λ) .

Definition 13.5 The

{
symmetric
quadratic
normal

L-spectrum of an algebraic bordism

category Λ is the Ω-spectrum of Kan ∆-sets given by 13.4





L.
(Λ) = {Ln(Λ) |n ∈ Z }

L.(Λ) = {Ln(Λ) |n ∈ Z }
NL.(Λ) = {NLn(Λ) |n ∈ Z }
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with homotopy groups the L-groups of Λ




πn(L.(Λ)) = πn+k(L−k(Λ)) = Ln(Λ)

πn(L.(Λ)) = πn+k(L−k(Λ)) = Ln(Λ)

πn(NL.(Λ)) = πn+k(NL−k(Λ)) = NLn(Λ)

(n, k ∈ Z, n+ k ≥ 0) .

Example 13.6 For any additive category with chain duality A and the
algebraic bordism category of 3.3

Λ(A) = (A,B (A),C (A))

the

{
symmetric
quadratic
normal

L-spectrum of Λ(A) has homotopy groups the

{
symmetric
quadratic
normal

L-groups of A 



π∗(L.(Λ(A))) = L∗(A)

π∗(L.(Λ(A))) = L∗(A)

π∗(NL.(Λ(A))) = NL∗(A) .

Also, by 3.6

π∗(L.(Λ(A))) = L∗(A) = NL∗(A) = π∗(NL.(Λ(A))) ,

so that the forgetful map defines a homotopy equivalence

NL.(Λ(A))
'−−→ L.(Λ(A)) .

Proposition 13.7 The

{
symmetric
quadratic
normal

L-spectrum of Λ∗(K) (resp. Λ∗(K))

is homotopy equivalent to the





L.(Λ)
L.(Λ)
NL.(Λ)

-cohomology (resp. homology) spec-

trum of the locally finite simplicial complex K





L.(Λ∗(K)) ' H .(K;L.(Λ))

L.(Λ∗(K)) ' H .(K;L.(Λ))

NL.
(Λ∗(K)) ' H .

(K;NL.
(Λ)) ,

(
resp.





L.(Λ∗(K)) ' H .(K;L.(Λ))

L.(Λ∗(K)) ' H .(K;L.(Λ))

NL.(Λ∗(K)) ' H .(K;NL.(Λ))

)

so that on the level of homotopy groups
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



Ln(Λ∗(K)) = H−n(K;L.(Λ))

Ln(Λ∗(K)) = H−n(K;L.(Λ))

NLn(Λ∗(K)) = H−n(K;NL.(Λ)) ,

(
resp.





Ln(Λ∗(K)) = Hn(K;L.
(Λ))

Ln(Λ∗(K)) = Hn(K;L.(Λ))

NLn(Λ∗(K)) = Hn(K;NL.(Λ)) .

)

Proof As in 13.4 consider only the quadratic case, the symmetric and

normal cases being entirely similar. An n-dimensional quadratic complex
in Λ∗(K) is a collection of n-dimensional quadratic complexes in Λ∗(∆m),
one for each m-simplex of K, with the common faces in K corresponding to

common faces of the quadratic complexes. Thus the ∆-maps K+−−→Ln(Λ)
are just the n-dimensional quadratic complexes in Λ∗(K). For each p ≥ 0
identify

Ln(Λ∗(K))(p) = {n-dimensional quadratic complexes in Λ∗(K)∗(∆p) } ,
(L.(Λ)K+)(p) = {n-dimensional quadratic complexes in Λ∗(K ⊗∆p) }

= {∆-maps (K ⊗∆p)+−−→Ln(Λ) } .
The Kan ∆-set spectra L.(Λ∗(K)), L.(Λ)K+ are not isomorphic, but they
are homotopy equivalent*, so that

Ln(Λ∗(K)) ' Ln(Λ)K+ = H n(K;L.(Λ)) .

As in 12.4 there is no loss of generality in taking K to be finite, so that there
is an embedding K ⊂ ∂∆m+1 for some m ≥ 0, and the supplement K ⊆ Σm

is defined (12.2). There is a natural one–one correspondence between chain
complexes C in A ∗(K) and chain complexes D in A∗(Σm,K), with

C(σ) = D(σ∗) (σ ∈ K) , [C]∗[K] = Sm[D]∗[Σm,K] .

For each p ≥ 0 identify

Ln(Λ∗(K))(p) = {n-dimensional quadratic complexes in Λ∗(K)∗(∆p) }
H n(K;L.(Λ))(p) = { (n−m)-dimensional quadratic complexes in

Λ∗(Σm ⊗∆p,K ⊗∆p) }
= H n−m(Σm,K;L.(Λ))(p) = Ln−m(Λ∗(Σm,K))(p)

= {∆-maps (Σm,K)⊗∆p−−→Ln−m(Λ) }

* See Multiplicative properties of Quinn spectra by Gerd Laures and Jim
McClure (http://arxiv.org/abs/0907.2367, Forum Math. 26 (2014), no. 4,

1117–1185) for a proof.
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and so

Ln(Λ∗(K)) ' H n(K;L.(Λ)) .

Remark 13.8 The identification H0(K;L.(A)) = L0(A∗(K)) is an ana-
logue of the identification due to Gelfand and Mishchenko [60] (cf. Mishch-

enko [116, 4.2])

K(X) = L0(C(X,C))

of the topological K-group of complex vector bundles over a topological
space X with the symmetric Witt group of the ring C(X,C) of continuous
functions X−−→C with respect to the involution determined by complex

conjugation z−−→z̄. See Milnor and Husemoller [113, p. 106] for the corre-
sponding identification of the real K-group

KO(M) = L0(C∞(M,R))

with M a differentiable manifold and C∞(M,R) the ring of differentiable
functions M−−→R with the identity involution.

Proposition 13.9 Given an algebraic bordism category Λ = (A,B,C) let
Λ̂ = (A,B,B).
(i) The exact sequence of 3.10

. . . −−→ Ln(Λ)
1+T
−−→ NLn(Λ)

J
−−→ NLn(Λ̂)

∂
−−→ Ln−1(Λ) −−→ . . .

is the exact sequence of homotopy groups of a fibration sequence of Ω-spectra

L.(Λ)
1+T
−−→ NL.(Λ)

J
−−→ NL.(Λ̂) .

(ii) If Q̂∗(C) = 0 for C-contractible C then the forgetful map defines a

homotopy equivalence of L-spectra

NL.(Λ)
'−−→ L.(Λ) .

Proof (i) The one–one correspondence between the C ∗(∆m)-equivalence

classes of (normal, quadratic) pairs in Λ∗(∆m) and the B ∗(∆m)-equivalence
classes of normal complexes in Λ̂∗(∆m) given for any n ≥ 0 by 2.8 (i) defines
a homotopy equivalence of Ω-spectra

(mapping cofibre of 1 + T :L.(Λ)−−→NL.(Λ))
'−−→ NL.(Λ̂) .

(ii) Immediate from 3.5.

Proposition 13.10 The relative symmetric L-theory exact sequence of 3.8
for a functor F : Λ−−→Λ′ of algebraic bordism categories

. . . −−→ Ln+1(F ) −−→ Ln(Λ)
F
−−→ Ln(Λ′) −−→ Ln(F ) −−→ Ln−1(Λ) −−→ . . .
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is the exact sequence of homotopy groups of a fibration sequence of Ω-spectra

L.(Λ)
F
−−→ L.(Λ′) −−→ L.(F )

and similarly for quadratic and normal L-theory.

Proof Let L.
(F ) = {Ln(F ) |n ∈ Z } be the Ω-spectrum of Kan ∆-sets

with homotopy groups π∗(L.(F )) = L∗(F ) defined by

Ln(F ) = mapping cofibre of F :Ln(Λ)−−→Ln(Λ′) .

Proposition 13.11 Let A be an additive category with chain duality, and
let (B ⊆ B (A) , C ⊆ B , D ⊆ C ) be a triple of closed subcategories of B (A).
(i) The exact sequence of 3.9 (i)

. . . −−→ Ln(A,C,D) −−→ Ln(A,B,D) −−→ Ln(A,B,C)

∂
−−→ Ln−1(A,C,D) −−→ . . .

is the exact sequence of the homotopy groups of symmetric L-spectra in a

fibration sequence

L.(A,C,D) −−→ L.(A,B,D) −−→ L.(A,B,C) .

Similarly in the quadratic and normal cases.
(ii) The braid of exact sequences of algebraic L-groups of 3.13
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consists of the exact sequences of homotopy groups of algebraic L-spectra in
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a braid of fibration sequences

13. Algebraic L-spectra 145

[
[

[
[[

'
'
'
'')

[
[
[
[[

'
'
'
'')

L.(A,C,D) N L.(A,B,D) N L.(A,B,B)

L.(A,B,D)

64
4

44

h
h
hhj

N L.(A,B,C)

64
4

44

h
h
hhj

L.(A,B,C) .
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Proof (i) Inclusion defines a functor F : (A,B,D)−−→(A,B,C), so that L.(F )

is defined as in 13.10. The inverse isomorphisms of quadratic L-groups de-
fined in 3.9 (ii)

L∗−1(A,C,D) −−−−→←−−−− L∗(F )

are induced by inverse homotopy equivalences of quadratic L-spectra

ΣL.(A,C,D) −−−−→←−−−− L.(F )

defined by

ΣLn(A,C,D)(m)

= Ln−1(A,C,D)(m) = Ln−1(A∗(∆m),C ∗(∆m),D∗(∆m))(0)

−−→ Ln(F )(m) = Ln(F ∗(∆m))(0) ;

(C,ψ) −−→ algebraic mapping cylinder of (C−−→0, (0, ψ)) ,

Ln(F )(m) = Ln(F ∗(∆m))(0)

−−→ ΣLn(A,C,D)(m) = Ln−1(A∗(∆m),C ∗(∆m),D∗(∆m))(0) ;

(f :C−−→D, (δψ, ψ)) −−→ (C ′, ψ′) ,

with (C ′, ψ′) the quadratic complex obtained from (C,ψ) by algebraic sur-
gery on the quadratic pair (f :C−−→D, (δψ, ψ)), and F ∗(∆m) the functor of

algebraic bordism categories

F ∗(∆m) : (A∗(∆m),B ∗(∆m),D∗(∆m)) −−→ (A∗(∆m),B ∗(∆m),C ∗(∆m)) .

(ii) The fibration sequences through NL.(A,B,B) are given by 13.9, and
those through L.(A,C,D) by (i).

Proof (i) Inclusion defines a functor F : (A,B,D)−−→(A,B,C), so that L.(F )
is defined as in 13.10. The inverse isomorphisms of quadratic L-groups de-

fined in 3.9 (ii)

L∗−1(A,C,D) −−−−→←−−−− L∗(F )

are induced by inverse homotopy equivalences of quadratic L-spectra

ΣL.(A,C,D) −−−−→←−−−− L.(F )

defined by

ΣLn(A,C,D)(m)

= Ln−1(A,C,D)(m) = Ln−1(A∗(∆m),C ∗(∆m),D∗(∆m))(0)

−−→ Ln(F )(m) = Ln(F ∗(∆m))(0) ;

(C,ψ) −−→ algebraic mapping cylinder of (C−−→0, (0, ψ)) ,

Ln(F )(m) = Ln(F ∗(∆m))(0)

−−→ ΣLn(A,C,D)(m) = Ln−1(A∗(∆m),C ∗(∆m),D∗(∆m))(0) ;

(f :C−−→D, (δψ, ψ)) −−→ (C ′, ψ′) ,

with (C ′, ψ′) the quadratic complex obtained from (C,ψ) by algebraic sur-
gery on the quadratic pair (f :C−−→D, (δψ, ψ)), and F ∗(∆m) the functor of
algebraic bordism categories

F ∗(∆m) : (A∗(∆m),B ∗(∆m),D∗(∆m)) −−→ (A∗(∆m),B ∗(∆m),C ∗(∆m)) .

(ii) The fibration sequences through NL.
(A,B,B) are given by 13.9, and

those through L.(A,C,D) by (i).
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§14. The algebraic surgery exact sequence

Given a commutative ring R and a simplicial complex K the visible sym-
metric L-groups V L∗(R,K), the generalized homology groups of K with
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with the ‘quadratic structure group’

Sn(R,K) = Ln−1(A (R,K),C (R,K),C (R)∗(K))

defined to be the cobordism group of (n − 1)-dimensional quadratic com-
plexes in A (R,K) which are globally contractible and locally Poincaré.

The ‘algebraic surgery exact sequence’ is the exact sequence

. . . −−→ Hn(K; L.(R)) −−→ Ln(R[π1(K)]) −−→ Sn(R,K)

−−→ Hn−1(K; L.(R)) −−→ . . .

relating the generalized homology groups H∗(K; L.(R)), the surgery ob-
struction groups L∗(R[π1(K)]) and the quadratic structure groups S∗(R,K).

The algebraic characterization in §18 of the topological manifold structure
sets actually requires the ‘1/2-connective’ version of the algebraic surgery
exact sequence for R = Z, and this will be developed in §15.
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relating the generalized homology groups H∗(K;L.(R)), the surgery ob-
struction groups L∗(R[π1(K)]) and the quadratic structure groups S∗(R,K).
The algebraic characterization in §18 of the topological manifold structure
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Definition 14.1 The

{
symmetric
quadratic
normal

L-spectrum of a ring with involution

R




L.(R) = {Ln(R) |n ∈ Z }
L.(R) = {Ln(R) |n ∈ Z }
NL.

(R) = {NLn(R) |n ∈ Z }

is the

{
symmetric
quadratic
normal

L-spectrum





L.
(Λ(R)) = {Ln(Λ(R)) |n ∈ Z }

L.(Λ(R)) = {Ln(Λ(R)) |n ∈ Z }
NL.(Λ(R)) = {NLn(Λ(R)) |n ∈ Z }

of

13.5 with

Λ(R) = (A (R),B (R),C (R)) .

The homotopy groups are the

{
symmetric
quadratic
normal

L-groups of R





π∗(L.
(R)) = L∗(R)

π∗(L.(R)) = L∗(R)

π∗(NL.(R)) = NL∗(R) .

The algebraic L-spectra of 14.1 are the special case K = {∗} of:

Definition 14.2 The





symmetric
visible symmetric
quadratic
normal

L-spectrum of a pair (R,K)

with R a commutative ring and K a simplicial complex is the algebraic

L-spectrum





L.
(R,K) = {Ln(R,K) |n ∈ Z } = L.

(Λ(R,K))

VL.(R,K) = {VLn(R,K) |n ∈ Z } = NL.(Λ(R,K))

L.(R,K) = {Ln(R,K) |n ∈ Z } = L.(Λ(R,K))

NL.(R,K) = {NLn(R,K) |n ∈ Z } = NL.(Λ̂(R,K))

of 13.4 for the algebraic bordism categories

Λ(R,K) = (A (R,K),B (R,K),C (R,K)) ,

Λ̂(R,K) = (A (R,K),B (R,K),B (R,K)) .
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The homotopy groups are the





symmetric
visible symmetric
quadratic
normal

L-groups of (R,K)





π∗(L.(R,K)) = L∗(R,K)

π∗(VL.(R,K)) = V L∗(R,K)

π∗(L.(R,K)) = L∗(R,K)

π∗(NL.
(R,K)) = NL∗(R,K)

defined in 9.7.

Remark 14.3 It follows from 9.8 that the forgetful map defines a homotopy

equivalence

VL.
(R,K)

'−−→ L.
(R,K) .

In the special case K = {∗} already considered in 3.6 this is

VL.(R, {∗}) = NL.(Λ(R)) ' L.(Λ(R)) = L.(R) .

A functor of algebraic bordism categories F : Λ−−→Λ′ induces a map of
algebraic L-spectra 




F : L.(Λ) −−→ L.(Λ′)

F : L.(Λ) −−→ L.(Λ′)

F : NL.
(Λ) −−→ NL.

(Λ′) .

Proposition 14.4 The universal assembly functor of §9
A : Λ(R,K) −−→ Λ(R[π1(K)])

induces maps of the algebraic L-spectra




A : L.
(R,K) −−→ L.

(R[π1(K)])

A : VL.(R,K) −−→ L.(R[π1(K)])

A : L.(R,K) −−→ L.(R[π1(K)])

A : NL.
(R,K) −−→ NL.

(R[π1(K)])

which is a homotopy equivalence L.(R,K) ' L.(R[π1(K)]) in the quadratic

case.
Proof The universal assembly maps in quadratic L-theory define isomor-
phisms A:L∗(R,K)−−→L∗(R[π1(K)]) by the algebraic π-π theorem (10.6).

Recall from §9 the local algebraic bordism category of (R,K)

Λ(R)∗(K) = (A (R,K),B (R,K),C (R)∗(K)) .

An object in C (R)∗(K) is a finite f.g. free (R,K)-module chain complex C

such that each [C][σ] (σ ∈ K) is a contractible finite f.g. free R-module chain
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complex. The assembly C(K̃) over the universal cover K̃ is a contractible
finite f.g. free R[π1(K)]-module chain complex, by the algebraic analogue of
the Vietoris theorem (which may be proved using the algebraic Leray–Serre
spectral sequence of the proof of 10.2). Thus C (R)∗(K) is a subcategory

of C (R,K), and there is defined a forgetful functor of algebraic bordism
categories Λ(R)∗(K)−−→Λ(R,K).

Proposition 14.5 (i) The

{
symmetric
quadratic

L-theory homology Ω-spectrum of

(R,K) is the

{
symmetric
quadratic

L-spectrum of the algebraic bordism category

Λ∗(R,K) {H .(K;L.(R)) = L.(Λ(R)∗(K))

H .(K;L.(R)) = L.(Λ(R)∗(K)) ,

with homotopy groups{
π∗(H .(K;L.(R))) = H∗(K;L.(R)) = L∗(Λ(R)∗(K))

π∗(H .(K;L.(R))) = H∗(K;L.(R)) = L∗(Λ(R)∗(K)) .

The assembly maps given by 12.19{
A : H∗(K;L.(R)) −−→ L∗(R,K) = L∗(Λ(R,K))

A : H∗(K;L.(R)) −−→ L∗(R,K) = L∗(Λ(R,K))

coincide with the maps induced by the forgetful functor Λ(R)∗(K)−−→
Λ(R,K).
(ii) The normal L-theory homology Ω-spectrum of (R,K) is the normal L-

spectrum of the algebraic bordism category Λ̂(R,K)

H .(K;NL.(R)) = NL.(Λ̂(R,K)) = NL.(R,K) ,

with homotopy groups

π∗(H .(K;NL.
(R))) = H∗(K;NL.

(R)) = NL∗(R,K) .

The assembly maps given by 12.19

A : H∗(K;NL.(R)) −−→ NL∗(R,K) = L∗(Λ̂(R,K))

are isomorphisms.
(iii) The L-homology spectra of (i) and (ii) fit into a fibration sequence

H .(K;L.(R)) −−→ H .(K;L.(R)) −−→ H .(K;NL.(R)) = NL.(R,K) .

Proof (i) Only the quadratic case is considered, the symmetric case being
entirely similar. The identification of the quadratic L-theory of Λ∗(R,K)
with the L.(R)-homology of K is the quadratic case of 13.7, with Λ = Λ(R).
The covariant functor

L.(R,−) : { simplicial complexes } −−→ {Ω-spectra } ;

K −−→ L.(R,K) = L.(Λ(R,K))
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is homotopy invariant, since for any quadratic Poincaré complex (C,ψ)
in Λ(R,K) there is defined a quadratic Poincaré cobordism (C,ψ) ⊗ I
in Λ(R,K ⊗ ∆1) (as in the verification of the Kan extension condition in
14.3), so that the two inclusions K−−→K ⊗∆1 induce homotopic ∆-maps

L.(R,K)−−→L.(R,K ⊗∆1). Also, there is defined a commutative diagram
of Ω-spectra
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H .(K; {L.(R,D(σ,K))}) w
A

u
≃

L.(R,K ′)

u
≃

H .(K; L.(R)) w
A L.(R,K)

with A the local {L.(R,−)}-coefficient assembly of 12.18.
(ii) This is the normal case of 13.7 with Λ = Λ̂(R,K).
(iii) This is the special case of 13.9 (i) with Λ = Λ(R)∗(K).

The forgetful map H .(K; L.(R))−−→L.(R,K) may be composed with the

homotopy equivalence of 14.4 L.(R,K) ≃ L.(R[π1(K)]) to define an assem-
bly map

A : H .(K; L.(R)) −−→ L.(R[π1(K)]) .

Definition 14.6 (i) The quadratic structure groups of (R,K) are the cobor-

dism groups

Sn(R,K) = Ln−1(A (R,K),C (R,K),C (R)∗(K)) (n ∈ Z)

of (n − 1)-dimensional quadratic complexes in A (R,K) which are globally
contractible and locally Poincaré.
(ii) The quadratic structure spectrum of (R,K) is the quadratic L-spectrum

S.(R,K) = ΣL.(A (R,K),C (R,K),C (R)∗(K))

with homotopy groups

π∗(S.(R,K)) = S∗(R,K) .

(iii) The algebraic surgery exact sequence is the exact sequence of homotopy
groups

. . .−−→ Hn(K; L.(R))
A
−−→ Ln(R[π1(K)])

∂
−−→ Sn(R,K) −−→ Hn−1(K; L.(R)) −−→ . . .

induced by the fibration sequence of spectra
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The symmetric structure groups S∗(R,K) and the symmetric structure
spectrum S.(R,K) are defined entirely similarly, using symmetric L-theory.

Proposition 14.7 For any commutative ring R and simplicial complex K

there is defined a commutative braid of exact sequences of algebraic L-groups

14. The algebraic surgery exact sequence 151

The symmetric structure groups S∗(R,K) and the symmetric structure

spectrum S.(R,K) are defined entirely similarly, using symmetric L-theory.

Proposition 14.7 For any commutative ring R and simplicial complex
K there is defined a commutative braid of exact sequences of algebraic L-
groups

N
N
N

N
NN

�������

N
N
N

N
NN

�������

Sn+1(R,K) Hn(K; L.(R)) Hn(K; N L.(R))

Hn(K; L.(R))

���
��

�

N
N
N
NNP1 + T

V Ln(R,K)

���
��

�
A

N
N
N
NNP

Hn+1(K; N L.(R))
N
N
N
NNP

Ln(R[π1(K)])

���
��

�
A

N
N
N
NNP1 + T

Sn(R,K)

���
��

�
∂

'
'

'
'

''

[
[
[
[
[[]

'
'

'
'

''

∂

[
[
[
[
[[]

which are the exact sequences of homotopy groups of algebraic L-spectra in

a braid of fibration sequences

N
N

N
N
NN

�������

H .(K; L.(R)) H .(K; N L.(R))

H .(K; L.(R))
N
N
N
NNP

VL.(R,K)

���
��

�

N
N
N
NNP

L.(R[π1(K)])
N
N
N
NNP

���
��

�

S.(R,K) .

���
��

�

'
'

'
'

''

[
[
[
[
[[]

which are the exact sequences of homotopy groups of algebraic L-spectra in
a braid of fibration sequences

14. The algebraic surgery exact sequence 151

The symmetric structure groups S∗(R,K) and the symmetric structure

spectrum S.(R,K) are defined entirely similarly, using symmetric L-theory.

Proposition 14.7 For any commutative ring R and simplicial complex
K there is defined a commutative braid of exact sequences of algebraic L-
groups

N
N
N

N
NN

�������

N
N
N

N
NN

�������

Sn+1(R,K) Hn(K; L.(R)) Hn(K; N L.(R))

Hn(K; L.(R))

���
��

�

N
N
N
NNP1 + T

V Ln(R,K)

���
��

�
A

N
N
N
NNP

Hn+1(K; N L.(R))
N
N
N
NNP

Ln(R[π1(K)])

���
��

�
A

N
N
N
NNP1 + T

Sn(R,K)

���
��

�
∂

'
'

'
'

''

[
[
[
[
[[]

'
'

'
'

''

∂

[
[
[
[
[[]

which are the exact sequences of homotopy groups of algebraic L-spectra in

a braid of fibration sequences

N
N

N
N
NN

�������

H .(K; L.(R)) H .(K; N L.(R))

H .(K; L.(R))
N
N
N
NNP

VL.(R,K)

���
��

�

N
N
N
NNP

L.(R[π1(K)])
N
N
N
NNP

���
��

�

S.(R,K) .

���
��

�

'
'

'
'

''

[
[
[
[
[[]

Proof These are just the braids of 13.11 for

A = A (R,K) , B = B (R,K) , C = C (R,K) , D = C (R)∗(K) ,

using 14.4 to replace L.(A,B,C) by L.(R[π1(K)]) and 14.5 (ii) to replace
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NL.
(A,B,B) by NL.

(R,K). The universal assembly map

A : Hn(K;L.(R)) −−→ Ln(R[π1(K)]) ; (C,ψ) −−→ (C(K̃), ψ(K̃))

is defined in 9.10. The map

∂ : V Ln(R,K) −−→ Sn(R,K) ; (C, φ) −−→ (∂C, ψ)

sends an n-dimensional globally Poincaré normal complex in A(R,K) to
the boundary (n − 1)-dimensional globally contractible locally Poincaré

quadratic complex in A (R,K) defined in 2.10.

Proposition 14.8 The visible symmetrization maps

1 + T : Ln(R[π1(K)]) −−→ V Ln(R,K) (n ∈ Z)

are isomorphisms modulo 8-torsion.

Proof The relative homotopy groups H∗(K;NL.
(R)) are 8-torsion, since

πn(NL.(R)) = NLn(R) = lim−→
k
L̂n+4k(R) (n ∈ Z) ,

and the hyperquadratic L-groups L̂∗(R) of Ranicki [146, p.137] are 8-torsion.
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§15. Connective L-theory

Let q ∈ Z. An Ω-spectrum F is q-connective if πn(F ) = 0 for n < q. A
q-connective cover of an Ω-spectrum F is a q-connective Ω-spectrum F 〈q〉
together with a map F 〈q〉−−→F inducing isomorphisms πn(F 〈q〉) ∼= πn(F )

for n ≥ q. In general, F 〈q〉 is obtained from F by killing the homotopy
groups πn(F ) for n < q, using Postnikov decompositions and Eilenberg–
MacLane spectra.

The q-connective L-theory required for the applications to topology will
now be developed. The q-connective covers of the L-spectra are explicitly
constructed using algebraic Poincaré complexes of the appropriate connec-

tivity, rather than by killing the homotopy groups using the general ma-
chinery.

Let Λ = (A,B,C) be an algebraic bordism category.

Definition 15.1 The q-connective

{
symmetric
quadratic
normal

L-groups




L∗〈q〉(Λ)
L∗〈q〉(Λ)
NL∗〈q〉(Λ)

of

Λ are defined by




Ln〈q〉(Λ) = Ln(Λ) if n ≥ q, 0 if n < q

Ln〈q〉(Λ) = Ln(Λ) if n ≥ q, 0 if n < q

NLn〈q〉(Λ) = NLn(Λ) if n ≥ q, 0 if n < q.

Write the p-skeleton of a simplicial complex K as K [p]. Similarly, the
p-skeleton of a pointed ∆-set K is the pointed ∆-set K [p] with

(K [p])(q) =

{
K(q) if q ≤ p
{∅} otherwise .

Definition 15.2 The q-connective

{
symmetric
quadratic
normal

L-spectrum of Λ is the

Ω-spectrum of Kan ∆-sets




L.〈q〉(Λ) = {Ln〈q〉(Λ) |n ∈ Z }
L.〈q〉(Λ) = {Ln〈q〉(Λ) |n ∈ Z }
NL.〈q〉(Λ) = {NLn〈q〉(Λ) |n ∈ Z }

with



Ln〈q〉(Λ)(m)

Ln〈q〉(Λ)(m)

NLn〈q〉(Λ)(m)

= {n-dimensional





symmetric

quadratic

normal

complexes





(C, φ)

(C,ψ)

(C, φ)

in Λ∗(∆m) such that C is C ∗((∆m)[q−n−1])-contractible,

i.e. C(σ) is in C for σ ∈ ∆m with |σ | ≤ q − n− 1 } ,
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such that




ΩLn〈q〉(Λ) = Ln+1〈q〉(Λ)

ΩLn〈q〉(Λ) = Ln+1〈q〉(Λ)

ΩNLn〈q〉(Λ) = NLn+1〈q〉(Λ) ,





πm(Ln〈q〉(Λ)) = Lm+n〈q〉(Λ)

πm(Ln〈q〉(Λ)) = Lm+n〈q〉(Λ)

πm(NLn〈q〉(Λ)) = NLm+n〈q〉(Λ) ,




π∗(L.〈q〉(Λ)) = L∗〈q〉(Λ)

π∗(L.〈q〉(Λ)) = L∗〈q〉(Λ)

π∗(NL.〈q〉(Λ)) = NL∗〈q〉(Λ) ,

with





Ln〈q〉(Λ)
Ln〈q〉(Λ)
NLn〈q〉(Λ)

(q − n− 1)-connected.

For a ring with involution R and the algebraic bordism category

Λ(R) = (A (R),B (R),C (R))

of 3.12 write




L.〈q〉(Λ(R)) = L.〈q〉(R)

L.〈q〉(Λ(R)) = L.〈q〉(R)

NL.〈q〉(Λ(R)) = NL.〈q〉(R) ,





L∗〈q〉(Λ(R)) = L∗〈q〉(R)

L∗〈q〉(Λ(R)) = L∗〈q〉(R)

NL∗〈q〉(Λ(R)) = NL∗〈q〉(R) .

Given a simplicial complex K and an abelian group A let ∆∗(K;A) be

the A-coefficient simplicial cochain complex of K.

The following results hold in symmetric, normal and quadratic L-theory,

although they are only stated in the symmetric case:

Proposition 15.3 (i) The L.〈q〉(Λ)-

{
cohomology
homology

of a simplicial complex

K is expressed in terms of the L.
(Λ)-

{
cohomology
homology

and the simplicial

Lq(Λ)-coefficient
{

cochain
chain

groups of K by





H−n(K;L.〈q〉(Λ))

= im(H−n(K,K [q−n−1];L.
(Λ))−−→H−n(K,K [q−n−2];L.

(Λ)))

= coker(δ: ∆q−n−1(K;Lq(Λ))−−→H−n(K,K [q−n−1];L.
(Λ))) ,

Hn(K;L.〈q〉(Λ))

= im(Hn(K [n−q];L.
(Λ))−−→Hn(K [n−q+1];L.

(Λ)))

= coker(∂: ∆n−q+1(K;Lq(Λ))−−→Hn(K [n−q];L.
(Λ))) .

(ii) The L.〈q〉(Λ)- and L.〈q + 1〉(Λ)-

{
cohomology

homology
groups are related by an
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exact sequence




. . . −−→ H−n(K;L.〈q + 1〉(Λ)) −−→ H−n(K;L.〈q〉(Λ))

−−→ Hq−n(K;Lq(Λ)) −−→ H−n−1(K;L.〈q + 1〉(Λ)) −−→ . . . ,

. . . −−→ Hn(K;L.〈q + 1〉(Λ)) −−→ Hn(K;L.〈q〉(Λ))

−−→ Hn−q(K;Lq(Λ)) −−→ Hn−1(K;L.〈q + 1〉(Λ)) −−→ . . .

with 



H−n(K;L.〈q〉(Λ)) −−→ Hq−n(K;Lq(Λ)) ;

(C, φ) −−→ ∑
σ∈K(q−n)

(C(σ), φ(σ))σ ,

Hn(K;L.〈q〉(Λ)) −−→ Hn−q(K;Lq(Λ)) ;

(C, φ) −−→ ∑
σ∈K(n−q)

(C(σ), φ(σ))σ .

(iii) If

{
n− q ≥ 1

n− q ≥ dim(K)
then the natural map defines an isomorphism

{
H−n(K;L.〈q〉(Λ))

'−−→ H−n(K;L.(Λ))

Hn(K;L.〈q〉(Λ))
'−−→ Hn(K;L.(Λ)) .

Proof It is convenient to replace L.〈q〉(Λ) by the deformation retract

L.(q)(Λ) = {Ln(q)(Λ) |n ∈ Z } ,
with Ln(q)(Λ) the Kan ∆-set defined by

Ln(q)(Λ)(m)

= {n-dimensional symmetric complexes in Λ∗(∆m, (∆m)[q−n−1]) }
= {n-dimensional symmetric complexes (C, φ) in Λ∗(∆m)

such that C(σ) = 0 for σ ∈ ∆m with |σ | ≤ q − n− 1} ,
such that

ΩLn(q)(Λ) = Ln+1(q)(Λ) , πm(Ln(q)(Λ)) = Lm+n〈q〉(Λ) .

Define an embedding
{
H .(K;L.(q)(Λ)) −−→ L.(q)(Λ∗(K))

H .(K;L.(q)(Λ)) −−→ L.(q)(Λ∗(K))

of the L.(q)(Λ)-

{
cohomology
homology

spectrum in the q-connective symmetric L-

spectrum as follows. For cohomology use the embeddings of ∆-sets

H n(K;L.
(q)(Λ)) −−→ Ln(q)(Λ∗(K)) (n ∈ Z)
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by means of the identifications

H n(K;L.
(q)(Λ))(p) =

{n-dimensional symmetric complexes in Λ∗(K ⊗∆p, (K ⊗∆p)[q−n−1]) }
Ln(q)(Λ∗(K))(p) =

{n-dimensional symmetric complexes in Λ∗(K ⊗∆p,K ⊗ (∆p)[q−n−1]) }
and the inclusion

(K ⊗∆p, (K ⊗∆p)[q−n−1]) −−→ (K ⊗∆p,K ⊗ (∆p)[q−n−1]) .

For homology use an embedding K ⊆ ∂∆m+1 to define embeddings of ∆-
sets

H n(K;L.(q)(Λ)) −−→ Ln(q)(Λ∗(K)) (n ∈ Z)

by means of the identifications

H n(K;L.(q)(Λ))(p) = H n−m(Σm,K;L.(q)(Λ))(p)

= { (n−m)-dimensional symmetric

complexes in Λ∗(Σm ⊗∆p, (Σm ⊗∆p)[q−n+m−1] ∪K ⊗∆p) } ,
Ln(q)(Λ∗(K))(p) = Ln−m(q)(A∗(Σm,K),B ∗(Σm,K),C ∗(Σm,K))(p)

= {n-dimensional symmetric complexes in Λ∗(K)∗(∆p, (∆p)[q−n−1]) }
= { (n−m)-dimensional symmetric

complexes in Λ∗((Σm,K)⊗ (∆p, (∆p)[q−n−1])) }
and the inclusion

(Σm ⊗∆p, (Σm ⊗∆p)[q−n+m−1] ∪K ⊗∆p) −−→
(Σm,K)⊗ (∆p, (∆p)[q−n−1]) = (Σm ⊗∆p,Σm ⊗ (∆p)[q−n−1] ∪K ⊗∆p) .

(i) Consider the two cases separately, starting with cohomology. Use the
identifications

{∆-maps K+−−→Ln(q)(Λ) } = {∆-maps (K,K [q−n−1])−−→Ln(Λ)}
= {n-dimensional symmetric complexes in A∗(K,K [q−n−1]) }

to define a surjection of homotopy groups

H−n(K,K [q−n−1];L.(Λ)) = [K,K [q−n−1];Ln(Λ), ∅]
−−→ H−n(K;L.(q)(Λ)) = [K+,Ln(q)(Λ)] .

An element in the kernel is represented by a ∆-map

(K,K [q−n−1])⊗ {0} −−→ (Ln(Λ), ∅)
which extends to a ∆-map

(K ⊗∆1,K [q−n−1] ⊗ {0} ∪K [q−n−2] ⊗∆1 ∪K ⊗ {1}) −−→ (Ln(Λ), ∅) .
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The first map in the exact sequence

H−n(K ⊗∆1,K [q−n−1] ⊗ {0} ∪K [q−n−2] ⊗∆1 ∪K ⊗ {1};L.(Λ))

inclusion∗
−−−−−−−−−→ H−n(K ⊗ {0},K [q−n−1] ⊗ {0};L.(Λ))

−−→ H−n(K;L.(q)(Λ)) −−→ 0

is isomorphic to the first map in the exact sequence

H−n−1(K [q−n−1],K [q−n−2];L.
(Λ))

δ
−−→

H−n(K,K [q−n−1];L.(Λ)) −−→ H−n(K,K [q−n−2];L.(Λ)) .

This gives an identification

H−n(K;L.(q)(Λ)) = coker(δ) ,

and the domain of δ can be expressed as a cochain group

H−n−1(K [q−n−1],K [q−n−2];L.(Λ)) = ∆q−n−1(K;Lq(Λ)) .

The result for homology may now be deduced from the cohomology result.
Embed K ⊆ ∂∆m+1 for some m ≥0, and note that the supplement of the
p-skeleton K [p] in ∂∆m+1 is given by

K [p] = K ∪ (Σm)[m−p−1] ⊆ Σm (p ≥ 0) .

By duality and the cohomology result

Hn(K;L.(q)(Λ)) = Hm−n(Σm,K;L.(q)(Λ))

= coker(δ:Hm−n−1(K ∪ (Σm)[q−n+m−1],K ∪ (Σm)[q−n+m−2];L.
(Λ))

−−→ Hm−n(Σm,K ∪ (Σm)[q−n+m−1];L.(Λ)))

= coker(∂:Hn+1(K [n−q+1],K [n−q];L.
(Λ))−−→Hn(K [n−q];L.

(Λ)))

= coker(∂: ∆n−q+1(K;Lq(Λ))−−→Hn(K [n−q];L.(Λ))) .

(ii) The relative homotopy groups of the pair (L.(q)(Λ),L.(q + 1)(Λ)) are

given by

πm(L.(q)(Λ),L.(q + 1)(Λ)) =

{
Lq(Λ) if m = q

0 otherwise
so that there is defined a fibration sequence of Ω-spectra

L.(q + 1)(Λ) −−→ L.(q)(Λ) −−→ K.(Lq(Λ), q) .

Here, K.(Lq(Λ), q) is the Ω-spectrum of Eilenberg–MacLane spaces with

K.(Lq(Λ), q)n = K(Lq(Λ), q − n) (n ≤ q) .
(iii) This follows from



H−n(K;L.(Λ)) = lim

q→−∞
H−n(K;L.〈q〉(Λ))

Hn(K;L.
(Λ)) = lim

q→−∞
Hn(K;L.〈q〉(Λ)) ,
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and the identifications given by (ii){
H−n(K;L.〈n− 1〉(Λ)) = H−n(L.〈n− 2〉(Λ)) = . . . = H−n(K;L.

(Λ))

Hn(K;L.〈n− k〉(Λ)) = Hn(L.〈n− k − 1〉(Λ)) = . . . = Hn(K;L.
(Λ)) ,

with k = dim(K).

Definition 15.4 (i) A finite chain complex C in A (R) is q-connective if

Hr(C) = 0 for r < q ,

or equivalently if C is chain equivalent to a complex D with Dr = 0 for
r < q.
(ii) A finite chain complex C in A (R,K) is q-connective if each C(σ) (σ ∈ K)

is q-connective, or equivalently if each [C][σ] (σ ∈ K) is q-connective.
(iii) An n-dimensional symmetric complex (C, φ) in A (R,K) is q-connective
if C and Cn−∗ are q-connective.

(iv) An n-dimensional symmetric complex (C, φ) in A (R,K) is locally q-
Poincaré if ∂C = S−1C(φ0:Cn−∗−−→C) is q-connective.
Similarly for normal and quadratic complexes.

Note that the assembly of a q-connective chain complex C in A (R,K) is

a q-connective chain complex C(K̃) in A (R[π1(K)]).

Example 15.5 Given a simplicial complex K and any homology class [K] ∈
Hn(K) let (C, φ) be the n-dimensional symmetric complex defined as in 9.13,

with
C(σ) = ∆(D(σ,K), ∂D(σ,K)) (σ ∈ K) ,

φ0(K) = [K] ∩ − : Cn−∗(K) ' ∆(K ′)n−∗ −−→ C(K) = ∆(K ′) .

If K is n-dimensional then (C, φ) is 0-connective. (C, φ) is locally q-Poincaré
if and only if

Hr([D(σ,K)] ∩ −: ∆(D(σ,K))n−|σ|−∗−−→∆(D(σ,K), ∂D(σ,K))) = 0

(σ ∈ K , r ≤ q) ,
in which case

Hr(∂D(σ,K)) = Hr(linkK(σ)) = Hr(S
n−|σ|−1) (r ≤ q − 1) .

The following conditions on an n-dimensional symmetric complex (C, φ)
in A(R,K) are equivalent:

(i) (C, φ) is locally q-Poincaré,
(ii) the R-module chain complexes

∂C(σ) = S−1C(φ0(σ): [C][σ]n−|σ|−∗−−→C(σ)) (σ ∈ K)

are q-connective,
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(iii) the R-module chain complexes

[∂C][σ] = S−1C([φ0][σ]:C(σ)n−|σ|−∗−−→[C][σ]) (σ ∈ K)

are q-connective.

A simplicial complex K is locally q-Poincaré with respect to a homol-
ogy class [K] ∈ Hn(K) if the n-dimensional symmetric complex (C, φ) in
A (Z,K) defined in 9.13 (with C(K) = ∆(K ′) etc.) is locally q-Poincaré.

Remark 15.6 The following conditions on a simplicial complex K with a
homology class [K] ∈ Hn(K) are equivalent:

(i) K is locally q-Poincaré,

(ii) Hr([D(σ,K)]∩−: ∆(D(σ,K))n−|σ|−∗−−→∆(D(σ,K), ∂D(σ,K))) = 0
for all σ ∈ K , r ≤ q,

(iii) Hr([D(σ,K)]∩−: ∆(D(σ,K), ∂D(σ,K))n−|σ|−∗−−→∆(D(σ,K))) = 0

for all σ ∈ K , r ≤ q.

Definition 15.7 (i) The q-connective algebraic bordism categories of a ring

with involution R are

Λ〈q〉(R) = (A (R),B〈q〉(R),C〈q〉(R)) ,

Λ̂〈q〉(R) = (A (R),B〈q〉(R),B〈q〉(R))

with B〈q〉(R) the category of q-connective finite chain complexes C in A (R),
and C〈q〉(R) = C(R) ⊆ B〈q〉(R) the subcategory of contractible complexes.
(ii) The q-connective algebraic bordism categories of a commutative ring R

and a simplicial complex K are

Λ〈q〉(R,K) = (A (R,K),B〈q〉(R,K),C〈q〉(R,K)) ,

Λ̂〈q〉(R,K) = (A (R,K),B〈q〉(R,K),B〈q〉(R,K))

with B〈q〉(R,K) = B〈q〉(R)∗(K) the category of q-connective finite chain
complexes C in A (R,K) and C〈q〉(R,K) ⊆ B〈q〉(R,K) the subcategory of
the globally contractible complexes.

In the special case K = {∗} write the q-connective algebraic bordism
categories as

Λ〈q〉(R, {∗}) = Λ〈q〉(R) ,

Λ̂〈q〉(R, {∗}) = Λ̂〈q〉(R) .

It should be noted that the symmetric L-groups L∗(Λ〈q〉(R)) of the q-
connective algebraic bordism category Λ〈q〉(R) need not be the same as
the q-connective symmetric L-groups L∗〈q〉(R) of R. Likewise for the other

categories.
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Example 15.8 (i) The quadratic L-groups of Λ〈0〉(R) coincide with the
0-connective quadratic L-groups of R

Ln(Λ〈0〉(R)) = Ln〈0〉(R) = Ln(R) (n ≥ 0) ,

by virtue of the 4-periodicity of the quadratic L-groups, and the map of
quadratic L-spectra

L.(Λ〈0〉(R)) −−→ L.〈0〉(R)

is a homotopy equivalence.
(ii) The symmetric L-groups of Λ〈0〉(R) are the connective symmetric L-

groups of 3.18

Ln(Λ〈0〉(R)) = Ln(R) (n ≥ 0) ,

while the 0-connective symmetric L-groups of R are the 4-periodic symmet-

ric L-groups of 3.12

Ln〈0〉(R) = Ln+4∗(R) (n ≥ 0) .

If R is a ring such that the symmetric L-groups L∗(R) are 4-periodic (such
as R = Z) then the map of symmetric L-spectra

L.(Λ〈0〉(R)) −−→ L.〈0〉(R)

is a homotopy equivalence. If also L0(R)−−→NL0(R) is onto then the map
of normal L-spectra

NL.(Λ〈0〉(R)) −−→ NL.〈0〉(R)

is a homotopy equivalence.

Proposition 15.9 For any commutative ring R and a simplicial complex K

the

{
symmetric
quadratic
normal

L-spectrum of the algebraic bordism category Λ〈q〉(R)∗(K)

(given by 4.1) is the homology spectrum of K with coefficients in the corre-

sponding q-connective L-spectrum of R



L.
(Λ〈q〉(R)∗(K)) = H .(K;L.

(Λ〈q〉(R)))

L.(Λ〈q〉(R)∗(K)) = H .(K;L.(Λ〈q〉(R)))

NL.(Λ̂〈q〉(R)∗(K)) = H .(K;NL.(Λ̂〈q〉(R))) .

Proof Exactly as for 13.7, which is the special case q = −∞.

By analogy with 15.6:

Definition 15.10 (i) The q-connective quadratic structure groups of (R,K)

are the cobordism groups

Sn〈q〉(R,K) = Ln−1(A (R,K),C 〈q〉(R,K),C 〈q〉(R)∗(K)) (n ∈ Z)



15. Connective L-theory 161

of q-connective (n− 1)-dimensional quadratic complexes (C,ψ) in A (R,K)
which are globally contractible and locally Poincaré.
(ii) The q-connective quadratic structure spectrum of (R,K) is the quadratic
L-spectrum

S.〈q〉(R,K) = ΣL.(A (R,K),C 〈q〉(R,K),C 〈q〉(R)∗(K))

with homotopy groups

π∗(S.〈q〉(R,K)) = S∗〈q〉(R,K) .

(iii) The q-connective algebraic surgery exact sequence is the exact sequence
of homotopy groups

. . . −−→ Hn(K;L.〈q〉(R))
A
−−→ Ln(Λ〈q〉(R,K))

∂
−−→

Sn〈q〉(R,K) −−→ Hn−1(K;L.〈q〉(R)) −−→ . . .

induced by the fibration sequence of spectra

H .(K;L.〈q〉(R)) −−→ L.(Λ〈q〉(R,K)) −−→ S.〈q〉(R,K) .

The q-connective symmetric structure groups S∗〈q〉(R,K) and the q-conn-
ective symmetric structure spectrum S.〈q〉(R,K) are defined entirely simi-
larly, using symmetric L-theory.

Proposition 15.11 (i) The assembly map

Ln(Λ〈q〉(R,K)) −−→ Ln(R[π1(K)])

is an isomorphism if n ≥ 2q.

(ii) For n ≥ max(2q + 1, q + 2)

Sn〈q〉(R,K) = ker(Sn(R,K [n−q])−−→∆n−q(K;Lq−1(R)))

and for n ≥ max(2q + 1, q + 3)

Sn〈q〉(R,K) = im(Sn(R,K [n−q−1])−−→Sn(R,K [n−q])) .

(iii) For n ≥ 2q + 4 the q-connective and (q + 1)-connective quadratic S-

groups are related by an exact sequence

. . . −−→ Hn−q(K;Lq(R)) −−→ Sn〈q + 1〉(R,K) −−→
Sn〈q〉(R,K) −−→ Hn−q−1(K;Lq(R)) −−→ . . . .

(iv) If K is k-dimensional and n ≥ max(q + k + 1, 2q + 4) then

Sn〈q〉(R,K) = Sn(R,K) .

(v) If K is k-dimensional and n ≥ max(q+ k, 2q+ 4) then there are defined
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exact sequences

0 −−→ Sn〈q〉(R,K) −−→ Sn〈q − 1〉(R,K) −−→ Hn−q(K;Lq−1(R))

−−→ Sn−1〈q〉(R,K) −−→ Sn−1〈q − 1〉(R,K) −−→ . . . ,

0 −−→ Sn−1〈q − 1〉(R,K) −−→ Sn−1〈q − 2〉(R,K) −−→ Hn−q(K;Lq−2(R))

−−→ Sn−2〈q − 1〉(R,K) −−→ Sn−2〈q − 2〉(R,K) −−→ . . .

with

Sn〈q − 1〉(R,K) = Sn(R,K) , Sn−1〈q − 2〉(R,K) = Sn−1(R,K) .

Proof (i) The assembly map Ln(R,K)−−→Ln(R[π1(K)]) is an isomorphism

by the algebraic π-π theorem (10.6). The forgetful map Ln(Λ〈q〉(R,K))−−→
Ln(R,K) is an isomorphism for n ≥ 2q, with the inverse

Ln(R,K) −−→ Ln(Λ〈q〉(R,K)) ; (C,ψ) −−→ (C ′, ψ′)

defined by sending an n-dimensional quadratic complex (C,ψ) in Λ(R,K)

to the n-dimensional quadratic complex (C ′, ψ′) in Λ〈q〉(R,K) obtained by
surgery below the middle dimension using the quadratic pair (C−−→D, (0, ψ))
with

Dr =

{
Cr if 2r > n+ 1

0 otherwise.

(ii) Consider the map of exact sequences
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exact sequences

0 −−→ Sn⟨q⟩(R,K) −−→ Sn⟨q − 1⟩(R,K) −−→ Hn−q(K;Lq−1(R))

−−→ Sn−1⟨q⟩(R,K) −−→ Sn−1⟨q − 1⟩(R,K) −−→ . . . ,

0 −−→ Sn−1⟨q − 1⟩(R,K) −−→ Sn−1⟨q − 2⟩(R,K) −−→ Hn−q(K;Lq−2(R))

−−→ Sn−2⟨q − 1⟩(R,K) −−→ Sn−2⟨q − 2⟩(R,K) −−→ . . .

with

Sn⟨q − 1⟩(R,K) = Sn(R,K) , Sn−1⟨q − 2⟩(R,K) = Sn−1(R,K) .

Proof (i) The assembly map Ln(R,K)−−→Ln(R[π1(K)]) is an isomorphism

by the algebraic π-π theorem (10.6). The forgetful map Ln(Λ⟨q⟩(R,K))−−→
Ln(R,K) is an isomorphism for n ≥ 2q, with the inverse

Ln(R,K) −−→ Ln(Λ⟨q⟩(R,K)) ; (C,ψ) −−→ (C ′, ψ′)

defined by sending an n-dimensional quadratic complex (C,ψ) in Λ(R,K)

to the n-dimensional quadratic complex (C ′, ψ′) in Λ⟨q⟩(R,K) obtained by
surgery below the middle dimension using the quadratic pair (C−−→D, (0, ψ))
with

Dr =

{
Cr if 2r > n+ 1

0 otherwise.

(ii) Consider the map of exact sequences

Hn(K
[n−q]; L.⟨q⟩(R)) w

u

Hn(K; L.⟨q⟩(R))

u
Ln(Λ⟨q⟩(R,K [n−q])) w

u

Ln(Λ⟨q⟩(R,K))

u
Sn⟨q⟩(R,K [n−q]) w

u

Sn⟨q⟩(R,K)

u
Hn−1(K

[n−q]; L.⟨q⟩(R)) w

u

Hn−1(K; L.⟨q⟩(R))

u
Ln−1(Λ⟨q⟩(R,K [n−q])) w Ln−1(Λ⟨q⟩(R,K)) .

The condition n− q ≥ 2 is used to identify

π1(K
[n−q]) = π1(K) ,

The condition n− q ≥ 2 is used to identify

π1(K [n−q]) = π1(K) ,
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and since n− 1 ≥ 2q (i) applies to show that up to isomorphism

Lm(Λ〈q〉(R,K [n−q])) = Lm(R[π1(K [n−q])])

= Lm(R[π1(K)]) = Lm(Λ〈q〉(R,K))

for m = n, n− 1. By 15.3 (i) the map

Hn(K [n−q];L.〈q〉(R)) = Hn(K [n−q];L.(R)) −−→
Hn(K;L.〈q〉(R)) = im(Hn(K [n−q];L.(R))−−→Hn(K [n−q+1];L.(R)))

is a surjection, so that there is defined an isomorphism

Hn−1(K [n−q];L.〈q〉(R))
'−−→

Hn−1(K;L.〈q〉(R)) = im(Hn−1(K [n−q−1];L.(R))−→Hn−1(K [n−q];L.(R))) .

An application of the 5-lemma gives an isomorphism

Sn〈q〉(R,K [n−q])
'−−→ Sn〈q〉(R,K) .

Consider the map of exact sequences
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and since n− 1 ≥ 2q (i) applies to show that up to isomorphism

Lm(Λ⟨q⟩(R,K [n−q])) = Lm(R[π1(K
[n−q])])

= Lm(R[π1(K)]) = Lm(Λ⟨q⟩(R,K))

for m = n, n− 1. By 15.3 (i) the map

Hn(K
[n−q]; L.⟨q⟩(R)) = Hn(K

[n−q]; L.(R)) −−→
Hn(K; L.⟨q⟩(R)) = im(Hn(K

[n−q]; L.(R))−−→Hn(K
[n−q+1]; L.(R)))

is a surjection, so that there is defined an isomorphism

Hn−1(K
[n−q]; L.⟨q⟩(R))

≃−−→

Hn−1(K; L.⟨q⟩(R)) = im(Hn−1(K
[n−q−1]; L.(R))−→Hn−1(K

[n−q]; L.(R))) .

An application of the 5-lemma gives an isomorphism

Sn⟨q⟩(R,K [n−q])
≃−−→ Sn⟨q⟩(R,K) .

Consider the map of exact sequences

Hn(K
[n−q]; L.⟨q⟩(R)) w

u

Hn(K
[n−q]; L.(R))

u
Ln(Λ⟨q⟩(R,K [n−q])) w

u

Ln(Λ(R,K [n−q]))

u
Sn⟨q⟩(R,K [n−q]) w

u

Sn⟨q⟩(R,K [n−q])

u
Hn−1(K

[n−q]; L.⟨q⟩(R)) w

u

Hn−1(K
[n−q]; L.(R))

u
Ln−1(Λ⟨q⟩(R,K [n−q])) w Ln−1(Λ(R,K [n−q])) .

Again, (i) applies to show that up to isomorphism

Lm(Λ⟨q⟩(R,K [n−q])) = Lm(R[π1(K
[n−q])])

= Lm(R[π1(K)]) = Lm(Λ(R,K))

for m = n, n− 1. By 15.3 (i) there is defined an isomorphism

Hn(K
[n−q]; L.⟨q⟩(R))

≃−−→ Hn(K
[n−q]; L.(R)) ,

Again, (i) applies to show that up to isomorphism

Lm(Λ〈q〉(R,K [n−q])) = Lm(R[π1(K [n−q])])

= Lm(R[π1(K)]) = Lm(Λ(R,K))

for m = n, n− 1. By 15.3 (i) there is defined an isomorphism

Hn(K [n−q];L.〈q〉(R))
'−−→ Hn(K [n−q];L.(R)) ,
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and there is also defined an exact sequence

0 −−→ Hn−1(K [n−q];L.〈q〉(R))

−−→ Hn−1(K [n−q];L.(R)) −−→ ∆n−q(K;Lq−1(R)) .

It follows that

Sn〈q〉(R,K) = Sn〈q〉(R,K [n−q])

= ker(Sn(R,K [n−q])−−→∆n−q(K;Lq−1(R))) .

If n− q ≥ 3 there is defined a map of (co)fibration sequences of Ω-spectra

164 Algebraic L-theory and topological manifolds

and there is also defined an exact sequence
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[n−q]; L.(R)) −−→ ∆n−q(K;Lq−1(R)) .

It follows that

Sn⟨q⟩(R,K) = Sn⟨q⟩(R,K [n−q])

= ker(Sn(R,K [n−q])−−→∆n−q(K;Lq−1(R))) .

If n−q ≥ 3 there is defined a map of (co)fibration sequences of Ω-spectra

H .(K [n−q−1]; L.(R)) w

u

L.(R,K [n−q−1]) w

u

S.(R,K [n−q−1])

u
H .(K [n−q]; L.(R)) w L.(R,K [n−q]) w S.(R,K [n−q])

with L.(R,K [n−q−1])−−→L.(R,K [n−q]) a homotopy equivalence, giving rise

to a homotopy equivalence

homotopy fibre of S.(R,K [n−q−1])−−→S.(R,K [n−q])

≃ homotopy cofibre of H .(K [n−q−1]; L.(R))−−→H .(K [n−q]; L.(R)) .

Thus there is defined an exact sequence

Sn(R,K [n−q−1]) −−→ Sn(R,K [n−q]) −−→ Hn−1(K
[n−q],K [n−q−1]; L.(R))

(= ∆n−q(K;Lq−1(R)))

and

Sn⟨q⟩(R,K) = im(Sn(R,K [n−q−1])−−→Sn(R,K [n−q])) .

(iv) There is defined a map of (co)fibration sequences of Ω-spectra

H .(K; L.⟨q + 1⟩(R)) w

u
α

L.(Λ⟨q + 1⟩(R,K)) w

u
β

S.⟨q + 1⟩(R,K)

u
γ

H .(K; L.⟨q⟩(R)) w L.(Λ⟨q⟩(R,K)) w S.⟨q⟩(R,K)

inducing an exact sequence of relative homotopy groups

. . . −−→ πn(α) −−→ πn(β) −−→ πn(γ) −−→ πn−1(α) −−→ . . . .

By (i) πn(β) = 0 for n ≥ 2q + 3, so that for n ≥ 2q + 4

πn(γ) = πn−1(α) = Hn−q−1(K;Lq(R))

(by 15.3 (ii)).

(iv)+(v) Apply (iii) and 15.3 (iii).

with L.(R,K [n−q−1])−−→L.(R,K [n−q]) a homotopy equivalence, giving rise
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(= ∆n−q(K;Lq−1(R)))

and

Sn⟨q⟩(R,K) = im(Sn(R,K [n−q−1])−−→Sn(R,K [n−q])) .

(iv) There is defined a map of (co)fibration sequences of Ω-spectra

H .(K; L.⟨q + 1⟩(R)) w

u
α

L.(Λ⟨q + 1⟩(R,K)) w

u
β

S.⟨q + 1⟩(R,K)

u
γ

H .(K; L.⟨q⟩(R)) w L.(Λ⟨q⟩(R,K)) w S.⟨q⟩(R,K)

inducing an exact sequence of relative homotopy groups

. . . −−→ πn(α) −−→ πn(β) −−→ πn(γ) −−→ πn−1(α) −−→ . . . .

By (i) πn(β) = 0 for n ≥ 2q + 3, so that for n ≥ 2q + 4

πn(γ) = πn−1(α) = Hn−q−1(K;Lq(R))

(by 15.3 (ii)).

(iv)+(v) Apply (iii) and 15.3 (iii).

inducing an exact sequence of relative homotopy groups

. . . −−→ πn(α) −−→ πn(β) −−→ πn(γ) −−→ πn−1(α) −−→ . . . .

By (i) πn(β) = 0 for n ≥ 2q + 3, so that for n ≥ 2q + 4

πn(γ) = πn−1(α) = Hn−q−1(K;Lq(R))

(by 15.3 (ii)).
(iv)+(v) Apply (iii) and 15.3 (iii).
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Definition 15.12 (i) The q-connective visible symmetric L-groups of (R,K)
are the cobordism groups

V Ln〈q〉(R,K) = NLn(Λ〈q〉(R,K)) (n ∈ Z)

of q-connective n-dimensional normal globally Poincaré complexes (C, φ) in
A (R,K).

(ii) The q-connective visible symmetric L-spectrum of (R,K) is the algebraic
L-spectrum

VL.〈q〉(R,K) = NL.(Λ〈q〉(R,K))

with homotopy groups

π∗(VL.〈q〉(R,K)) = V L∗〈q〉(R,K) .

By analogy with 15.7:

Proposition 15.13 For any commutative ring R and simplicial complex K
there is defined a commutative braid of exact sequences of algebraic L-groups
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Definition 15.12 (i) The q-connective visible symmetric L-groups of (R,K)

are the cobordism groups

V Ln⟨q⟩(R,K) = NLn(Λ⟨q⟩(R,K)) (n ∈ Z)

of q-connective n-dimensional normal globally Poincaré complexes (C, ϕ) in
A (R,K).

(ii) The q-connective visible symmetric L-spectrum of (R,K) is the algebraic
L-spectrum

VL.⟨q⟩(R,K) = NL.(Λ⟨q⟩(R,K))

with homotopy groups

π∗(VL.⟨q⟩(R,K)) = V L∗⟨q⟩(R,K) .

By analogy with 15.7:

Proposition 15.13 For any commutative ring R and simplicial complex
K there is defined a commutative braid of exact sequences of algebraic L-
groups

N
N
N

N
NN

�������

N
N
N

N
NN

�������

Sn+1⟨q⟩(R,K) Hn(K; L.
(Λ⟨q⟩(R))) Hn(K; N L.⟨q⟩(R))

Hn(K; L.⟨q⟩(R))

���
��

�

N
N
N
NNP

V Ln⟨q⟩(R,K)

���
��

�

N
N
N
NNP

Hn+1(K; N L.⟨q⟩(R))
N
N
N
NNP

Ln(Λ⟨q⟩(R,K))

���
��

�

N
N
N
NNP

Sn⟨q⟩(R,K) .

���
��

�

'
'

'
'

''

[
[
[
[
[[]

'
'

'
'

''

[
[
[
[
[[]

In view of the topological applications it is convenient to introduce the
following ‘1/2-connective’ hybrids of 0-connective and 1-connective algebraic

L-spectra, making use of the following algebraic bordism categories.

In view of the topological applications it is convenient to introduce the
following ‘1/2-connective’ hybrids of 0-connective and 1-connective algebraic
L-spectra, making use of the following algebraic bordism categories.
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Definition 15.14 (i) The 1/2-connective algebraic bordism categories of a
ring with involution R are

Λ〈1/2〉(R) = (A (R),B〈0〉(R),C〈1〉(R)) ,

Λ̂〈1/2〉(R) = (A (R),B〈0〉(R),B〈1〉(R)) .

(ii) The 1/2-connective algebraic bordism categories of a commutative ring

R and a simplicial complex K are

Λ〈1/2〉(R,K) = (A (R,K),B〈0〉(R,K),C〈1〉(R,K)) ,

Λ̂〈1/2〉(R,K) = (A (R,K),B〈0〉(R,K),B〈1〉(R,K)) .

(iii) An n-dimensional normal complex (C, φ) in Λ̂(R,K) is 1/2-connective
if it is defined in Λ̂〈1/2〉(R,K), i.e. if it is 0-connective and locally 1-

Poincaré.

(iv) The 1/2-connective

{
visible symmetric

normal
L-groups of (R,K) are the

cobordism groups{
V L∗〈1/2〉(R,K) = NL∗(Λ〈1/2〉(R,K))

NL∗〈1/2〉(R,K) = NL∗(Λ̂〈1/2〉(R,K))

of n-dimensional 1/2-connective

{
globally Poincaré

− normal complexes in

Λ̂(R,K).

Definition 15.15 The 1/2-connective normal L-spectrum of a ring with
involution R is the Ω-spectrum of Kan ∆-sets

NL.〈1/2〉(R) = NL.(Λ̂〈1/2〉(R))

with

NLn〈1/2〉(R)(m)

= { (C, φ) ∈ NLn(Λ̂〈0〉(R))(m) | (∂C, ψ) ∈ Ln−1(Λ〈1〉(R))(m) } ,
and homotopy groups

π∗(NL.〈1/2〉(R)) = NL∗(Λ̂〈1/2〉(R)) .
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Proposition 15.16 (i) The 1/2-connective normal L-spectrum NL.〈1/2〉(R)
fits into a commutative braid of fibrations of Ω-spectra
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Proposition 15.16 (i) The 1/2-connective normal L-spectrum N L.⟨1/2⟩(R)

fits into a commutative braid of fibrations of Ω-spectra

N
N
N

N
NN

�������

N
N
N

N
NN

�������

L.⟨1⟩(R) L.(Λ⟨0⟩(R)) N L.(Λ̂⟨0⟩(R))

L.⟨0⟩(R)

���
��

�

N
N
N
NNP

N L.⟨1/2⟩(R)

���
��

�

N
N
N
NNP

Σ−1N L.(Λ̂⟨0⟩(R))
N
N
N
NNP

K.(L0(R), 0)
N
N
N
NNP

���
��

�

ΣL.⟨1⟩(R)

���
��

�

'
'

'
'

''

[
[
[
[
[[]

'
'

'
'

''

[
[
[
[
[[]

(ii) The 1/2-connective normal L-groups are such that

NLn⟨1/2⟩(R) =





NLn(R) if n > 1

im(L1(R)−−→NL1(R)) if n = 1

L0(R) if n = 0

0 if n < 0 ,

with a long exact sequence

. . . −−→Ln⟨1⟩(R)−−→Ln⟨0⟩(R) −−→NLn⟨1/2⟩(R)−−→Ln−1⟨1⟩(R)−−→ . . . .

(iii) For a commutative ring R and a simplicial complex K there are natural

identifications

NL∗⟨1/2⟩(R,K) = H∗(K; N L.⟨1/2⟩(R)) .

Definition 15.17 The 1/2-connective visible symmetric L-spectrum of a

commutative ring R and a simplicial complex K is the Ω-spectrum of Kan
∆-sets

VL.⟨1/2⟩(R,K) = N L.(Λ⟨1/2⟩(R,K))

with

VLn⟨1/2⟩(R,K)(m)

= { (C, ϕ) ∈ N Ln(Λ⟨0⟩(R,K))(m) | (∂C, ψ) ∈ Ln−1(Λ⟨1⟩(R,K))(m) } ,

(ii) The 1/2-connective normal L-groups are such that

NLn〈1/2〉(R) =





NLn(R) if n > 1

im(L1(R)−−→NL1(R)) if n = 1

L0(R) if n = 0

0 if n < 0 ,

with a long exact sequence

. . . −−→Ln〈1〉(R)−−→Ln〈0〉(R) −−→NLn〈1/2〉(R)−−→Ln−1〈1〉(R)−−→ . . . .

(iii) For a commutative ring R and a simplicial complex K there are natural
identifications

NL∗〈1/2〉(R,K) = H∗(K;NL.〈1/2〉(R)) .

Definition 15.17 The 1/2-connective visible symmetric L-spectrum of a
commutative ring R and a simplicial complex K is the Ω-spectrum of Kan

∆-sets

VL.〈1/2〉(R,K) = NL.
(Λ〈1/2〉(R,K))

with

VLn〈1/2〉(R,K)(m)

= { (C, φ) ∈ NLn(Λ〈0〉(R,K))(m) | (∂C, ψ) ∈ Ln−1(Λ〈1〉(R,K))(m) } ,
and homotopy groups

π∗(VL.〈1/2〉(R,K)) = V L∗〈1/2〉(R,K) .
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Proposition 15.18 (i) The 1/2-connective visible symmetric L-groups
V L∗〈1/2〉(R,K) fit into a commutative braid of exact sequences of algebraic
L-groups
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and homotopy groups

π∗(VL.⟨1/2⟩(R,K)) = V L∗⟨1/2⟩(R,K) .

Proposition 15.18 (i) The 1/2-connective visible symmetric L-groups
V L∗⟨1/2⟩(R,K) fit into a commutative braid of exact sequences of algebraic
L-groups

[
[
[
[
[

'
'
'
'')

[
[
[
[
[

'
'
'
'')

Sn+1⟨1⟩(R,K) Hn(K; L.(Λ⟨0⟩(R))) Hn(K; N L.⟨1/2⟩(R))

Hn(K; L.⟨1⟩(R))

)'
'

'
'

[
[
[
[]

V Ln⟨1/2⟩(R,K)

)'
'

'
'

[
[
[
[]

Hn+1(K; N L.⟨1/2⟩(R))
[
[
[
[]

Ln(Λ⟨1⟩(R,K))

)'
'

'
'

[
[
[
[]

Sn⟨1⟩(R,K) .

)'
'

'
'

4
4

4
4
4

h
h
h
h
hj

4
4

4
4
4

h
h
h
h
hj

The map

Ln(R[π1(K)]) = Ln(Λ⟨1⟩(R,K)) −−→ V Ln⟨1/2⟩(R,K) ;

(C,ψ) −−→ (C ′, (1 + T )ψ′)

sends an n-dimensional quadratic complex (C,ψ) in Λ(R,K) to the sym-
metrization of any globally Poincaré cobordant quadratic complex (C ′, ψ′)
in Λ⟨1⟩(R,K).

(ii) The 1/2-connective visible symmetric L-groups V L∗⟨1/2⟩(R,K) are re-
lated to the 0-connective visible symmetric L-groups

V Ln⟨0⟩(R,K) = NLn(Λ⟨0⟩(R,K)) (n ≥ 0)

by a commutative braid of exact sequences

The map

Ln(R[π1(K)]) = Ln(Λ〈1〉(R,K)) −−→ V Ln〈1/2〉(R,K) ;

(C,ψ) −−→ (C ′, (1 + T )ψ′)

sends an n-dimensional quadratic complex (C,ψ) in Λ(R,K) to the sym-

metrization of any globally Poincaré cobordant quadratic complex (C ′, ψ′)
in Λ〈1〉(R,K).
(ii) The 1/2-connective visible symmetric L-groups V L∗〈1/2〉(R,K) are re-

lated to the 0-connective visible symmetric L-groups

V Ln〈0〉(R,K) = NLn(Λ〈0〉(R,K)) (n ≥ 0)
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by a commutative braid of exact sequences
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[
[
[
[
[

'
'
'
'')

[
[
[
[
[

'
'
'
'')

Hn(K;L0(R)) Hn(K; N L.⟨1/2⟩(R))) Ln−1(Λ⟨0⟩(R,K))

V Ln⟨1/2⟩(R,K)

)'
'

'
'

[
[
[
[]

Hn(K; N L.(Λ̂⟨0⟩(R)))

)'
'

'
'

[
[
[
[]

Ln(Λ⟨0⟩(R,K))
[
[
[
[]

V Ln⟨0⟩(R,K)

)'
'

'
'

[
[
[
[]

Hn−1(K;L0(R))

)'
'

'
'

4
4

4
4
4

h
h
h
h
hj

4
4

4
4
4

h
h
h
h
hj

(iii) The 1/2-connective visible symmetric L-groups V L∗⟨1/2⟩(R,K) fit into
a commutative braid of exact sequences

[
[
[
[
[

'
'
'
'')

[
[
[
[
[

'
'
'
'')

Hn(K; L.(Λ⟨0⟩(R))) V Ln⟨0⟩(R,K) Hn−1(K;L0(R))

V Ln⟨1/2⟩(R,K)

)'
'

'
'

[
[
[
[]

Sn⟨0⟩(R,K)

)'
'

'
'

[
[
[
[]

Hn(K;L0(R))
[
[
[
[]

Sn⟨1⟩(R,K)

)'
'

'
'

[
[
[
[]

Hn−1(K; L.(Λ⟨0⟩(R))) .

)'
'

'
'

4
4

4
4
4

h
h
h
h
hj

4
4

4
4
4

h
h
h
h
hj

Proof (i) The 1/2-connective visible symmetric L-spectrum VL.⟨1/2⟩(R,K)
fits into a commutative braid of fibrations of Ω-spectra

(iii) The 1/2-connective visible symmetric L-groups V L∗〈1/2〉(R,K) fit into

a commutative braid of exact sequences
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[
[
[
[
[

'
'
'
'')

[
[
[
[
[

'
'
'
'')

Hn(K;L0(R)) Hn(K; N L.⟨1/2⟩(R))) Ln−1(Λ⟨0⟩(R,K))

V Ln⟨1/2⟩(R,K)

)'
'

'
'

[
[
[
[]

Hn(K; N L.(Λ̂⟨0⟩(R)))

)'
'

'
'

[
[
[
[]

Ln(Λ⟨0⟩(R,K))
[
[
[
[]

V Ln⟨0⟩(R,K)

)'
'

'
'

[
[
[
[]

Hn−1(K;L0(R))

)'
'

'
'

4
4

4
4
4

h
h
h
h
hj

4
4

4
4
4

h
h
h
h
hj

(iii) The 1/2-connective visible symmetric L-groups V L∗⟨1/2⟩(R,K) fit into
a commutative braid of exact sequences

[
[
[
[
[

'
'
'
'')

[
[
[
[
[

'
'
'
'')

Hn(K; L.(Λ⟨0⟩(R))) V Ln⟨0⟩(R,K) Hn−1(K;L0(R))

V Ln⟨1/2⟩(R,K)

)'
'

'
'

[
[
[
[]

Sn⟨0⟩(R,K)

)'
'

'
'

[
[
[
[]

Hn(K;L0(R))
[
[
[
[]

Sn⟨1⟩(R,K)

)'
'

'
'

[
[
[
[]

Hn−1(K; L.(Λ⟨0⟩(R))) .

)'
'

'
'

4
4

4
4
4

h
h
h
h
hj

4
4

4
4
4

h
h
h
h
hj

Proof (i) The 1/2-connective visible symmetric L-spectrum VL.⟨1/2⟩(R,K)
fits into a commutative braid of fibrations of Ω-spectraProof (i) The 1/2-connective visible symmetric L-spectrum VL.〈1/2〉(R,K)
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fits into a commutative braid of fibrations of Ω-spectra
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N
N

N
N
NN

�������

H .(K; L.(Λ⟨0⟩(R))) H .(K; N L.⟨1/2⟩(R))

H .(K; L.⟨1⟩(R))
N
N
N
NNP

VL.⟨1/2⟩(R,K)

���
��

�

N
N
N
NNP

L.(Λ⟨1⟩(R,K))

���
��

�

N
N
N
NNP

S.⟨1⟩(R,K) ,

���
��

�

'
'

'
'

''

[
[
[
[
[[]

inducing a commutative braid of exact sequences of homotopy groups.
(ii) and (iii) follow from (i).

Note that for a ring R with L∗(R) 4-periodic and L0(R)−−→NL0(R) onto
(e.g. R = Z) the 0-connective n-dimensional L-groups of (R,K) are 4-

periodic for n ≥ dim(K), with

V Ln⟨0⟩(R,K) = V Ln(R,K) = V Ln+4(R,K)

Sn⟨0⟩(R,K) = Sn(R,K) = Sn+4(R,K)

Hn(K; L.(Λ⟨0⟩(R))) = Hn(K; L.⟨0⟩(R))

= Hn(K; L.(R)) = Hn+4(K; L.(R))

Hn(K; L.(Λ⟨0⟩(R))) = Hn(K; L.⟨0⟩(R))

= Hn(K; L.(R)) = Hn+4(K; L.(R))

Hn(K; N L.(Λ̂⟨0⟩(R))) = Hn(K; N L.⟨0⟩(R))

= Hn(K; N L.(R)) = Hn+4(K; N L.(R)) .

Also, for n ≥ 2

Ln(Λ(R,K)) = Ln(Λ⟨0⟩(R,K)) = Ln(Λ⟨1⟩(R,K)) = Ln(R[π1(K)]) .

inducing a commutative braid of exact sequences of homotopy groups.
(ii) and (iii) follow from (i).

Note that for a ring R with L∗(R) 4-periodic and L0(R)−−→NL0(R) onto
(e.g. R = Z) the 0-connective n-dimensional L-groups of (R,K) are 4-
periodic for n ≥ dim(K), with

V Ln〈0〉(R,K) = V Ln(R,K) = V Ln+4(R,K)

Sn〈0〉(R,K) = Sn(R,K) = Sn+4(R,K)

Hn(K;L.(Λ〈0〉(R))) = Hn(K;L.〈0〉(R))

= Hn(K;L.(R)) = Hn+4(K;L.(R))

Hn(K;L.(Λ〈0〉(R))) = Hn(K;L.〈0〉(R))

= Hn(K;L.(R)) = Hn+4(K;L.(R))

Hn(K;NL.(Λ̂〈0〉(R))) = Hn(K;NL.〈0〉(R))

= Hn(K;NL.
(R)) = Hn+4(K;NL.

(R)) .

Also, for n ≥ 2

Ln(Λ(R,K)) = Ln(Λ〈0〉(R,K)) = Ln(Λ〈1〉(R,K)) = Ln(R[π1(K)]) .
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Definition 15.19 The algebraic surgery exact sequence of a simplicial com-
plex K is the exact sequence

. . . −−→ Hn(K;L.)
A
−−→ Ln(Z[π1(K)])

∂
−−→ Sn(K) −−→ Hn−1(K;L.) −−→ . . .

given by 15.18 in the special case R = Z, with

S∗(K) = S∗〈1〉(K) , L. = L.〈1〉(Z) .

The algebraic surgery exact sequence will be identified in §18 with the
Sullivan–Wall geometric surgery exact sequence for the topological manifold
structure set.





Part II

Topology
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§16. The L-theory orientation of topology

The algebraic theory of §§1–15 is now applied to construct the L-theory ori-

entations which distinguish topological bundles and manifolds from spheri-
cal fibrations and geometric Poincaré complexes. The geometric interpreta-
tion of such orientations has already been discussed in Ranicki [143], Levitt

and Ranicki [94]: the L-theory orientations are algebraic images of the
geometric Poincaré orientations, which are the homotopy theoretic conse-
quences of the transversality properties characteristic of topological bundles
and manifolds

Topological bundles and spherical fibrations are already distinguished by
the rational homotopy groups of the classifying spaces

π∗(BG)⊗Q = πs∗−1 ⊗Q = 0 (∗ > 0) ,

π∗(BTOP )⊗Q = π∗(G/TOP )⊗Q

= L∗(Z)⊗Q =

{
Q if ∗ ≡ 0(mod 4)

0 if ∗ 6≡ 0(mod 4) .

The rational cohomology ring H∗(BSTOP ;Q) = H∗(BSO;Q) of the clas-
sifying space BSTOP for stable oriented topological bundles is the poly-

nomial algebra over Q generated by the universal Pontrjagin classes p∗ ∈
H4∗(BSO;Q) (Milnor and Stasheff [114], Novikov [123]). The Pontrjagin
classes are not defined for spherical fibrations, since H∗(BSG;Q) = 0 for
∗ > 0.

Abbreviate

L.〈0〉(Z) = L.
, L.〈1〉(Z) = L. , NL.〈1/2〉(Z) = L̂.

,

V L∗〈1/2〉(Z, X) = V L∗(X) , NL∗〈1/2〉(Z, X) = L̂∗(X) .

A spherical fibration ν:X−−→BG(k) will now be given a canonical L̂.
-

cohomology Thom class Ûν ∈ Ḣk(T (ν); L̂.), with T (ν) the Thom complex,

Ḣ∗ reduced cohomology. Topological reductions ν̃:X−−→BT̃OP (k) of ν (if
any) are in one–one correspondence with lifts of Ûν to an L.-cohomology

Thom class Uν̃ ∈ Ḣk(T (ν);L.
), with any two lifts differing by an element

of Ḣk(T (ν);L.). Rationally, such lifts correspond to the Pontrjagin classes
p∗(ν̃) ∈ H4∗(X;Q), or equivalently the L-genus L(ν̃) ∈ H4∗(X;Q).

The normal signature of an n-dimensional geometric Poincaré complex X
is a canonical L̂.-homology fundamental class

[X ]̂L = σ̂∗(X) ∈ Hn(X; L̂.) = L̂n(X) .

In §17 it will be proved that for n ≥ 5 topological manifold structures in the
homotopy type of X (if any) are in one–one correspondence with lifts of [X ]̂L
to an L.-homology fundamental class [X]L ∈ Hn(X;L.) with assembly the

‘1/2-connective visible symmetric signature’ A([X]L) = σ∗(X) ∈ V Ln(X) .
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(Recall that 1/2-connective = 0-connective and locally 1-Poincaré). In the
first instance, only the oriented case is considered: see Appendix A for the
modifications required for the nonorientable case. From now on the same
terminology is used for a simplicial complex X and its polyhedron |X|, and

both are denoted by X.
The difference between the stable theories of spherical fibrations and topo-

logical bundles can be formulated as a fibration sequence of the classifying

spaces

G/TOP −−→ BTOP
J
−−→ BG ,

and also in terms of the algebraic L-spectra. See Appendix B below for an
account of the multiplicative structures on the algebraic L-spectra involved.
See Rourke and Sanderson [154] for the theory of topological block bundles.

For k ≥ 3 the classifying space BT̃OP (k) for k-dimensional topological
block bundles fits into a fibration sequence

G/TOP −−→ BT̃OP (k) −−→ BG(k)

with BG(k) the classifying space for (k − 1)-spherical fibrations. For k ≤ 2
there is no difference between spherical fibrations, topological block bundles
and vector bundles, so that BG(k) = BT̃OP (k) = BO(k).

Proposition 16.1 (Ranicki [143], Levitt and Ranicki [94, 1.12]) Let k ≥ 3.
(i) A (k− 1)-spherical fibration ν:X−−→BG(k) has a canonical L̂.-cohomo-
logy orientation

Ûν ∈ Ḣk(T (ν); L̂.) .

(ii) A topological block bundle ν̃:X−−→BT̃OP (k) has a canonical L.-cohomo-

logy orientation

Uν̃ ∈ Ḣk(T (ν);L.)

with image J(Uν̃) = Ûν ∈ Ḣk(T (ν); L̂.) the canonical L̂.-cohomology orien-

tation of the associated (k − 1)-spherical fibration ν = J(ν̃):X−−→BG(k).
(iii) The topological reducibility obstruction of a (k− 1)-spherical fibration
ν:X−−→BG(k)

t(ν) = δ(Ûν) ∈ Ḣk+1(T (ν);L.)

is such that t(ν) = 0 if and only if there exists a topological block bundle

reduction ν̃:X−−→BT̃OP (k). Here, δ is the connecting map in the exact

sequence

. . . −−→ Ḣk(T (ν);L.)
1+T
−−→ Ḣk(T (ν);L.

)
J
−−→ Ḣk(T (ν); L̂.

)

δ
−−→ Ḣk+1(T (ν);L.) −−→ . . . .

(iv) The simply connected surgery obstruction defines a homotopy equiv-
alence between the classifying space G/TOP for fibre homotopy trivialized



16. The L-theory orientation of topology 177

topological bundles and the 0th Kan ∆-set L0 = L〈1〉0(Z) of the 1-connective
quadratic L-spectrum L. of Z

G/TOP
'−−→ L0 .

(v) The difference between two topological bundle reductions ν̃, ν̃′:X−−→
BT̃OP (k) of the same (k−1)-spherical fibration ν:X−−→BG(k) is classified

by a difference element

t(ν̃, ν̃′) ∈ [X,G/TOP ] = H0(X;L.)

such that

Uν̃′ − Uν̃ = (1 + T )(Uν̃ ∪ t(ν̃, ν̃′)) ∈ Ḣk(T (ν);L.) ,

with Uν̃ ∪−:H0(X;L.)
'−−→Ḣk(T (ν);L.) the L.-cohomology Thom isomor-

phism. If ν̃′′:X−−→BT̃OP (k) is yet another reduction of ν then

t(ν̃, ν̃′′) = t(ν̃, ν̃′) + t(ν̃′, ν̃′′) + t(ν̃, ν̃′) ∪ t(ν̃′, ν̃′′) ∈ H0(X;L.) .

Proof The singular complex of the Thom complex T (ν) of a spherical
fibration ν:X−−→BG(k) contains as a deformation retract the subcomplex
of the singular simplexes ρ: ∆n−−→T (ν) which are normal transverse at the

zero section X ⊂ T (ν), with M = ρ−1(X) an (n−k)-dimensional geometric
normal complex n-ad.
(Added in 2009: Let ΩN (X, ν) be the Kan ∆-set in which an n-simplex

is an (n − k)-dimensional normal space n-ad (Y ; ∂1Y, . . . , ∂nY ; νY : Y →
BG(k), ρ : ∆n → T (νY )) such that ρ(∂i∆

n) ⊂ T (ν∂iY ), with a normal map
(f, b) : (Y, νY )→ (X, ν). The map of Kan ∆-sets

ΩN (X, ν)→ T (ν) ; (Y ; ∂1Y, . . . , ∂nY ; νY , ρ)→ T (b)ρ

induces the normal space Pontrjagin-Thom isomorphisms
ΩNn (X, ν)→ πn(T (ν)) with inverses

πn(T (ν))→ ΩNn (X, ν) ; ρX → ((X, ν, ρX), 1)

and is thus a homotopy equivalence.)
The canonical L̂.-cohomology orientation Ûν ∈ Ḣk(T (ν); L̂.) is represented
by the ∆-map Ûν :T (ν)−−→L̂−k sending ρ to the (n−k)-dimensional normal

complex σ̂∗(M) = (C, φ) in Λ̂(Z)∗(∆n) defined in 9.15. A topological block

bundle reduction ν̃:X−−→BT̃OP (k) corresponds to a further deformation
retraction of the singular complex of T (ν) to the subcomplex consisting
of the singular simplexes ρ: ∆n−−→T (ν) which are Z-coefficient Poincaré

transverse at the zero section X ⊂ T (ν), with M = ρ−1(X) a Z-coefficient
geometric Poincaré n-ad. The reduction is equivalent to the lift of Ûν to the
L.-cohomology Thom class Uν̃ ∈ Ḣk(T (ν);L.) represented by the ∆-map

Uν̃ :T (ν)−−→L−k sending ρ to the (n− k)-dimensional symmetric Poincaré
complex σ∗(M) = (C, φ) in Λ(Z)∗(∆n) defined in 9.13. For further details
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see [94] and [143].

For k ≥ 3 the classifying space BT̃OP (k) for k-dimensional topological

block bundles fits into a fibre square
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see [94] and [143].

For k ≥ 3 the classifying space BT̃OP (k) for k-dimensional topological
block bundles fits into a fibre square

BT̃OP (k) w

u

BL.G(k)

u
BG(k) w BL̂.G(k)

with BL.G(k) the classifying space for (k − 1)-spherical fibrations with a
w1-twisted L.-orientation, and similarly for BL̂.G(k).

Remark 16.2 The canonical L.-cohomology orientation of an oriented topo-
logical bundle ν̃:X−−→BST̃OP (k) is given rationally by the inverse L-genus

Uν̃ ⊗Q = L−1(ν̃)

∈ Ḣk(T (ν); L.)⊗Q =
∑

j≥0

Ḣ4j+k(T (ν̃); Q) =
∑

j≥0

H4j(X; Q) .

Both the L-genus and the symmetric signature determine and (modulo tor-
sion) are determined by the signatures of submanifolds, as used by Thom to
characterize the L-genus as a combinatorial invariant (Milnor and Stasheff

[114, §20]).

Remark 16.3 The characterization of topological block bundles as L.
-

oriented spherical fibrations generalizes the characterization due to Sullivan
[168] of topological block bundles away from 2 as KO[1/2]-oriented spher-

ical fibrations, which is itself a generalization of the Atiyah–Bott–Shapiro
KO-orientation of spin bundles. See Madsen and Milgram [102, 5A] for a
homotopy-theoretic account of theKO[1/2]-orientation of PL-bundles. The

characterization of topological block bundles as spherical fibrations with al-
gebraic Poincaré transversality (i.e. an L.-orientation) corresponds to the
characterization of topological block bundles as spherical fibrations with

geometric Poincaré transversality due to Levitt and Morgan [93], Brumfiel
and Morgan [20].

If X is an n-dimensional geometric Poincaré complex with Spivak normal

structure (νX :X−−→BG(k), ρX :Sn+k−−→T (νX)) then X+ = X ∪ {pt.} is
an S-dual of T (νX), with S-duality isomorphisms

ḣn+k−∗(T (νX)) ∼= h∗(X)

with BL.
G(k) the classifying space for (k − 1)-spherical fibrations with a

w1-twisted L.-orientation, and similarly for BL̂.G(k).

Remark 16.2 The canonical L.-cohomology orientation of an oriented topo-

logical bundle ν̃:X−−→BST̃OP (k) is given rationally by the inverse L-genus

Uν̃ ⊗Q = L−1(ν̃)

∈ Ḣk(T (ν);L.)⊗Q =
∑

j≥0

Ḣ4j+k(T (ν̃);Q) =
∑

j≥0

H4j(X;Q) .

Both the L-genus and the symmetric signature determine and (modulo tor-
sion) are determined by the signatures of submanifolds, as used by Thom to

characterize the L-genus as a combinatorial invariant (Milnor and Stasheff
[114, §20]).

Remark 16.3 The characterization of topological block bundles as L.
-

oriented spherical fibrations generalizes the characterization due to Sullivan
[168] of topological block bundles away from 2 as KO[1/2]-oriented spher-

ical fibrations, which is itself a generalization of the Atiyah–Bott–Shapiro
KO-orientation of spin bundles. See Madsen and Milgram [102, 5A] for a
homotopy-theoretic account of the KO[1/2]-orientation of PL-bundles. The

characterization of topological block bundles as spherical fibrations with al-
gebraic Poincaré transversality (i.e. an L.-orientation) corresponds to the
characterization of topological block bundles as spherical fibrations with
geometric Poincaré transversality due to Levitt and Morgan [93], Brumfiel

and Morgan [20].

If X is an n-dimensional geometric Poincaré complex with Spivak normal
structure (νX :X−−→BG(k), ρX :Sn+k−−→T (νX)) then X+ = X ∪ {pt.} is
an S-dual of T (νX), with S-duality isomorphisms

ḣn+k−∗(T (νX)) ∼= h∗(X)
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for any generalized homology theory h. The topological reducibility ob-
struction of νX

t(νX) ∈ Ḣk+1(T (νX);L.) = Hn−1(X;L.)

will now be interpreted as the obstruction to lifting the fundamental L̂.
-

homology class

[X ]̂L = ÛνX ∈ Ḣk(T (νX); L̂.) = Hn(X; L̂.)

to a fundamental L.
-homology class [X]L ∈ Hn(X;L.

). In the first in-
stance it is shown that every finite geometric Poincaré complex X is homo-
topy equivalent to a compact polyhedron with a 1/2-connective symmetric

normal structure, allowing the direct construction of [X ]̂L as the cobor-
dism class of an n-dimensional 1/2-connective symmetric normal complex in
A (Z, X). This will also allow the refinement of the visible symmetric signa-
ture σ∗(X) ∈ V Ln(Z, X) defined in §9 to a 1/2-connective visible symmetric

signature σ∗(X) ∈ V Ln(X). The total surgery obstruction s(X) ∈ Sn(X)
will be defined in §17 as the boundary of σ∗(X) ∈ V Ln(X), such that
s(X) = 0 if and only if σ∗(X) = A([X]L) ∈ V Ln(X) for a fundamental

L.
-homology class [X]L ∈ Hn(X;L.

).

Definition 16.4 An n-circuit is a finite n-dimensional simplicial complex
X such that the sum of all the n-simplexes is a cycle

[X] =
∑

τ∈X(n)

τ ∈ ker(d: ∆(X)n−−→∆(X)n−1) ,

possibly using twisted coefficients (in the nonorientable case).

By the Poincaré disc theorem of Wall [177, 2.4] every connected finite
n-dimensional geometric Poincaré complex X is homotopy equivalent to
Y ∪ en for a finite (n − 1)-dimensional CW complex Y , and hence to an

n-circuit. Thus in dealing with the homotopy theory of finite geometric
Poincaré complexes there is no loss of generality in only considering circuits,
and for the remainder of §16 only such complexes will be considered.

Let then X be a finite n-dimensional geometric Poincaré complex which

is an n-circuit. (It is not assumed that each (n−1)-simplex in X is the face
of two n-simplexes, cf. 16.8.) As in 9.13 define an n-dimensional globally
Poincaré normal complex (C, φ) in A(Z, X) with

C(X) = ∆(X ′) , C(τ) = ∆(D(τ,X), ∂D(τ,X)) (τ ∈ X) .

The (Z, X)-module duality chain map

φ0(X) = [X] ∩ − : Cn−∗(X) ' ∆(X)n−∗ −−→ C(X) ' ∆(X)
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has components

φ0(τ) = [D(τ,X)] ∩ − :

Cn−∗(τ) = ∆(D(τ,X))n−|τ |−∗ −−→ C(τ) = ∆(D(τ,X), ∂D(τ,X)) .

For every simplex τ ∈ X up to chain equivalence

φ0(τ) : Sn−|τ |Z −−→ S−|τ |∆(X,X\{τ̂}) ; 1 −−→ [X][τ ] ,

and

H∗(φ0(τ)) =

H∗([D(τ,X)] ∩ − : ∆(D(τ,X))n−|τ |−∗−−→∆(D(τ,X), ∂D(τ,X))) ,

with an exact sequence

. . . −−→ Hn−|τ |−r({τ̂})
[X]∩−
−−−→ Hr+|τ |(X,X\{τ̂}) −−→
Hr(φ0(τ)) −−→ Hn−|τ |−r+1({τ̂}) −−→ . . . .

The n-dimensional normal complex (C, φ) in A (Z, X) is 0-connective and
globally Poincaré, and the boundary (n−1)-dimensional quadratic complex
in A (Z, X)

∂(C, φ) = (∂C, ψ)

is 0-connective, locally Poincaré and globally contractible, with

∂C(τ) = S−1C(φ0(τ):Cn−∗(τ)−−→C(τ)) ,

H∗(∂C(τ)) = H∗+1(φ0(τ)) (τ ∈ X) .

For each n-simplex ρ ∈ X(n) the (−1)-dimensional quadratic complex

(∂C(ρ), ψ(ρ)) in A (Z) is contractible (sinceD(ρ,X) = {ρ̂} is a 0-dimensional
Poincaré complex), so that for each (n − 1)-simplex τ ∈ X(n−1) the 0-
dimensional quadratic complex (∂C(τ), ψ(τ)) in A (Z) is Poincaré. In view
of the exact sequence given by 15.11 (iii)

. . . −−→ Sn(X)−−→ Sn〈0〉(Z, X)−−→Hn−1(X;L0(Z))−−→ Sn−1(X)−−→ . . .

the image of (∂C, ψ) ∈ Sn〈0〉(Z, X) is the element

c(X) =
∑

τ∈X(n−1)

τ(∂C(τ), ψ(τ))

∈ Hn−1(X;L0(Z)) = Hn−1(X;L.〈1〉(Z)−−→L.〈0〉(Z))

which is the obstruction to the existence of a 0-connective locally Poincaré
globally contractible quadratic cobordism (∂C ⊕ ∂C ′−−→D, (δψ, ψ ⊕−ψ′))
between (∂C, ψ) and a 1-connective locally Poincaré globally contractible
quadratic complex (∂C ′, ψ′) in A (Z, X). Such a complex is the boundary
of the union n-dimensional normal complex in A (Z, X)

(C ′, φ′) = (C, φ) ∪∂ (D, (1 + T )δψ)
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which is 1/2-connective and globally Poincaré with

(∂C ′, ψ′) = ∂(C ′, φ′) .

Each (n − 1)-simplex τ ∈ X(n−1) is the face of an even number (say 2mτ )

of n-simplexes, and D(τ,X) is the one-vertex union of 2mτ 1-simplexes.
The 1-dimensional normal pair (D(τ,X), ∂D(τ,X)) may be resolved by a
normal degree 1 map

(D(τ,X), ∂D(τ,X)) −−→ (D(τ,X), ∂D(τ,X))

from a 1-dimensional manifold with boundary (D(τ,X), ∂D(τ,X)), with

D(τ,X) the disjoint union of mτ 1-simplexes. The resolution determines
a vanishing of the obstruction c(X) ∈ Hn−1(X;L0(Z)) on the chain level,
corresponding to a 1/2-connective globally Poincaré n-dimensional normal

complex (C ′, φ′) in A (Z, X).

Definition 16.5 The 1/2-connective visible symmetric signature of a finite

n-dimensional geometric Poincaré complex X is the cobordism class

σ∗(X) = (C ′, φ′) ∈ V Ln(X) ,

with (C ′, φ′) as defined above.

The visible symmetric signature σ∗(X) = (C, φ) ∈ V Ln(Z, X) of 9.13 is
the image of the 1/2-connective visible symmetric signature under the natu-

ral map V Ln(X)−−→V Ln(Z, X) which forgets the 1/2-connective structure.

Definition 16.6 A chain map f :C−−→D in A (Z, X) is a global 1-equivalence
if the algebraic mapping cone C(f) is 2-connective and globally contractible.

The following conditions on an n-dimensional symmetric complex (C, φ)
in A (Z, X) are equivalent:

(i) (C, φ) is locally 1-Poincaré and globally Poincaré,
(ii) the duality chain map φ0:Cn−∗−−→C is a global 1-equivalence,

(iii) the (n− 1)-dimensional quadratic complex ∂(C, φ) is 1-connective, lo-

cally Poincaré and globally contractible.

Proposition 16.7 The following conditions on a finite n-dimensional ge-
ometric Poincaré complex X are equivalent:

(i) the 1/2-connective visible symmetric signature σ∗(X) ∈ V Ln(X) is the
assembly of an L.-homology fundamental class [X]L ∈ Hn(X;L.)

σ∗(X) = A([X]L) ∈ V Ln(X) ,

(ii) σ∗(X) ∈ V Ln(X) is represented by a 0-connective n-dimensional glob-
ally Poincaré normal complex (C ′, φ′) in A (Z, X) which is globally 1-equiv-

alent to a 0-connective n-dimensional locally Poincaré normal complex (B, θ)
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in A (Z, X), with

[X]L = (B, θ) ∈ Hn(X;L.) , σ∗(X) = (C ′, φ′) ∈ V Ln(X) .

Proof (ii) =⇒ (i) Globally 1-equivalent globally 1-Poincaré complexes are

globally 1-Poincaré cobordant.
(i) =⇒ (ii) Let (C ′′, φ′′) be a 0-connective n-dimensional locally Poincaré
normal complex in A (Z, X) realizing [X]L ∈ Hn(X;L.), and let (C ′ ⊕
C ′′−−→D, (δφ, φ′ ⊕ −φ′′)) be a 0-connective globally Poincaré cobordism

in A (Z, X) realizing σ∗(X)−A([X]L) = 0 ∈ V Ln(X). The relative bound-
ary construction gives a 0-connective (n + 1)-dimensional locally Poincaré
normal triad in A (Z, X)
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( ∂(C ′ ⊕ C ′′) w

u

∂D

u

∂ϕ′ ⊕−∂ϕ′′
w

u

∂δϕ

u
,

(C ′ ⊕ C ′′)n−∗
w (D/(C ′ ⊕ C ′′))n+1−∗ 0 w 0

)

with

∂C ′′ = S−1C(ϕ′′
0 :C ′′n−∗−−→C ′′)

locally contractible and

∂C ′ = S−1C(ϕ0:C
′n−∗−−→C ′) ,

∂D = S−1C(δϕ0: (D/(C
′ ⊕ C ′′))n+1−∗−−→D)

globally contractible. The union n-dimensional normal complex

(B, θ) = (C ′n−∗, 0) ∪(∂C′,∂ϕ′) (∂D, ∂δϕ)/∂C ′′

is locally Poincaré, and the projection

(B, θ) −−→ (B, θ)/∂D = (C ′, ϕ′)

is a global 1-equivalence.

Remark 16.8 An n-dimensional pseudomanifold X is an n-circuit such
that each (n − 1)-simplex is the face of two n-simplexes (cf. 8.5). An

n-dimensional pseudomanifold X is normal if the natural maps define iso-
morphisms

Hn(X)
≃−−→ Hn(X,X\{x}) (x ∈ X) .

Normal pseudomanifolds are called normal circuits by McCrory [104]. The
following conditions on an n-dimensional pseudomanifold X are equivalent:

(i) X is normal,
(ii) the link of each simplex of dimension ≤ n− 2 is connected,
(iii) the local homology groups Hn(X,X\{τ̂}) (τ ∈ X) are infinite cyclic,

with generators

[D(τ,X)] = [X][τ ] =
∑

ρ≥τ,|ρ|=n
ρ

∈ Hn−|τ |(D(τ,X), ∂D(τ,X)) = Hn(X,X\{τ̂})
the images of the fundamental class of X

[X] =
∑

τ∈X,|τ |=n
τ ∈ Hn(X) ,

with
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locally contractible and
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∂D = S−1C(δφ0: (D/(C ′ ⊕ C ′′))n+1−∗−−→D)

globally contractible. The union n-dimensional normal complex
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is locally Poincaré, and the projection

(B, θ) −−→ (B, θ)/∂D = (C ′, φ′)

is a global 1-equivalence.

Remark 16.8 An n-dimensional pseudomanifold X is an n-circuit such

that each (n − 1)-simplex is the face of two n-simplexes (cf. 8.5). An
n-dimensional pseudomanifold X is normal if the natural maps define iso-
morphisms

Hn(X)
'−−→ Hn(X,X\{x}) (x ∈ X) .

Normal pseudomanifolds are called normal circuits by McCrory [104]. The
following conditions on an n-dimensional pseudomanifold X are equivalent:

(i) X is normal,

(ii) the link of each simplex of dimension ≤ n− 2 is connected,
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(iii) the local homology groups Hn(X,X\{τ̂}) (τ ∈ X) are infinite cyclic,
with generators

[D(τ,X)] = [X][τ ] =
∑

ρ≥τ,|ρ|=n
ρ

∈ Hn−|τ |(D(τ,X), ∂D(τ,X)) = Hn(X,X\{τ̂})
the images of the fundamental class of X

[X] =
∑

τ∈X,|τ |=n
τ ∈ Hn(X) ,

(iv) the 0-connective n-dimensional normal complex (C, φ) in A (Z, X) with

C(X) = ∆(X ′) , C(τ) = ∆(D(τ,X), ∂D(τ,X)) ,

φ0(τ) = [D(τ,X)] ∩ − : Cn−∗(τ) = ∆(D(τ,X))n−|τ |−∗

−−→ C(τ) = ∆(D(τ,X), ∂D(τ,X)) (τ ∈ X)

is locally 1-Poincaré, with

Hr(φ0(τ)) = 0 (r ≤ 1 , τ ∈ X) ,

(v) the locally Poincaré (n− 1)-dimensional quadratic complex (∂C, ψ) in

A (Z, X) is 1-connective, with

Hr(∂C(τ)) = 0 (r ≤ 0 , τ ∈ X) .

The equivalence of (i) and (ii) is due to Goresky and MacPherson [62, p. 151].
The equivalence of (i) and (iv) is the special case q = 1 of 15.6.
For an n-dimensional geometric Poincaré complex which is a normal pseudo-

manifold the 1/2-connective visible symmetric signature σ∗(X) ∈ V Ln(X)
is represented by the 0-connective locally 1-Poincaré globally Poincaré sym-
metric complex (C, φ) in A (Z, X)

σ∗(X) = (C, φ) ∈ V Ln(X) .

Definition 16.9 (i) The canonical L̂.-homology fundamental class of an
n-dimensional normal complex X is the cobordism class

[X ]̂L = (C, φ) ∈ Hn(X; L̂.) ,

with C(X) = ∆(X ′).
(ii) An n-dimensional geometric Poincaré complex X is topologically re-

ducible if the Spivak normal fibration νX :X−−→BG admits a topological
reduction ν̃X :X−−→BTOP .
(iii) The topological reducibility obstruction of an n-dimensional geometric
Poincaré complex X is the image

t(X) = ∂[X ]̂L ∈ Hn−1(X;L.)
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of [X ]̂L ∈ Hn(X; L̂.
) under the connecting map ∂ in the exact sequence

. . . −−→ Hn(X;L.)
1+T
−−→ Hn(X;L.

)
J
−−→ Hn(X; L̂.)

∂
−−→ Hn−1(X;L.) −−→ . . . .

Proposition 16.10 An n-dimensional geometric Poincaré complex X is
topologically reducible if and only if t(X) = 0 ∈ Hn−1(X;L.) .
Proof Let (νX :X−−→BG(k), ρX :Sn+k−−→T (νX)) be a Spivak normal str-

ucture. The fundamental L̂.
-homology class of X is the S-dual of the canon-

ical L̂.-orientation of νX

[X ]̂L = ÛνX ∈ Hn(X; L̂.) = Ḣk(T (νX); L̂.) ,

and t(X) is the S-dual of the topological reducibility obstruction of νX

t(X) = δ(ÛνX ) = t(νX) ∈ Hn−1(X;L.) = Ḣk+1(T (νX);L.) .

A polyhedron K is an n-dimensional combinatorial





−
homotopy

homology

manifold

if the links of i-simplexes are





PL

homotopy

homology

(n− i− 1)-spheres.

Remark 16.11 (i) A triangulation (K,h) of a topological space M is a poly-
hedron K with a homeomorphism h:K−−→M . If M is an n-dimensional
topological manifold then K is an n-dimensional combinatorial homology

manifold. Siebenmann [159] showed that for n ≥ 5 an n-dimensional com-
binatorial homotopy manifold is an n-dimensional topological manifold.
(ii) A triangulation (K,h) of a topological manifold M is combinatorial if K

is a combinatorial manifold. A PL manifold is a topological manifold with a
PL equivalence class of combinatorial triangulations. The Hauptvermutung
for manifolds was that every homeomorphism of compact PL manifolds is

homotopic to a PL homeomorphism. The Casson–Sullivan invariant for a
homeomorphism f :N−−→M of compact n-dimensional PL manifolds (Arm-
strong et al. [5])

κ(f) = κ(M−−→TOP/PL) ∈ H3(M ;Z2) = Hn−3(M ;Z2)

is such that κ(f) = 0 if (and for n ≥ 5 only if) f is homotopic to a PL
homeomorphism (13.1), with M−−→TOP/PL = K(Z2, 3) the classifying

map for the topological trivialization determined by f of the difference
νM − (f−1)∗νN :M−−→BPL of stable PL normal bundles. For n ≥ 5 every
element

κ ∈ SPL(Tn) = [Tn, TOP/PL] = H3(Tn;Z2)
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is realized as κ = κ(f) for a homeomorphism f : T ′n−−→Tn from a fake PL
n-dimensional torus T ′n, with a normal map

(F,B) : (Wn+1;Tn, T ′n) −−→ Tn × ([0, 1]; {0}, {1})
on a PL cobordism (Wn+1;Tn, T ′n), such that F |Tn = id., F |T ′n = f ,
providing counterexamples to the Hauptvermutung for manifolds. The rel
∂ surgery obstruction

σ∗(F,B) = (C,ψ) ∈ Ln+1(Z[Zn]) = Hn+1(Tn;L.)

is represented by an (n+ 1)-dimensional quadratic Poincaré complex (C,ψ)

in A(Z)∗(Tn), and

κ(f) =
∑

σ∈(Tn)(n−3)

(signature(C(σ), ψ(σ))/8) σ

∈ H3(Tn;Z2) = Hn−3(Tn;Z2)

is an image of σ∗(F,B) ∈ Ln+1(Z[Zn]). The surgery-theoretic classification
of the PL structures on Tn (by Casson, Hsiang, Shaneson and Wall) is an
essential ingredient of the obstruction theory of Kirby and Siebenmann [87]

for the existence and uniqueness of combinatorial triangulations on compact
topological manifolds in dimensions ≥ 5.
(iii) The Kirby–Siebenmann invariant of a compact n-dimensional topolog-

ical manifold M

κ(M) ∈ H4(M ;Z2) = Hn−4(M ;Z2)

is such that κ(M) = 0 if (and for n ≥ 5 only if) M admits a combinatorial
triangulation. By construction, κ(M) is the homotopy class of the composite

κ(M) : M
νM−−→ BTOP −−→ B(TOP/PL) = K(Z2, 4) ,

and is such that κ(M) = 0 if and only if νM :M−−→BTOP lifts to a PL
reduction ν̃M :M−−→BPL. The invariant is realized by compact topological
manifolds in each dimension ≥ 5 which do not admit combinatorial trian-

gulation. For example, if f :T ′n−−→Tn, (F,B), Wn+1 are as in (ii) then the
(n+ 1)-dimensional topological manifold

Nn+1 = Wn+1 ∪ft id. T
n × [0, 1]

is equipped with a normal map (g, c) : Nn+1−−→Tn+1 such that

σ∗(g, c) = (σ∗(F,B), 0)

∈ Ln+1(Z[Zn+1]) = Ln+1(Z[Zn])⊕ Ln(Z[Zn]) ,

g∗κ(N) = (κ(f), 0)

∈ Hn−3(Tn+1;Z2) = Hn−3(Tn;Z2)⊕Hn−4(Tn;Z2) .

(iv) Let θ3 be the cobordism group of oriented 3-dimensional combinatorial

manifolds which are homotopy spheres, modulo those which bound con-
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tractible 4-dimensional combinatorial manifolds. Cohen [39, §4] defined an
invariant of a compact n-dimensional combinatorial homotopy manifold K

c(K) =
∑

σ∈K(n−4)

[linkK(σ)]σ ∈ H4(K; θ3) = Hn−4(K; θ3)

such that c(K) = 0 if and only if K admits a PL resolution, i.e. a trans-
versely cellular PLmapM−−→K from an n-dimensional combinatorial man-

ifold M .
(v) Let θH3 be the cobordism group of oriented 3-dimensional combinato-
rial homology manifolds which are homology spheres, modulo those which

bound acyclic 4-dimensional combinatorial manifolds. Let α: θH3 −−→Z2 be
the Kervaire–Milnor–Rohlin epimorphism, with

α(Σ3) = signature (W )/8 ∈ Z2

for any parallelizable 4-dimensional combinatorial manifold W with bound-

ary ∂W = Σ3. If ∆ = (K,h) is a triangulation of a compact n-dimensional
topological manifold M the element

κ∆(M) =
∑

σ∈K(n−4)

[linkK(σ)]σ ∈ H4(M ; θH3 ) = Hn−4(M ; θH3 )

is such that κ∆(M) = 0 if (and for n ≥ 5 only if) ∆ is a combinatorial

triangulation of M . The combinatorial triangulation obstruction is an image
of the triangulation obstruction

κ(M) = α(κ∆(M)) =
∑

σ∈K(n−4)

(signatureW (σ)/8)σ

∈ H4(M ;Z2) = Hn−4(M ;Z2) ,

with W (σ) a parallelizable 4-dimensional combinatorial manifold with bo-

undary ∂W (σ) = linkK(σ).
(vi) A triangulation (K,h) of a topological manifold M is non-combinatorial
if K is not a combinatorial manifold. Non-simply connected combinatorial

homology (n − 2)-spheres H provided examples of non-combinatorial tri-
angulations (Σ2H,h) of Sn (n ≥ 5), with a copy of H as the link of each
1-simplex in the suspension circle of the double suspension Σ2H (Edwards,

see Daverman [43, II.12]).
(vii) Galewski and Stern [58], [59] showed that for n ≥ 5 a compact n-
dimensional combinatorial homology manifold has the homotopy type of a
compact n-dimensional topological manifold, and that a compact n-dimen-

sional topological manifold M admits a triangulation if and only if the
Kirby–Siebenmann invariant κ(M) ∈ H4(M ;Z2) is such that

δκ(M) = 0 ∈ H5(M ; ker(α)) ,
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with δ the connecting map in the coefficient exact sequence

. . . −−→ H4(M ; ker(α)) −−→ H4(M ; θH3 )
α
−−→ H4(M ;Z2)

δ
−−→ H5(M ; ker(α)) −−→ . . . .

(viii) The Casson invariant of 3-dimensional combinatorial homology spheres

shows that certain compact 4-dimensional topological manifolds are not tri-
angulable (Akbulut and McCarthy [1, p. xvi]). In particular, the Freedman
manifold M4 with

σ∗(M) = (Z8, E8) = 8 ∈ L4(Z) = Z ,

κ(M) = 1 ∈ H4(M ;Z2) = Z2

is not triangulable (Freedman and Quinn [56, 10.1]).
(ix) Compact n-dimensional topological manifolds with n ≥ 5 are finite CW
complexes, by virtue of the topological handlebody decomposition obtained

by Kirby and Siebenmann [87] for n ≥ 6 and by Quinn for n = 5 ([56, 9.1]).
At present, it is not known if every compact topological manifold of dimen-
sion ≥ 5 is triangulable.

(x) Edwards [47] showed that for n ≥ 5 an n-dimensional combinatorial
homology manifold K is a topological manifold if and only if the link of
each simplex σ ∈ K is simply-connected.

The following conditions on a finite n-dimensional geometric Poincaré
complex X are equivalent:

(i) X is an n-dimensional combinatorial homology manifold,

(ii) the algebraic normal complex (C, φ) in A (Z, X) with C(X) = ∆(X ′)
is locally Poincaré,

(iii) the quadratic boundary (∂C, ψ) is locally contractible.

Transversality is a generic property of maps on manifolds, but not of maps
on geometric Poincaré complexes.

Definition 16.12 LetX,Y be compact polyhedra, with Y an n-dimensional
geometric Poincaré complex. A simplicial map h:Y−−→X ′ is Poincaré trans-

verse if each

(Y (τ), ∂Y (τ)) = h−1(D(τ,X), ∂D(τ,X)) (τ ∈ X)

is an (n− |τ |)-dimensional Z-coefficient Poincaré pair.

Example 16.13 If Y is an n-dimensional combinatorial homology manifold
then every simplicial map h:Y−−→X ′ is Poincaré transverse, since each

(Y (τ), ∂Y (τ)) (τ ∈ Y ) is an (n − |τ |)-dimensional combinatorial homology
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manifold with boundary.

In dealing with the L-theoretic properties of topological manifolds in §17

use will be made of the following version of an ‘intrinsic transversality struc-
ture’ of Levitt and Ranicki [94].

Definition 16.14 A transversality structure Π = (X,Y, g, h) on a finite n-
dimensional Poincaré space Z consists of compact polyhedra X,Y together

with homotopy equivalences g:Y−−→Z, h:Y−−→X ′ such that h is simplicial
and Poincaré transverse.

Proposition 16.15 A transversality structure Π = (X,Y, g, h) on a fi-

nite n-dimensional Poincaré space Z determines a fundamental L.
-homology

class

[Z]Π = (gh−1)∗(C, φ) ∈ Hn(Z;L.
)

with (C, φ) the n-dimensional locally Poincaré normal complex in A(Z)∗(X)

defined by

C(τ) = ∆(Y (τ), ∂Y (τ)) (τ ∈ X) .

The 1/2-connective visible symmetric signature of Z is the assembly of [Z]Π

σ∗(Z) = A([Z]Π) ∈ V Ln(Z)

and the total surgery obstruction is s(Z) = 0 ∈ Sn(Z).

In §17 it will be proved that a finite n-dimensional Poincaré space Z

admits a transversality structure Π if (and for n ≥ 5 only if) Z is homotopy
equivalent to a compact n-dimensional topological manifold. In the first
instance we have:

Proposition 16.16 If M is a finite n-dimensional Poincaré space which is

either (i) a combinatorial homology manifold
or (ii) a topological manifold

then M has a canonical transversality structure Π = (X,Y, g, h) and hence
a canonical fundamental L.-homology class

[M ]L = [M ]Π ∈ Hn(M ;L.)

with the following properties:
(a) The assembly of [M ]L is the 1/2-connective visible symmetric signature

σ∗(M) = A([M ]L) ∈ V Ln(M) .

(b) [M ]L has image the canonical L̂.-homology fundamental class

J [M ]L = [M ]̂L ∈ Hn(M ; L̂.) .
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(c) The canonical L.
-cohomology orientation Uν̃M ∈ Ḣk(T (νM );L.

) of the

topological normal block bundle ν̃M :M−−→BT̃OP (k) of an embedding Mn ⊂
Sn+k is the S-dual of [M ]L ∈ Hn(M ;L.

).
(d) If Nn−k ⊂ Mn is a codimension k submanifold with a normal block

bundle ν = νN⊂M :N−−→BT̃OP (k) then the canonical L.-homology funda-
mental classes [M ]L ∈ Hn(M ;L.), [N ]L ∈ Hn−k(N ;L.) and the canonical

L.
-cohomology orientation Uν ∈ Ḣk(T (ν);L.

) are related by

j∗[M ]L ∩ Uν = [N ]L ∈ Hn−k(N ;L.) ,

i∗[N ]L = [M ]L ∩ j∗Uν ∈ Hn−k(M ;L.
)

with

i = inclusion : N −−→M , j = projection : M+ = M ∪ {pt.}−−→T (ν) .

Proof (i) The canonical transversality structure is defined by

(X,Y, g, h) = (M,M ′, id., id.) ,

and the corresponding canonical L.
-homology fundamental class of M is the

cobordism class

[M ]L = (C, φ) ∈ Hn(M ;L.)

of the n-dimensional symmetric Poincaré complex (C, φ) in A (Z)∗(M) with
C(M) = ∆(M ′).
(ii) Any map f :M−−→X to a compact polyhedron X can be made topolog-
ically transverse, with the inverse images

(M(σ), ∂M(σ)) = f−1(D(σ,X), ∂D(σ,X)) (σ ∈ X)

(n−|σ|)-dimensional submanifolds, some of which may be empty. Let (Y,Z)
be a closed neighbourhood of M in Rn+k (k large), a compact (n + k)-

dimensional PL manifold with boundary which is the total space of a topo-
logical (Dk, Sk−1)-bundle νM : M−−→BTOP (k). By Quinn [133] Y can
be taken to be the mapping cylinder of a map e:Z−−→M . Make e PL

transverse, and define an X-dissection {Y (σ) |σ ∈ X} of Y by

Y (σ) = mapping cylinder of e|: e−1M(σ)−−→M(σ) (σ ∈ X) .

The projection g:Y−−→M is a hereditary homotopy equivalence, so that

each (Y (σ), ∂Y (σ)) is a simplicial (n− |σ|)-dimensional geometric Poincaré
pair homotopy equivalent to (M(σ), ∂M(σ)). The composite

h = fg : Y
g
−−→ M

f
−−→ X

is such that

h−1D(σ,X) = g−1M(σ) = Y (σ) (σ ∈ X) .

In particular, if f :M−−→X is a homotopy equivalence in the preferred sim-

ple homotopy type of M (e.g. the inclusion M ⊂ Y ), then (X,Y, g, h)
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defines the canonical transversality structure on M .

Remark 16.17 (i) By 16.2 the canonical L.
-homology fundamental class of

an oriented n-dimensional manifold Mn is given rationally by the Poincaré
dual of the L-genus L(M) ∈ H4∗(M ;Q)

[M ]L ⊗Q = L(M) ∩ [M ]Q ∈ Hn(M ;L.
)⊗Q =

∑

k≥0

Hn−4k(M ;Q) ,

with [M ]Q ∈ Hn(M ;Q) the Q-coefficient fundamental class. See 24.2 (i)

for the evaluation of the signatures of submanifolds N4k ⊂Mn in terms of
[M ]L ⊗Q ∈ Hn(M ;L.)⊗Q.
(ii) The identity σ∗(M) = A([M ]L) ∈ V Ln(M) is a non-simply connected

generalization of the Hirzebruch signature formula in the case n = 4k

signature (M) = 〈L(M), [M ]Q〉 ∈ L4k(Z) = Z .

Also, for any free action of a finite group G on M the identity

σ∗(M/G) = A([M/G]L) ∈ V Ln(M/G)

gives the corresponding special case of the Atiyah–Singer index theorem,

that the G-signature of such an action is a multiple of the character of the
regular representation. See §22 for rational surgery obstruction theory with
finite fundamental group.



17. The total surgery obstruction 191

§17. The total surgery obstruction

The total surgery obstruction s(X) ∈ Sn(X) of a finite n-dimensional ge-
ometric Poincaré complex X is the invariant introduced in Ranicki [143],

such that s(X) = 0 if (and for n ≥ 5 only if) X is homotopy equivalent to
a compact n-dimensional topological manifold Mn. Moreover, if s(X) = 0
and n ≥ 5 the manifold structure set STOP (X) is in unnatural bijective

correspondence with Sn+1(X), as will be shown in §18. Provided the funda-
mental group π1(X) is ‘good’ in the sense of Freedman and Quinn [56] these
results also hold for n = 4. In view of the close connections between the
obstruction theories for the existence and uniqueness of manifold structures

it is convenient to treat the actual invariants simultaneously, as will be done
in §20 in the simply connected case, in §22 for finite fundamental groups,
and in §23 for generalized free products and HNN extensions.

The total surgery obstruction unifies the two stages of the obstruction
provided by the Browder–Novikov–Sullivan–Wall surgery theory for the ex-

istence of a manifold structure in the homotopy type of a geometric Poincaré
complex. The first stage is the topological K-theory obstruction to the ex-
istence of a topological bundle. The second stage is the algebraic L-theory
surgery obstruction to the existence of a homotopy equivalence respecting

a choice of topological bundle reduction. As in §16 only the oriented case
is considered: see Appendix A for the nonorientable case.

The various generalized homology groups, L-groups and structure groups
are related by the following commutative braid of exact sequences, the spe-
cial case of 15.18 (i) for R = Z, n ≥ 2 :
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The terminology is as in §16, with

L.〈0〉(Z) = L.
, L.〈1〉(Z) = L. , NL.〈1/2〉(Z) = L̂.

,

S∗〈1〉(Z, X) = S∗(X) , V L∗〈1/2〉(Z, X) = V L∗(X) .

Given a finite n-dimensional geometric Poincaré complex X let (C ′, φ′)
be the 1/2-connective globally Poincaré n-dimensional normal complex in

A (Z, X) used in 16.5 to define the 1/2-connective visible symmetric signa-
ture σ∗(X) = (C ′, φ′) ∈ V Ln(X) .

Definition 17.1 The total surgery obstruction of a finite n-dimensional
geometric Poincaré complex X is the cobordism class

s(X) = ∂σ∗(X) ∈ Sn(X)

represented by the boundary 1-connective locally Poincaré globally con-
tractible (n − 1)-dimensional quadratic complex ∂(C ′, φ′) = (∂C ′, ψ′) in

A (Z, X).

Since ∂C ′(τ) is contractible for n-simplexes τ ∈ X(n) the quadratic com-
plex ∂σ∗(X) is locally equivalent to a complex in A (Z, X [n−1]), so that for
n ≥ 3 the total surgery obstruction can be regarded as an element

s(X) = ∂σ∗(X) ∈ Sn(X) = Sn〈0〉(Z, X [n−1]) = Sn(Z, X [n−1]) ,

using 15.11 (ii) to identify the S-groups.

Proposition 17.2 The following conditions on a finite n-dimensional ge-
ometric Poincaré complex X are equivalent:

(i) the total surgery obstruction vanishes

s(X) = 0 ∈ Sn(X) ,

(ii) the 1/2-connective visible symmetric signature of X is the assembly
A([X]L) of an L.-homology fundamental class [X]L ∈ Hn(X;L.)

σ∗(X) = A([X]L) ∈ V Ln(X) .

Proof Immediate from the exact sequence given by 15.18 (i)

. . . −−→ Hn(X;L.)
A
−−→ V Ln(X)

∂
−−→ Sn(X) −−→ Hn−1(X;L.) −−→ . . . .

Remark 17.3 For a finite n-dimensional geometric Poincaré complex X
which is a normal pseudomanifold (16.8) the 1/2-connective visible sym-
metric signature of X is represented by the 0-connective locally 1-Poincaré

globally Poincaré symmetric complex (C, φ) in A (Z, X) with C(X) = ∆(X ′)

σ∗(X) = (C, φ) ∈ V Ln(X) ,
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and the total surgery obstruction is represented by the 1-connective lo-
cally Poincaré globally contractible (n− 1)-dimensional quadratic complex
∂(C, φ) = (∂C, ψ) in A (Z, X)

s(X) = (∂C, ψ) ∈ Sn(X) .

Note that X is an n-dimensional combinatorial homology manifold if and
only if (C, φ) is locally Poincaré, in which case the 1/2-connective visible

symmetric signature is the assembly

σ∗(X) = A([X]L) ∈ V Ln(X)

of the canonical L.-homology fundamental class

[X]L = (C, φ) ∈ Hn(X;L.
) ,

and the total surgery obstruction is

s(X) = ∂σ∗(X) = 0 ∈ Sn(X) .

The total surgery obstruction s(X) ∈ Sn(X) of a finite n-dimensional

geometric Poincaré complex X measures the failure of the links of the sim-
plexes τ ∈ X to be homology (n − |τ | − 1)-spheres up to chain cobordism:
this is the equivalence relation appropriate for deciding if X is homotopy

equivalent to a compact topological manifold.

Theorem 17.4 (Ranicki [143])The total surgery obstruction s(X) ∈ Sn(X)
of a finite n-dimensional geometric Poincaré complex X is such that s(X) =
0 if (and for n ≥ 5 only if) X is homotopy equivalent to a compact n-

dimensional topological manifold.
Proof Let

( ν:X−−→BG(k) , ρ:Sn+k−−→T (ν) )

be the Spivak normal structure determined by an embedding X ⊂ Sn+k (k
large). The topological reducibility obstruction

t(X) = [s(X)] = δ(Ûν) = t(ν) ∈ Hn−1(X;L.) = Ḣk+1(T (ν);L.)

is the primary obstruction both to the vanishing of s(X) and to the exis-
tence of a topological manifold in the homotopy type of X. Assume this

obstruction vanishes.
Given a choice of reduction ν̃:X−−→BT̃OP (k) apply the Browder–Novikov

transversality construction to obtain a degree 1 normal map

(f = ρ|, b) : M = ρ−1(X) −−→ X

from an n-dimensional topological manifold M , making ρ:Sn+k−−→T (ν) =
T (ν̃) transverse regular at the zero section X ⊂ T (ν̃). Let Π = (Y, Z, g, h)

be the canonical transversality structure on M given by 16.16. The degree
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1 normal map of n-dimensional geometric Poincaré complexes

(F,B) : Y ' Z ' M
(f,b)
−−−−−→ X

has the same surgery obstruction as (f, b)

σ∗(F,B) = σ∗(f, b) ∈ Ln(Z[π1(X)]) .

Choosing a simplicial approximation F :Y−−→X ′ there is obtained a degree
1 normal map

{(F (τ), B(τ))} : {Y (τ) = F−1D(τ,X)} −−→ {D(τ,X)} (τ ∈ X)

from a cycle of (n− |τ |)-dimensional geometric Z-coefficient Poincaré pairs
(Y (τ), ∂Y (τ)) to a cycle of (n − |τ |)-dimensional geometric normal pairs

(D(τ,X), ∂D(τ,X)) with geometric Poincaré assembly
⋃
τ D(τ,X) = X ′.

The quadratic kernel is an n-dimensional quadratic globally Poincaré com-
plex in A (Z, X)

(C,ψ) = {(C(F (τ) !), ψ(B(τ))) | τ ∈ X} ,
with quadratic signature the surgery obstruction

(C(X̃), ψ(X̃)) = σ∗(F,B) = σ∗(f, b) ∈ Ln(Z[π1(X)])

and image

∂σ∗(F,B) = −∂σ∗(X) = −s(X) ∈ Sn(X) .

The surgery obstruction is 0 if (and for n ≥ 5 only if) (f, b) is normal bor-

dant to a homotopy equivalence.
Now suppose that ν̃ , ν̃′:X−−→BT̃OP (k) are two topological block bun-

dle reductions of the Spivak normal fibration ν, giving rise to degree 1
normal maps (f, b):M−−→X, (f ′, b′):N−−→X. The quadratic kernel com-

plexes (C,ψ), (C ′, ψ′) have the same boundary (n−1)-dimensional quadratic
globally contractible locally Poincaré complex in A (Z, X) (up to homotopy
equivalence)

∂(C,ψ) = ∂(C ′, ψ′) = −∂σ∗(X) ,

and the union (C,ψ) ∪ (C ′,−ψ′) is a 1-connective n-dimensional quadratic

locally Poincaré complex in A (Z, X). The assembly of the element

(C,ψ) ∪ (C ′,−ψ′) ∈ Ln(Λ〈1〉(Z)∗(X)) = Hn(X;L.)

is the difference of the surgery obstructions

A((C,ψ) ∪ (C ′,−ψ′)) = (C(X̃), ψ(X̃))− (C ′(X̃), ψ′(X̃))

= σ∗(f, b)− σ∗(f ′, b′) ∈ Ln(Z[π1(X)]) .

The symmetric L-spectrum L.
is a ring spectrum. (See Appendix B

for the multiplicative structure of the L-spectra). The S-dual of the L.-
coefficient Thom class Uν̃ ∈ Ḣk(T (ν);L.) of a topological block bundle re-

duction ν̃:X−−→BT̃OP (k) of ν is a fundamental L.
-coefficient class [X]ν̃ ∈
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Hn(X;L.
). The quadratic L-spectrum L. is an L.

-module spectrum, and
there is defined an L.-coefficient Poincaré duality isomorphism

[X]ν̃ ∩− : [X,G/TOP ] = H0(X;L.)
Uν̃∪−−−−→ Ḣk(T (ν);L.) ∼= Hn(X;L.) .

The topological block bundle reductions ν̃′:X−−→BT̃OP (k) (k large) of ν
are classified relative to ν̃ by the homotopy classes of maps X−−→G/TOP .

The difference t(ν̃, ν̃′) ∈ [X,G/TOP ] (16.1 (v)) corresponds to the element
(C,ψ) ∪ (C ′,−ψ′) ∈ Hn(X;L.) constructed above, so that

σ∗(f, b)− σ∗(f ′, b′) = A(t(ν̃, ν̃′)) ∈ im(A:Hn(X;L.)−−→Ln(Z[π1(X)])) .

Thus if s(X) ∈ ker(Sn(X)−−→Hn−1(X;L.)) there exist topological block
bundle reductions ν̃ of ν, and the surgery obstructions σ∗(f, b) of the asso-
ciated degree 1 normal maps (f, b):M−−→X define a coset of the image of

the assembly map

im(A:Hn(X;L.)−−→Ln(Z[π1(X)])) ⊆ Ln(Z[π1(X)])

(confirming the suggestion of Wall [182, §9]).
The total surgery obstruction s(X) is therefore such that s(X) = 0 ∈

Sn(X) if and only if there exists a reduction ν̃ for which σ∗(f, b) = 0 ∈
Ln(Z[π1(X)]). For n ≥ 5 this is the necessary and sufficient condition

given by the Browder–Novikov–Sullivan–Wall theory for X to be homotopy
equivalent to a compact n-dimensional topological manifold.

Example 17.5 The total surgery obstruction of a compact n-dimensional
combinatorial homology manifold X is s(X) = 0 ∈ Sn(X), by virtue of the
canonical fundamental L.-homology class [X]L ∈ Hn(X;L.) (16.16). 17.4

gives an alternative proof of the result of Galewski and Stern [58] that for
n ≥ 5 X is homotopy equivalent to a compact n-dimensional topological
manifold.

Corollary 17.6 A finite n-dimensional geometric Poincaré complex X
admits a transversality structure Π = (Y, Z, g, h) if (and for n ≥ 5 only if)

X is homotopy equivalent to a compact n-dimensional topological manifold.

Corollary 17.7 The total surgery obstruction of a topologically reducible
finite n-dimensional geometric Poincaré complex X is given by

s(X) = −∂σ∗(f, b)
∈ im(∂:Ln(Z[π1(X)])−−→Sn(X)) = ker(Sn(X)−−→Hn−1(X;L.)) ,

with σ∗(f, b) ∈ Ln(Z[π1(X)]) the surgery obstruction of any degree 1 normal



196 Algebraic L-theory and topological manifolds

map (f, b):M−−→X from a compact n-dimensional manifold M .

See 19.7 below for the generalization of 17.7 to a degree 1 normal map
(f, b):Y−−→X of finite n-dimensional geometric Poincaré complexes, with

b : νY−−→νX a fibre map of the Spivak normal fibrations rather than a bundle
map of topological reductions. The formula of 19.7 is

s(Y )− s(X) = ∂σ∗(f, b) ∈ Sn(X) ,

expressing the difference of the total surgery obstructions in terms of the
quadratic signature σ∗(f, b) ∈ Ln(Z[π1(X)]).

Remark 17.8 The algebraic surgery exact sequence of a polyhedron X

. . . −−→Hn(X;L.)
A
−−→ Ln(Z[π1(X)])

∂
−−→ Sn(X)−−→Hn−1(X;L.)−−→ . . .

can be viewed as the L-theory localization exact sequence for the assembly

functor

A : { locally Poincaré complexes} −−→ { globally Poincaré complexes}
inverting all the globally contractible chain complexes. The total surgery
obstruction s(X) ∈ Sn(X) of an n-dimensional geometric Poincaré complex

X is thus an analogue of the boundary construction of quadratic forms
on finite abelian groups from integral lattices in rational quadratic forms
(cf. 3.13 and Ranicki [146, §§3,4]). The peripheral invariant of Conner and

Raymond [40] and Alexander, Hamrick and Vick [2] for actions of cyclic
groups on manifolds and the intersection homology peripheral invariant of
Goresky and Siegel [64] and Cappell and Shaneson [28] are defined similarly.

The connections between the total surgery obstruction and geometric
Poincaré transversality are described in §19 below.
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§18. The structure set

The relative version of the total surgery obstruction theory of §17 will now

be used to identify the Sullivan–Wall surgery exact sequence of a manifold
with the algebraic surgery exact sequence of §15. For n ≥ 5 the structure set
STOP (M) of an n-dimensional manifold M is identified with the quadratic

structure group Sn+1(M).

Definition 18.1 The structure set STOP (X) of a finite n-dimensional
geometric Poincaré complex X is the set of the h-cobordism classes of pairs

(compact n-dimensional manifold M , homotopy equivalence f :M−−→X) .

By 17.4 for n ≥ 5 the structure set STOP (X) is non-empty if and only if

s(X) = 0 ∈ Sn(X). The structure set STOP (M) of a manifold M is pointed,
with base point (M, 1) ∈ STOP (M).

More generally, the structure set STOP∂ (X) of a finite n-dimensional geo-
metric Poincaré pair (X, ∂X) with compact manifold boundary ∂X is de-

fined to be the set of the rel ∂ h-cobordism classes of homotopy equiva-
lences f : (M,∂M)−−→(X, ∂X) from compact manifolds with boundary such
that f |: ∂M−−→∂X is a homeomorphism. By the rel ∂ version of 17.4 for

n ≥ 5 STOP∂ (X) is non-empty if and only if s(X) = 0 ∈ Sn(X) . Note that
STOP∂ (X) = STOP (X) in the closed case ∂X = ∅ .

Definition 18.2 Let (M,∂M) be a compact n-dimensional manifold with

boundary, with n ≥ 5. The geometric surgery exact sequence computing the
structure sets STOP∂ (M ×Di) (i ≥ 0) is the exact sequence of Sullivan [166]
and Wall [180, 10.8]

. . . −−→ Ln+i+1(Z[π1(M)]) −−→ STOP∂ (M ×Di)

−−→ [M ×Di, ∂(M ×Di);G/TOP, {∗}]
θ
−−→ Ln+i(Z[π1(M)])

−−→ . . . −−→ Ln+1(Z[π1(M)]) −−→ STOP∂ (M)

−−→ [M,∂M ;G/TOP, {∗}]
θ
−−→ Ln(Z[π1(M)]) .

An element t ∈ [M,∂M ;G/TOP, {∗}] classifies a topological block bundle

reduction ν̃:M−−→BT̃OP (k) of the Spivak normal fibration JνM :M−−→
BG(k) (k large) such that ν̃| = ν∂M : ∂M−−→BT̃OP (k). The surgery ob-

struction map

θ : [M,∂M ;G/TOP, {∗}] −−→ Ln(Z[π1(M)])

sends such an element t to the surgery obstruction

θ(t) = σ∗(f, b) ∈ Ln(Z[π1(M)])
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of the degree 1 normal map of n-dimensional manifolds with boundary ob-
tained by the Browder–Novikov transversality construction on the degree
1 map ρ: (Dn+k, Sn+k−1)−−→(T (ν̃), T (ν̃|∂M )) determined by an embedding
(M,∂M) ⊂ (Dn+k, Sn+k−1) (k large)

(f, b) = ρ| : (N, ∂N) = ρ−1(M,∂M) −−→ (M,∂M)

with ∂f : ∂N−−→∂M a homeomorphism. The group Ln+1(Z[π1(M)]) acts
on STOP∂ (M) by

Ln+1(Z[π1(M)])× STOP (M) −−→ STOP (M) ;

(x, (N0, f0)) −−→ x(N0, f0) = (N1, f1) ,

with f0:N0−−→M , f1:N1−−→M homotopy equivalences of n-dimensional
manifolds with boundary which are related by a degree 1 normal bordism

(g, c) : (Wn+1;N0, N1) −−→ M × ([0, 1]; {0}, {1})
with rel ∂ surgery obstruction

σ∗(g, c) = x ∈ Ln+1(Z[π1(M)]) .

Two elements (N1, f1), (N2, f2) ∈ STOP∂ (M) have the same image in

[M,∂M ;G/TOP, {∗}] if and only if

(N2, f2) = x(N1, f1) ∈ STOP∂ (M)

for some x ∈ Ln+1(Z[π1(M)]).

For the remainder of §18 only the closed case ∂M = ∅ is considered,

but there are evident relative versions for the bounded case. In particular,
STOP∂ (M) is identified with the quadratic structure group Sn+1(M) also in
the case ∂M 6= ∅ .

The following invariants are the essential ingredients in the passage from
the geometric surgery exact sequence of 18.2 to the algebraic surgery exact
sequence of 15.19.

Proposition 18.3 (i) A normal map of closed n-dimensional manifolds
(f, b) :N−−→M determines an element, the normal invariant

[f, b]L ∈ Hn(M ;L.) ,

with assembly the surgery obstruction of (f, b)

A([f, b]L) = σ∗(f, b) ∈ im(A:Hn(M ;L.)−−→Ln(Z[π1(M)]))

= ker(Ln(Z[π1(M)])−−→Sn(M)) ,

and symmetrization the difference of the canonical L.-homology fundamental

classes

(1 + T )[f, b]L = f∗[N ]L − [M ]L ∈ Hn(M ;L.
) .

Let t(b) ∈ H0(M ;L.) = [M,G/TOP ] be the normal invariant classifying

the fibre homotopy trivialized stable bundle ν̃M − νM :M−−→BTOP , with
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νM the stable normal bundle of M and ν̃M the target of b: νN−−→ν̃M . The
normal invariant is the image of t(b) ∈ [M,G/TOP ] under the L.-coefficient
Poincaré duality isomorphism

[M ]L ∩ − : H0(M ;L.)
'−−→ Hn(M ;L.)

defined by cap product with the canonical L.
-coefficient fundamental class

[M ]L ∈ Hn(M ;L.). The normal invariant is such that [f, b]L = 0 ∈
Hn(M ;L.) if and only if (f, b) is normal bordant to the 1:M−−→M .

(ii) A homotopy equivalence of closed n-dimensional manifolds f :N−−→M
determines an element, the structure invariant

s(f) ∈ Sn+1(M) ,

with image the normal invariant of the normal map (f, b):N−−→M with
b: νN−−→(f−1)∗νN the induced map of stable bundles over f

t(f) = [s(f)] = [f, b]L ∈ im(Sn+1(M)−−→Hn(M ;L.))

= ker(A:Hn(M ;L.)−−→Ln(Z[π1(M)])) .

As in (i) the normal invariant is such that t(f) = 0 if and only if (f, b):N
−−→M is normal bordant to 1:M−−→M , in which case the structure invari-

ant s(f) is the image of the rel ∂ surgery obstruction of any normal bordism

((g; 1, f), (c; 1, b)) : (Wn+1;M,N) −−→ M × ([0, 1]; {0}, {1}) ,
that is

s(f) = [σ∗(g, c)] ∈ im(Ln+1(Z[π1(M)])−−→Sn+1(M))

= ker(Sn+1(M)−−→Hn(M ;L.)) .

Proof (i) Let X be the polyhedron of an n-dimensional geometric Poincaré
complex with a homotopy equivalence g:M−−→X, such that both g and

gf :N−−→X are topologically transverse across the dual cell decomposition
{D(τ,X) | τ ∈ X } of X. The restrictions of f define a cycle of degree 1
normal maps of (n− |τ |)-dimensional manifolds with boundary

{(f(τ), b(τ))} : {N(τ)} −−→ {M(τ)}
with

M(τ) = g−1D(τ,X) , N(τ) = (gf)−1D(τ,X) (τ ∈ X) ,

such that M(τ) = { pt.} for n-simplexes τ ∈ X(n). The kernel cycle

{ (C(f(τ) !), ψ(b(τ))) | τ ∈ X }
of (n− |τ |)-dimensional quadratic Poincaré pairs in A (Z) is a 1-connective

n-dimensional quadratic Poincaré complex in A (Z)∗(X) allowing the defi-
nition

[f, b]L = {(C(f(τ) !), ψ(b(τ)))}
∈ Ln(Λ〈1〉(Z)∗(X)) = Hn(X;L.) = Hn(M ;L.) .
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(ii) If f :N−−→M is a homotopy equivalence the quadratic complex of (i) is
globally contractible, allowing the definition

s(f) = {(C(f(τ) !), ψ(b(τ)))} ∈ Sn+1(X) = Sn+1(M) .

(Equivalently, define the structure invariant s(f) of a homotopy equivalence
f :N−−→M of compact n-dimensional manifolds to be rel ∂ total surgery

obstruction of a finite (n + 1)-dimensional geometric Poincaré pair with
compact manifold boundary

s(f) = s∂(W,N t −M) ∈ Sn+1(W ) = Sn+1(M) ,

with W = N × I ∪f M the mapping cylinder.)

Example 18.4 The normal invariant of a normal map of closed oriented
n-dimensional manifolds (f, b):N−−→M is given modulo torsion by the dif-

ference between the Poincaré duals of the L-genera of M and N

[f, b]L ⊗Q = f∗(L(N) ∩ [N ]Q)− L(M) ∩ [M ]Q

∈ Hn(M ;L.)⊗Q = Hn−4∗(M ;Q) .

Theorem 18.5 (Ranicki [143]) The Sullivan–Wall geometric surgery exact

sequence of a compact n-dimensional manifold M with n ≥ 5 is isomorphic
to the algebraic surgery exact sequence, by an isomorphism
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(ii) If f :N−−→M is a homotopy equivalence the quadratic complex of (i) is

globally contractible, allowing the definition

s(f) = {(C(f(τ) !), ψ(b(τ)))} ∈ Sn+1(X) = Sn+1(M) .

(Equivalently, define the structure invariant s(f) of a homotopy equivalence
f :N−−→M of compact n-dimensional manifolds to be rel ∂ total surgery

obstruction of a finite (n + 1)-dimensional geometric Poincaré pair with
compact manifold boundary

s(f) = s∂(W,N ⊔ −M) ∈ Sn+1(W ) = Sn+1(M) ,

with W = N × I ∪f M the mapping cylinder.)

Example 18.4 The normal invariant of a normal map of closed oriented

n-dimensional manifolds (f, b):N−−→M is given modulo torsion by the dif-
ference between the Poincaré duals of the L-genera of M and N

[f, b]L ⊗Q = f∗(L(N) ∩ [N ]Q)− L(M) ∩ [M ]Q

∈ Hn(M ; L.)⊗Q = Hn−4∗(M ; Q) .

Theorem 18.5 (Ranicki [143]) The Sullivan–Wall geometric surgery exact

sequence of a compact n-dimensional manifold M with n ≥ 5 is isomorphic
to the algebraic surgery exact sequence, by an isomorphism

. . . w Ln+1(Z[π1(M)]) w STOP (M) w

u
s ≃

[M,G/TOP ] w
θ

u
t ≃

Ln(Z[π1(M)])

. . . w Ln+1(Z[π1(M)]) w
∂ Sn+1(M) w Hn(M ; L.) w

A Ln(Z[π1(M)])

and for all i ≥ 0

STOP∂ (M ×Di,M × Si−1) = Sn+i+1(M) ,

[M ×Di,M × Si−1;G/TOP, {∗}] = H−i(M ; L.) = Hn+i(M ; L.) .

In particular, Hn(M ; L.) = [M,G/TOP ] is the bordism group of normal

maps (f, b):N−−→M of closed n-dimensional manifolds.
Proof An embedding M ⊂ Sn+k (k large) determines a topological normal
structure

( ν̃:M−−→BT̃OP (k) , ρ:Sn+k−−→T (ν̃) ) .

By 18.3 (i) the normal invariant defines a bijection

t : [M,G/TOP ]
≃
−−→ Hn(M ; L.) ; c −−→ [f, b]L ,

and for all i ≥ 0

STOP∂ (M ×Di,M × Si−1) = Sn+i+1(M) ,

[M ×Di,M × Si−1;G/TOP, {∗}] = H−i(M ;L.) = Hn+i(M ;L.) .

In particular, Hn(M ;L.) = [M,G/TOP ] is the bordism group of normal

maps (f, b):N−−→M of closed n-dimensional manifolds.
Proof An embedding M ⊂ Sn+k (k large) determines a topological normal
structure

( ν̃:M−−→BT̃OP (k) , ρ:Sn+k−−→T (ν̃) ) .

By 18.3 (i) the normal invariant defines a bijection

t : [M,G/TOP ]
'
−−→ Hn(M ;L.) ; c −−→ [f, b]L ,
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namely the Poincaré duality isomorphism

t = [M ]L ∩ − : [M,G/TOP ] = H0(M ;L.)
'
−−→ Hn(M ;L.) .

The surgery obstruction map θ thus factorizes as the composite

θ : [M,G/TOP ] = H0(M ;L.)
t
−−→ Hn(M ;L.)

A
−−→ Ln(Z[π1(M)]) .

Use the structure invariant of 18.3 (ii) to define a bijection

s : STOP (M)
'
−−→ Sn+1(M) ; (N, f) −−→ s(f) .

Similarly for the higher structures.

In particular, for any closed n-dimensional manifold M and any element
x ∈ Sn+1(M) there exists a closed n-manifold N with a homotopy equiva-
lence f :N−−→M such that s(f) = x.

Corollary 18.6* Let K be a space with finitely presented π1(K).

(i) Hn(K;L.) consists of the images of the normal invariants [f, b]L of nor-
mal maps (f, b):N−−→M of closed n-dimensional manifolds with a reference
map M−−→K.

(ii) The image of the assembly map A:Hn(K;L.)−−→Ln(Z[π1(K)]) consists
of the surgery obstructions σ∗(f, b) of the normal maps (f, b):N−−→M of
closed n-dimensional manifolds with a reference map M−−→K.
(iii) Sn+1(K) consists of the images of the structure invariants s(f) of ho-

motopy equivalences (f, b):N−−→M of closed n-dimensional manifolds with
a reference map M−−→K.
(iv) The image of Sn+1(K)−−→Hn(K;L.) consists of the images of the

normal invariants [f, b]L of homotopy equivalences (f, b):N−−→M of closed
n-dimensional manifolds with a reference map M−−→K.

Example 18.7 For n ≥ 4 the manifold structure set of the n-sphere Sn is

STOP (Sn) = Sn+1(Sn) = 0 .

This is the TOP version of the n-dimensional Poincaré conjecture (Smale,
Stallings, Newman, Freedman), according to which any homotopy equiva-

lence Mn ' Sn from a compact n-dimensional topological manifold M is
homotopic to a homeomorphism.

See §20 for S∗(M) in the simply connected case π1(M) = {1}.

* Corollary 18.6 is only true after the 4-periodic stabilization of n: see
Theorem B of I.Hambleton, Surgery obstructions on closed manifolds and

the inertia subgroup, Forum Math. 24, 911–929 (2012)
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Remark 18.8 The simply connected surgery classifying space L0 ' G/TOP
is such that

G/TOP ⊗ Z[1/2] ' BO ⊗ Z[1/2]

G/TOP ⊗ Z(2) '
∏

j≥1

K(Z(2), 4j)×
∏

j≥0

K(Z2 , 4j + 2)

with Z(2) = Z[1/odd] the localization of Z at 2, so that for any space X

H∗(X;L.)[1/2] = KO∗(X)[1/2] = Ω∗(X)⊗Ω∗({pt.}) L∗(Z)[1/2]

H∗(X;L.)(2) =
∏

j≥1

H∗−4j(X;Z(2))×
∏

j≥0

H∗−4j−2(X;Z2 ) .

Wall [180, p. 266] used bordism theory and the surgery product formula to
define the L-theory assembly map away from 2

A : H∗(X;L.)[1/2] −−→ L∗(Z[π1(X)])[1/2]

by sending the bordism class of an n-dimensional manifold M equipped with
a reference map M−−→X to the symmetric signature of Mishchenko [115]

A(M) = σ∗(M) ∈ Ln(Z[π1(X)])[1/2] = Ln(Z[π1(X)])[1/2] .

Up to a power of 2 this is a surgery obstruction

8σ∗(M) = (1 + T )σ∗(1× (f, b):M ×Q8−−→M × S8) ∈ Ln(Z[π1(X)]) ,

with (f, b):Q8−−→S8 the 8-dimensional normal map determined by the
framed 3-connected 8-dimensional Milnor PL manifold Q8 with signature

σ∗(Q8) = (Z8, E8) = 8 ∈ L8(Z) = Z .

The factorization of the surgery map as

θ : [M,G/TOP ] −−→ ΩTOPn (Bπ ×G/TOP,Bπ × {∗})
−−→ Ln(Z[π]) (π = π1(M))

is due to Sullivan and Wall [180, 13B.3] (originally in the PL category), with

[M,G/TOP ] −−→ ΩTOPn (Bπ ×G/TOP,Bπ × {∗}) ;

(g:M−−→G/TOP ) = ((f, b):N−−→M) −−→

(N
f×g
−−→ (M ×G/TOP,M × {∗}) −−→ (Bπ ×G/TOP,Bπ × {∗})) .

See Appendix B for an expression of this factorization using the multiplica-
tive properties of the algebraic L-spectra. The factorization of θ through
the assembly map A was first proposed by Quinn [131]: see Mishchenko and

Solovev [118], Nicas [121, §3.3], Levitt and Ranicki [94, §3.2] for the geomet-
ric construction of A in the case when M is a PL manifold. In Ranicki [143]
the factorization of θ through the algebraic assembly map A was obtained by
means of the theory of normal complexes and geometric Poincaré complexes

due to Quinn [132]: see the Appendix to Hambleton, Milgram, Taylor and
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Williams [69] for an exposition of this approach. The factorization was used
in [69] and Milgram [109] to compute the surgery obstructions of normal
maps of closed manifolds ( = the image of A:H∗(Bπ;L.)−−→L∗(Z[π])) for
finite groups π.

Remark 18.9 (i) A simplicial map f : J−−→K ′ is transversely cellular if J
is an n-dimensional PL manifold and the inverse images of the dual cells

of i-simplexes in σ ∈ K are (n− i)-dimensional PL balls f−1D(σ,K) ⊂ J .
Cohen [38], [39] proved that a transversely cellular map of compact PL man-
ifolds is homotopic to a PL homeomorphism, and that for n ≥ 5 a proper
surjective PLmap of n-dimensional combinatorial homotopy manifolds with

contractible point inverses is homotopic to a homeomorphism.
(ii) A map f :N−−→M of ANR spaces (e.g. manifolds) is cell-like if it is
proper, surjective and such that for each x ∈ M and each neighbourhood

U of f−1(x) in N there exists a neighbourhood V ⊆ U of f−1(x) such that
the inclusion V−−→U is null-homotopic. A proper surjective map of finite-
dimensional ANR spaces is cell-like if and only if it is a hereditary proper
homotopy equivalence, i.e. such that the restriction f |: f−1(U)−−→U is a

proper homotopy equivalence for every open subset U ⊆ M . A PL map
f :N−−→M of compact polyhedra is cell-like if and only if the point inverses
f−1(x) are contractible, in which case τ(f) = 0 ∈Wh(π1(M)) (as is true for

any cell-like map of compact ANR spaces). Siebenmann [161] proved that
for n ≥ 5 a proper surjective map f :N−−→M of n-dimensional manifolds
is cell-like if and only if f is a uniform limit of homeomorphisms. More

generally, Chapman and Ferry [35] showed that for n ≥ 5 any sufficiently
controlled homotopy equivalence of n-dimensional manifolds can be approx-
imated by a homeomorphism. The structure invariant s(f) ∈ Sn+1(M) of
a homotopy equivalence f :N−−→M of compact n-dimensional manifolds

measures the failure of f to be cell-like on the chain level, i.e. for the point
inverses f−1(x) (x ∈ M) to be acyclic, up to the chain level cobordism
relation appropriate for deciding if f is homotopic to a homeomorphism (at

least for n ≥ 5). If f is cell-like then each of the simplicial maps

f(τ) = f | : N(τ) = (gf)−1D(τ,X) −−→ M(τ) = g−1D(τ,X) (τ ∈ X)

in the definition of s(f) can be chosen to be a homotopy equivalence, with
g:M ' X as in 18.3, so that

s(f) = 0 ∈ Sn+1(M) .

Thus for n ≥ 5 a cell-like map f :N−−→M of compact n-dimensional mani-
folds is homotopic to a homeomorphism and

(N, f) = (M, 1) = 0 ∈ STOP (M) = Sn+1(M) .
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§19. Geometric Poincaré complexes

The total surgery obstruction of §17 and the structure invariant of §18

are now interpreted in terms of geometric Poincaré bordism theory. The
total surgery obstruction s(X) ∈ Sn(X) of a finite n-dimensional geomet-
ric Poincaré complex X is identified with the obstruction to the identity

X−−→X being bordant to a Poincaré transverse map.

The main source of geometric Poincaré complexes is of course:

Example 19.1 A compact n-dimensional topological manifold is a finite
n-dimensional geometric Poincaré complex.

Example 19.2 Browder [14] showed that finite H-spaces are geometric

Poincaré complexes, providing the first examples of Poincaré spaces other
than manifolds or quotients of finite group actions on manifolds (which
are Q-coefficient Poincaré complexes). Finite H-spaces are topologically

reducible, with trivial Spivak normal fibration, so that simply-connected
ones are homotopy equivalent to compact topological manifolds.

Example 19.3 Gitler and Stasheff [61] used the first exotic class e1 ∈
H∗(BG;Z2) to show that a certain simply-connected finite 5-dimensional
geometric Poincaré complex X = (S2∨S3)∪e5 is not topologically reducible,

and hence not homotopy equivalent to a compact topological manifold. In
fact, X can be chosen to be the total space of a fibration S2−−→X−−→S3

classified by an element in π3(BG(3)) with image 1 ∈ π3(B(G/TOP )) =

π2(G/TOP ) = Z2. See Madsen and Milgram [102, pp. 32-34] for the classi-
fication of all the 5-dimensional geometric Poincaré complexes of the type
(S2 ∨ S3) ∪ e5. See Frank [55] for non-reducible geometric Poincaré com-
plexes detected by the exotic classes e1 ∈ H∗(BG;Zp) for odd prime p.

Example 19.4 Wall [177, 5.4.1] constructed for each prime p a reducible

finite 4-dimensional geometric Poincaré complex X with π1(X) = Zp
X = e0 ∪ e1 ∪

⋃

10

e2 ∪ e3 ∪ e4

such that X and the universal cover X̃ are orientable with signature

σ∗(X) = σ∗(X̃) = 8 ∈ L4(Z) = Z .

Signature is multiplicative for orientable finite covers of orientable compact
manifolds, and σ∗(X̃) 6= p σ∗(X), so X cannot be homotopy equivalent to a
closed manifold; higher-dimensional examples are obtained by considering

the products X×(CP2)k (k ≥ 1). See 22.28 for the systematic construction
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of such examples, which are detected by the multisignature invariant.

The realization theorem of Wall [180] for the surgery obstruction groups
Ln(Z[π]) (n ≥ 5) provides the following systematic construction of topo-
logically reducible finite geometric Poincaré complexes. Every finitely pre-

sented group π is the fundamental group π = π1(M) of a compact (n− 1)-
dimensional manifold Mn−1. Every element x ∈ Ln(Z[π]) is the rel ∂
surgery obstruction x = σ∗(f, b) of a normal map

(f, b) : (Wn;Mn−1,M ′n−1) −−→ M × ([0, 1]; {0}, {1})
with

f |M = identity : M −−→ M × {0} ,
f |M ′ = homotopy equivalence : M ′ −−→ M × {1} .

The topologically reducible n-dimensional geometric Poincaré complex

X = W ∪∂f M × [0, 1]

has fundamental group π1(X) = π × Z but the extraneous Z-factor can
be ignored (or removed by Poincaré π1-surgery as in Browder [17]). The

normal map of n-dimensional geometric Poincaré complexes

(f, b)∪ 1 : X = W ∪∂f M × [0, 1] −−→ M ×S1 = M × [0, 1]∪∂M × [0, 1]

has quadratic signature σ∗((f, b)∪1) = x ∈ Ln(Z[π]) . Also, if (g, c):N−−→X
is a normal map from a closed n-dimensional manifold N corresponding to
the topological reduction of X then σ∗(g, c) = −x ∈ Ln(Z[π]) . See Ran-
icki [145] for the definition and the composition formula for the quadratic

signature of a normal map of geometric Poincaré complexes.

Proposition 19.5 The topologically reducible finite n-dimensional geomet-
ric Poincaré complex X with π1(X) = π constructed from x ∈ Ln(Z[π]) has

total surgery obstruction

s(X) = ∂(x) ∈ im(∂:Ln(Z[π])−−→Sn(X)) = ker(Sn(X)−−→Hn−1(X;L.)) ,

and s(X) = 0 ∈ Sn(X) if and only if x ∈ im(A:Hn(X;L.)−−→Ln(Z[π])).
Proof The Spivak normal fibration νX has a topological reduction such
that the corresponding normal map (g, c):Nn−−→X has surgery obstruction

σ∗(g, c) = −σ∗(f, b) = −x ∈ Ln(Z[π]) .

The total surgery obstruction of X is given by 17.7 to be

s(X) = −∂σ∗(g, c) = ∂(x) ∈ Sn(X) .

The equivalence of s(X) = 0 and x ∈ im(A) is immediate from the exact
sequence

Hn(X;L.)
A
−−→ Ln(Z[π1(X)])

∂
−−→ Sn(X) .
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The construction of geometric Poincaré complexes from surgery obstruc-
tions defines a map

Ln(Z[π1(K)]) −−→ ΩPn (K) ; x −−→ X

for any space K with finitely presented π1(K) and n ≥ 5.

The exact sequence of Levitt [92], Jones [80], Quinn [132], Hausmann and
Vogel [75] relating geometric Poincaré and normal cobordism

. . . −−→ ΩNn+1(K) −−→ Ln(Z[π1(K)]) −−→ ΩPn (K) −−→ ΩNn (K) −−→ . . .

has the following generalization:

Proposition 19.6 (Ranicki [143])
(i) For any polyhedron K with finitely presented π1(K) and n ≥ 5 there is
defined a commutative braid of exact sequences
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with ΩP. = ΩP. ({∗}) (resp. ΩN. = ΩN. ({∗})) the geometric Poincaré (resp.

normal) bordism spectrum of a point and

s : ΩPn (K) −−→ Sn(K) ; (f :X−−→K) −−→ f∗s(X)

the total surgery obstruction map. The quadratic structure group Sn(K) is
the bordism group of maps (f, ∂f): (X, ∂X)−−→K from finite n-dimensional

geometric Poincaré pairs (X, ∂X) such that ∂f : ∂X−−→K is Poincaré trans-
verse.
(ii) A finite n-dimensional geometric Poincaré complex X has total surgery

obstruction s(X) = 0 ∈ Sn(X) if (and for n ≥ 5 only if) there exists an ΩP. -
homology fundamental class [X]P ∈ Hn(X; ΩP. ) with assembly the Poincaré
bordism class of 1:X−−→X

A([X]P ) = (1:X−−→X) ∈ ΩPn (X) .

with ΩP. = ΩP. ({∗}) (resp. ΩN. = ΩN. ({∗})) the geometric Poincaré (resp.
normal) bordism spectrum of a point and

s : ΩPn (K) −−→ Sn(K) ; (f :X−−→K) −−→ f∗s(X)

the total surgery obstruction map. The quadratic structure group Sn(K) is
the bordism group of maps (f, ∂f): (X, ∂X)−−→K from finite n-dimensional

geometric Poincaré pairs (X, ∂X) such that ∂f : ∂X−−→K is Poincaré trans-
verse.
(ii) A finite n-dimensional geometric Poincaré complex X has total surgery
obstruction s(X) = 0 ∈ Sn(X) if (and for n ≥ 5 only if) there exists an ΩP. -

homology fundamental class [X]P ∈ Hn(X; ΩP. ) with assembly the Poincaré



19. Geometric Poincaré complexes 207

bordism class of 1:X−−→X
A([X]P ) = (1:X−−→X) ∈ ΩPn (X) .

Proof (i) The geometric normal complex bordism spectrum of a point is

the Thom spectrum of the universal oriented spherical fibration over the
classifying space BSG

ΩN. = {ΩN. ({∗})n |n ∈ Z} = MSG , ΩN. ({∗})n = lim−→
j

ΩjMSG(j − n) .

The normal complex assembly maps are isomorphisms

A : H∗(K; ΩN. )
'−−→ ΩN∗ (K)

by normal complex transversality (Quinn [132]). The map s is defined by
the total surgery obstruction

s : ΩPn (K) −−→ Sn(K) ; (X−−→K) −−→ s(X) .

The geometric Poincaré bordism spectrum of a point

ΩP. = {ΩP. ({∗})n |n ∈ Z}
consists of the ∆-sets with

ΩP. ({∗})(k)
n = {(n+ k)-dimensional oriented finite geometric Poincaré

k-ads (X; ∂0X, ∂1X, . . . , ∂kX) such that ∂0X ∩ ∂1X ∩ . . . ∩ ∂kX = ∅ } ,
with the empty complexes as base simplexes ∅. As in §12 assume that K
is a subcomplex of ∂∆m+1 for some m ≥ 0. By 12.6 Hn(K; ΩP. ) is the

cobordism group of n-dimensional ΩP. -cycles in K

X = {X(τ) ∈ ΩP. ({∗})(m−|τ |)
n−m | τ ∈ K } ,

so that (X(τ); ∂0X(τ), . . . , ∂m−|τ |X(τ)) is an (n−|τ |)-dimensional geomet-
ric Poincaré (m− |τ |)-ad with

∂iX(τ) =

{
X(δiτ) if δiτ ∈ K
∅ if δiτ /∈ K

(0 ≤ i ≤ m− |τ |) .

The assembly of X is the bordism class (A(X), f) ∈ ΩPn (K) of the union
n-dimensional geometric Poincaré complex

A(X) =
⋃

τ∈K
X(τ)

with f :A(X)−−→K ′ a Poincaré transverse simplicial map such that

f−1D(τ,K) = X(τ) (τ ∈ K) .

(ii) Immediate from (i).

See Levitt and Ranicki [94] for a geometric interpretation of an ΩP. -

homology fundamental class [X]P ∈ Hn(X; ΩP. ) such that

A([X]P ) = (1:X−−→X) ∈ ΩPn (X)
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as an ‘intrinsic transversality structure’.

Corollary 19.7 If (f, b):Y−−→X is a normal map of finite n-dimensional
geometric Poincaré complexes then the difference of the total surgery ob-
structions is the image of the quadratic signature σ∗(f, b) ∈ Ln(Z[π1(X)])

s(Y )− s(X) = ∂σ∗(f, b) ∈ im(∂:Ln(Z[π1(X)])−−→Sn(X)) .

Proof The mapping cylinder W = Y × I ∪f X of f defines an (n + 1)-
dimensional normal pair (W,Y t −X) with boundary the n-dimensional

geometric Poincaré complex Y t −X, such that

σ∗(W,Y t −X) = σ∗(f, b) ∈ ΩN,Pn+1(X) = Ln(Z[π1(X)]) .

The symmetric L-groups are not geometrically realizable, in that the sym-
metric signature map

σ∗ : ΩPn (K) −−→ Ln(Z[π1(K)]) ; (X−−→K) −−→ σ∗(X)

is not onto in general. For example, the (2k− 1)-connected 4k-dimensional
symmetric Poincaré complex (S2kZ[Z2], T ) over Z[Z2] is not in the image
of σ∗: ΩP4k(BZ2 )−−→L4k(Z[Z2]) for any k ≥ 1 (Ranicki [146, 7.6.8], see also

9.17).
The fibre of the 1/2-connective visible symmetric signature map

σ∗ : ΩP. (K) −−→ V L.(K) ; (X−−→K) −−→ σ∗(X)

is a homology theory:

Corollary 19.8 For any polyhedron K with finitely presented π1(K) and
n ≥ 5 there is defined a commutative braid of exact sequences
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with Ω(L,P )
. the fibre of the simply connected symmetric signature map σ∗: ΩP.

−−→L.
.

with Ω(L,P )
. the fibre of the simply connected symmetric signature map σ∗: ΩP.



19. Geometric Poincaré complexes 209

−−→L.
.

Remark 19.9 The simply connected normal signature map σ̂∗: ΩN. −−→L̂.

is a rational homotopy equivalence, with both spectra having the rational

homotopy type of the Eilenberg-MacLane spectrum K.(Q, 0) for rational
homology:

ΩN. ⊗Q ' MSG⊗Q ' K.(Q, 0)

by the finiteness of the stable homotopy groups of spheres πs∗ = π∗+1(BSG)

for ∗ ≥ 1, and

L̂.⊗Q = cofibre (1 + T :L.−−→L.)⊗Q ' K.(Q, 0)

by virtue of the symmetrization map 1 + T :L∗(Z)−−→L∗(Z) being an iso-
morphism modulo 8-torsion. The natural map

Ω(L,P )
. = fibre (σ∗: ΩP. −−→L.) −−→ fibre (σ̂∗: ΩN. −−→L̂.)

induces isomorphisms of homotopy groups, except possibly in dimensions
4, 5 (in which it at least induces isomorphisms modulo torsion). The 1/2-
connective visible symmetric signature map

σ∗ : ΩPn (X) −−→ V Ln(X)

is a rational isomorphism for all n ≥ 0.

Given a map f :Y−−→X there are defined relative S-groups S∗(f) to fit

into a commutative diagram
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is a rational homotopy equivalence, with both spectra having the rational
homotopy type of the Eilenberg-MacLane spectrum K.(Q, 0) for rational
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u
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u
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u
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u
. . . w Hn(Y ; L.) w

u
f∗

Ln(Z[π1(Y )]) w

u
f∗

Sn(Y ) w
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f∗

Hn−1(Y ; L.) w

u
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. . .

. . . w Hn(X; L.) w
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. . .
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Ln(f) w

u
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. . .
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u
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u

Sn−1(Y ) w

u

Hn−2(Y ; L.) w

u

. . .

...
...

...
...

with exact rows and columns. The total surgery obstruction of a finite
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with exact rows and columns. The total surgery obstruction of a finite
n-dimensional geometric Poincaré pair (X,Y ) is an element

s(X,Y ) ∈ Sn(X,Y ) = Sn(Y−−→X)

of the relative S-group of the inclusion Y−−→X, with image the total surgery
obstruction of Y

[s(X,Y )] = s(Y ) ∈ Sn−1(Y ) .

As in the absolute case (Y = ∅) the image

t(X,Y ) = [s(X,Y )] ∈ Hn−1(X,Y ;L.) = Ḣk+1(T (νX);L.)

is the obstruction to a topological reduction of the Spivak normal fibration
νX :X−−→BG(k). The total surgery obstruction is such that s(X,Y ) = 0

if (and for n ≥ 6 only if) (X,Y ) is homotopy equivalent to a compact n-
dimensional topological manifold with boundary (Mn, ∂M). For n ≥ 6 the
structure set of (Mn, ∂M) is given by

STOP (M,∂M) = Sn+1(M,∂M) .

Remark 19.10 The total surgery obstruction of a finite n-dimensional ge-

ometric Poincaré pair (X,Y ) such that

π1(Y ) ∼= π1(X)

is just the topological reducibility obstruction

s(X,Y ) = t(X,Y ) ∈ Sn(X,Y ) = Hn−1(X,Y ;L.) .

Thus νX :X−−→BG is topologically reducible if (and for n ≥ 6 only if)

(X,Y ) is homotopy equivalent to a compact n-dimensional topological man-
ifold with boundary – this is the π-π theorem of Wall [180, 3.3] and its trivial
converse.
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§20. The simply connected case

We now turn to the simply connected case π1(X) = {1}. The total surgery
obstruction s(X) ∈ Sn(X) of an n-dimensional geometric Poincaré complex

X has image the obstruction t(X) ∈ Hn−1(X;L.) to a topological reduction
of the Spivak normal fibration of X. The simply connected case has the
distinctive feature that Sn(X)−−→Hn−1(X;L.) is injective, so that s(X) is
determined by t(X). See Browder [16] for a detailed exposition of simply

connected surgery obstruction theory in dimensions ≥ 5, and Freedman and
Quinn [56] for the extension to the 4-dimensional case.

The simply connected surgery obstruction groups are given by

Ln(Z) =





Z
0

Z2

0

if n ≡





0

1

2

3

(mod 4) .

The cobordism class of an n-dimensional quadratic Poincaré complex (C,ψ)
over Z is given by

(C,ψ) =

{
(1/8) signature (H2k(C)/torsion, λ, µ)

Arf invariant (H2k+1(C;Z2 ), λ, µ)

∈ Ln(Z) =

{
Z
Z2

if n =

{
4k

4k + 2

with (λ, µ) the (−)n/2-quadratic form determined by ψ0. The surgery ob-
struction σ∗(f, b) ∈ Ln(Z) of an n-dimensional normal map (f, b):M−−→X
with π1(X) = {1} is the cobordism class of the kernel n-dimensional quad-
ratic Poincaré complex (C,ψ) over Z, with

H∗(C) = K∗(M) = ker(f∗:H∗(M)−−→H∗(X)) ,

K∗(M)⊕H∗(X) = H∗(M) ,

so that

σ∗(f, b) = (C,ψ) =

{
signature (K2k(M ;R), λ, µ)/8

Arf invariant (K2k+1(M ;Z2 ), λ, µ)

∈ Ln(Z) =

{
Z
Z2

if n =

{
4k

4k + 2

with (λ, µ) the (−)n/2-quadratic form on the kernel module

Kn/2(M) = ker(f∗:Hn/2(M)−−→Hn/2(X))

defined by geometric intersection and self-intersection numbers.
See Kervaire and Milnor [86] and Levine [91] for the original applications

of simply connected surgery theory to the classification of differentiable ho-
motopy spheres. For i ≥ 3 every element x ∈ L2i(Z) is the surgery obstruc-

tion x = σ∗(g, c) of a normal map (g, c):Q2i−−→S2i with Q a closed framed



212 Algebraic L-theory and topological manifolds

(i−1)-connected 2i-dimensional PL manifold constructed by plumbing. For
i = 4 and x = 1 ∈ L8(Z) = Z such a manifold Q8 may be obtained by coning
off the boundary of a differentiable 8-dimensional manifold with boundary
one of the 7-dimensional exotic spheres of Milnor [111]. For i = 5 and

x = 1 ∈ L10(Z) = Z2 this gives the PL manifold Q10 without differentiable
structure of Kervaire [85].

Remark 20.1 The structure invariant of a homotopy equivalence f :Nn
'−−→

Mn of closed simply connected n-dimensional manifolds is given modulo
torsion by the difference between the Poincaré duals of the L-genera of M

and N (cf. 18.4)

s(f)⊗Q = L(M) ∩ [M ]Q − f∗(L(N) ∩ [N ]Q)

∈ Sn+1(M)⊗Q = ker (Hn−4∗(M ;Q)−−→Hn−4∗({pt.};Q))

=
∑

4k 6=n
Hn−4k(M ;Q) .

For a simply connected polyhedron K the assembly maps

A : Hn(K;L.) −−→ Hn({pt.};L.) = Ln(Z) (n ≥ 1)

are onto. It follows that the normal invariant maps

Sn(K) −−→ Hn−1(K;L.) ; r∗ s(X) −−→ r∗ t(X)

are injective, with r∗ s(X) ∈ Sn(K) the image of the total surgery obstruc-

tion s(X) ∈ Sn(X) of an n-dimensional geometric Poincaré complex X with
a reference map r:X−−→K, and r∗ t(X) ∈ Hn−1(K;L.) the image of the
topological reducibility obstruction t(X) = t(νX) ∈ Hn−1(X;L.).

Example 20.2 For a simply connected n-dimensional geometric Poincaré
complex X the total surgery obstruction s(X) ∈ Sn(X) is such that s(X) =
0 if and only if t(X) = 0. If t(X) = 0 there exists a topological reduction

ν̃:X−−→BSTOP for which the corresponding normal map (f, b):Mn−−→X
has surgery obstruction σ∗(f, b) = 0 ∈ Ln(Z), and if also n ≥ 4 then (f, b) is

normal bordant to a homotopy equivalence M ′
'−−→X for a manifold M ′n.

Thus for n ≥ 4 a simply connected n-dimensional geometric Poincaré
complex X is homotopy equivalent to a topological manifold if and only if
the Spivak normal fibration νX :X−−→BSG admits a topological reduction

ν̃:X−−→BSTOP . In the even-dimensional case not every such reduction
corresponds to a normal map (f, b):Mn−−→X with zero surgery obstruction.
If the corresponding normal map (f, b) has surgery obstruction σ∗(f, b) =

x ∈ Ln(Z) and −x = σ∗(g, c) for a normal map (g, c):Nn−−→Sn then the
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normal map obtained by connected sum

(f ′, b′) = (f, b) #(g, c) : M ′n = Mn #Nn −−→ X = X #Sn

has surgery obstruction

σ∗(f
′, b′) = σ∗(f, b) + σ∗(g, c) = x− x = 0 ∈ Ln(Z)

and (f ′, b′) is normal bordant to a homotopy equivalence M ′′n
'−−→X.

Proposition 20.3 For n ≥ 4 the structure set of a simply connected n-

dimensional topological manifold M is given by

STOP (M) = Sn+1(M)

=

{
ker(A:Hn(M ;L.)−−→Ln(Z))

Hn(M ;L.)
if n ≡

{
0

1
(mod 2) .

Proof This is immediate from L2∗+1(Z) = 0 and the exact sequence

. . . −−→ Hn(M ;L.)
A
−−→ Ln(Z) −−→ Sn(M) −−→ Hn−1(M ;L.) −−→ . . . .

Example 20.4 The topological manifold structure set of Sk × Sn−k for

n− k, k ≥ 2 is

STOP (Sk × Sn−k) = Sn+1(Sk × Sn−k)

= ker(θ: [Sk × Sn−k, G/TOP ]−−→Ln(Z))

= Lk(Z)⊕ Ln−k(Z) ,

giving concrete examples of homotopy equivalences of manifolds which are
not homotopic to homeomorphisms, as in Novikov [122] (in the smooth
case). In particular, in the stable range 2k + 1 < n a non-zero element

x 6= 0 ∈ Lk(Z) = πk(G/TOP )

= πk+1(BT̃OP (n− k + 1)−−→BG(n− k + 1))

(such as x = 1 ∈ L2(Z) = Z2 for k = 2, n = 6) is realized by a fibre

homotopy trivialized topological block bundle η:Sk−−→BT̃OP (n − k + 1).
The total space of the sphere bundle

Sn−k −−→ S(η) −−→ Sk

is an n-dimensional manifold equipped with a homotopy equivalence f :S(η)n
'−−→Sk × Sn−k such that the structure invariant is non-zero

s(f) = (x, 0) 6= 0 ∈ STOP (Sk × Sn−k) = Lk(Z)⊕ Ln−k(Z) ,

so that f is not homotopic to a homeomorphism.

The simply connected symmetric signature of a 4k-dimensional geometric
Poincaré complex X is just the ordinary signature

σ∗(X) = signature (H2k(X), φ) ∈ L4k(Z) = Z .
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The Hirzebruch formula expresses the signature of an oriented 4k-dimension-
al manifold M4k in terms of the L-genus L(M) = L(τM ) ∈ H4∗(M ;Q)

σ∗(M) = signature (M) = 〈L(M), [M ]Q〉 ∈ L4k(Z) = Z .

The defect in the signature formula for Poincaré complexes was used by
Browder [15] to detect the failure of a simply connected 4k-dimensional ge-
ometric Poincaré complex X to be homotopy equivalent to a (differentiable)

manifold, just as the defect in the signature formula for manifolds with
boundary had been previously used by Milnor [111] and Kervaire and Mil-
nor [86] in the detection and classification of exotic spheres. A topological

reduction ν̃:X−−→BSTOP of the Spivak normal fibration νX :X−−→BSG
determines a normal map (f, b):M4k−−→X with surgery obstruction given
by the difference between the evaluation of the L-genus L(−ν̃) ∈ H4∗(X;Q)

on [X]Q ∈ H4k(X;Q) and the signature of X

σ∗(f, b) = signature (K2k(M), λ, µ)/8

= (signature (M)− signature (X))/8

= (〈L(−ν̃), [X]Q〉 − σ∗(X))/8 ∈ L4k(Z) = Z .

If ν̃, ν̃′:X−−→BSTOP are two topological reductions then the surgery ob-

structions of corresponding normal maps (f, b):M4k−−→X, (f ′, b′):M ′4k−−→
X differ by the assembly of the difference element

t(ν̃, ν̃′) ∈ H4k(X;L.) = [X,G/TOP ] ,

that is

σ∗(f, b)− σ∗(f ′, b′) = A(t(ν̃, ν̃′)) ∈ L4k(Z) .

For k ≥ 2 a topological reduction ν̃ is realized by a 4k-dimensional topo-

logical manifold M4k with a homotopy equivalence h:M
'−−→X such that

νM = h∗ν̃:M−−→BSTOP if and only if the signature satisfies

σ∗(X) = 〈L(−ν̃), [X]Q〉 ∈ L4k(Z) = Z .

For a simply connected (4k+ 2)-dimensional geometric Poincaré complex
X with a topological reduction ν̃:X−−→BSTOP the surgery obstruction of
the corresponding normal map (f, b):M4k+2−−→X is given by

σ∗(f, b) = Arf invariant (K2k+1(M ;Z2 ), λ, µ)

∈ L4k+2(Z) = L4k+2(Z2 ) = Z2 ,

with (K2k+1(M ;Z2 ), λ, µ) the nonsingular quadratic form defined on the
kernel Z2-module

K2k+1(M ;Z2 ) = ker(f∗:H2k+1(M ;Z2 )−−→H2k+1(X;Z2 ))

by geometric intersection and self-intersection numbers, or (equivalently) by

functional Steenrod squares. There exists a (4k+2)-dimensional topological
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manifold M4k+2 with a homotopy equivalence h:M
'−−→X for which νM =

h∗ν̃:M−−→BSTOP if and only if this Arf invariant is 0.
For a simply connected 2i-dimensional geometric Poincaré complex X

with a topologically reducible νX :X−−→BSG there exists a normal map

(f, b):M2i−−→X with surgery obstruction σ∗(f, b) = 0 ∈ L2i(Z), so that
s(X) = 0 ∈ S2i(X) and X is homotopy equivalent to a manifold. This
follows formally from

im(A:H2i(X;L.)−−→L2i(Z)) = L2i(Z)

and π∗(G/TOP ) = L∗(Z). For every i ≥ 3 and every x ∈ L2i(Z) plumb-
ing can be used to construct a differentiable 2i-dimensional manifold with
boundary (W 2i, ∂W ) and a normal map

(F,B) : (W,∂W ) −−→ (D2i, S2i−1)

which restricts to a homotopy equivalence F |: ∂W '−−→S2i−1 with

σ∗(F,B) = x ∈ L2i(Z) .

(See Browder [16, V] for details.) By the (2i− 1)-dimensional PL Poincaré

conjecture the homotopy equivalence F |: ∂W '−−→S2i−1 may be taken to be
a PL homeomorphism. Thus if X is a simply connected 2i-dimensional
geometric Poincaré complex with a topological reduction ν̃:X−−→BSTOP
for which the corresponding normal map (f, b):M2i−−→X has surgery ob-
struction σ∗(f, b) = −x ∈ L2i(Z) there exists a normal map

(f ′, b′) = (f, b) ∪ (F,B) : M ′2i = cl(M\D2i) ∪∂ W −−→X
with surgery obstruction

σ∗(f
′, b′) = σ∗(f, b) + σ∗(F,B) = −x+ x = 0 ∈ L2i(Z) ,

so that (f ′, b′) is normal bordant to a homotopy equivalence M ′′2i
'−−→X.

For a simply connected (2i+ 1)-dimensional geometric Poincaré complex
X with i ≥ 2 every topological reduction ν̃:X−−→BSTOP is such that

there exists a topological manifold M2i+1 with a homotopy equivalence

h:M
'−−→X and νM = h∗ν̃:M−−→BSTOP , since the surgery obstruction

takes values in L2i+1(Z) = 0.

Example 20.5 A finite H-space X is a geometric Poincaré complex (Brow-
der [14]) with fibre homotopy trivial Spivak normal fibration νX , so that in

the simply connected case s(X) = 0 and (at least for n ≥ 4) X is homotopy
equivalent to a topological manifold. See Cappell and Weinberger [30] for
manifold structures on non-simply connected finite H-spaces.
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§21. Transfer

The L-theory transfer maps associated to fibrations give generalized product

formulae for the various signatures, and also the total surgery obstructions.
The transfer maps for coverings give the Morita theory isomorphisms in the
projective L-groups, which are used in §22 to describe the rational L-theory
of finite fundamental groups.

See Ranicki [144, §8], [145, §8] for the L-theory products for any rings with
involution R, S

Lm(R)⊗ Ln(S) −−→ Lm+n(R⊗ S) ,

Lm(R)⊗ Ln(S) −−→ Lm+n(R⊗ S)

and for the applications to topology, generalizing the Eilenberg–Zilber the-
orem

∆(X × Y ) ' ∆(X)⊗∆(Y ) .

On the chain level the L-theory products are given by the tensor product
pairing

{R-module chain complexes} × {S-module chain complexes}
−−→ {R⊗ S-module chain complexes} ; (C,D) −−→ C ⊗D .

The product of an m-dimensional

{
geometric Poincaré complex X
normal map (f, b):M−−→X and an

n-dimensional geometric Poincaré complex Y is an (m + n)-dimensional{
geometric Poincaré complex
normal map

with

{
symmetric
quadratic

signature





σ∗(X × Y ) = σ∗(X)⊗ σ∗(Y ) ∈ Lm+n(Z[π1(X × Y )])

σ∗((f, b)× 1:M × Y−−→X × Y )

= σ∗(f, b)⊗ σ∗(Y ) ∈ Lm+n(Z[π1(X × Y )]) .

In the simply connected case π1(X) = π1(Y ) = {1} these are the usual
product formulae for the signature and Kervaire–Arf invariant (Browder

[16, III.5]). See Appendix B for the corresponding product structures on
the algebraic L-spectra. On the cycle level these structures define products
in the 1/2-connective visible symmetric L-groups

V Lm(X)×V Ln(Y ) −−→ V Lm+n(X×Y ) ; (C, φ)⊗(D, θ) −−→ (C⊗D,φ⊗θ)
for any polyhedra X, Y .

Proposition 21.1 The product of a finite m-dimensional geometric Poinc-
aré complex X and a finite n-dimensional geometric Poincaré complex Y
is a finite (m + n)-dimensional geometric Poincaré complex X × Y with

1/2-connective visible symmetric signature

σ∗(X × Y ) = σ∗(X)⊗ σ∗(Y ) ∈ V Lm+n(X × Y )



21. Transfer 217

and total surgery obstruction

s(X × Y ) = ∂σ∗(X × Y ) = ∂(σ∗(X)⊗ σ∗(Y )) ∈ Sm+n(X × Y ) .

A fibration F−−→E
p
−−→B with the fibre F a finite m-dimensional geo-

metric Poincaré complex induces transfer TRANSF217!!transfer maps in
the quadratic L-groups

p ! : Ln(Z[π1(B)]) −−→ Lm+n(Z[π1(E)]) ,

which were described geometrically by Quinn [130] and algebraically in Lück
and Ranicki [99]. An n-dimensional normal map (f, b):M−−→X and a refer-
ence mapX−−→B lift to an (m+n)-dimensional normal map (f !, b !):M !−−→
X ! and a reference map X !−−→E such that

p !σ∗(f, b) = σ∗(f
!, b !) ∈ Lm+n(Z[π1(E)]) .

From now on, it will be assumed that the fibration is defined by a simplicial
map p :E−−→B of finite simplicial complexes which is a PL fibration in the

sense of Hatcher [74], with the fibre F = p−1({∗}) a finite m-dimensional ge-
ometric Poincaré complex. In terms of the cycle theory of §14 the quadratic
L-theory transfer maps are given by

p ! : Ln(Z[π1(B)]) = Ln(Λ(Z, B))

−−→ Lm+n(Z[π1(E)]) = Lm+n(Λ(Z, E)) ; (C,ψ) −−→ (C !, ψ !)

with (C,ψ) = {C(τ), ψ(τ) | τ ∈ B} a globally Poincaré cycle of (n − |τ |)-
dimensional quadratic complexes over (Z, B) (= n-dimensional quadratic

Poincaré complex in Λ(Z, B)), and

(C !, ψ !) = {(C !(σ), ψ !(σ)) |σ ∈ E}
the lifted globally Poincaré cycle of (m + n − |τ |)-dimensional quadratic
complexes over (Z, E) with

C !(σ) = ∆(D(σ,E), ∂D(σ,E))⊗ C(p σ) .

The cycle approach extends to define compatible transfer maps in the 1/2-
connective visible symmetric L-groups

p ! : V Ln(B) −−→ V Lm+n(E) ; (C, φ) −−→ (C !, φ !)

and also in the normal L-theory L̂.-homology groups

p ! : Hn(B; L̂.) −−→ Hm+n(E; L̂.) .

If F is an m-dimensional homology manifold locally Poincaré cycles lift to
locally Poincaré cycles, so in this case the method also gives transfer maps
in the L.-homology groups

p ! : Hn(B;L.) −−→ Hm+n(E;L.)
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and the structure groups

p ! : Sn(B) −−→ Sm+n(E) ; (C,ψ) −−→ (C !, ψ !) ,

with a map of exact sequences
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with a map of exact sequences

. . . w Hn(B; L.) w

u
p !

V Ln(B) w

u
p !

Sn(B) w

u
p !

Hn−1(B; L.) w

u
p !

. . .

. . . w Hm+n(E; L.) w V Lm+n(E) w Sm+n(E) w Hm+n−1(E; L.) w . . . .

Proposition 21.2 Let F−−→E
p
−−→B be a PL fibration with the base B

a finite n-dimensional geometric Poincaré complex and the fibre F a finite

m-dimensional geometric Poincaré complex, so that the total space E is a
finite (m+ n)-dimensional geometric Poincaré complex.
(i) The 1/2-connective visible symmetric signature of E is the transfer

σ∗(E) = p !σ∗(B) ∈ V Lm+n(E)

of the 1/2-connective visible symmetric signature σ∗(B) ∈ V Ln(B), and the

total surgery obstruction is

s(E) = ∂σ∗(E) = ∂p !σ∗(B) ∈ Sm+n(E) .

(ii) If F is an m-dimensional homology manifold the total surgery obstruc-

tion of E is the transfer

s(E) = p !s(B) ∈ Sm+n(E)

of the total surgery obstruction s(B) ∈ Sn(B).

Remark 21.3 For any PL fibration F−−→E
p
−−→B with the fibre F a finite

m-dimensional geometric Poincaré complex the composite

p !p
! : Ln(Z[π1(B)]) −−→ Lm+n(Z[π1(E)]) −−→ Lm+n(Z[π1(B)])

is shown in Lück and Ranicki [100] to depend only the π1(B)-equivariant
Witt class σ∗(F, p) ∈ Lm(π1(B),Z) of the symmetric Poincaré complex
of F over Z with the chain homotopy π1(B)-action by fibre transport.

See [100] for the equivariant L-groups L∗(π,Z) and the assembly map
A:H−m(B; L.)−−→Lm(π1(B),Z). If B is a compact n-dimensional homol-
ogy manifold and F is a compact m-dimensional homology manifold then

E is a compact (m + n)-dimensional homology manifold, and the ∆-map
B−−→L−m(Z) sending each simplex τ ∈ B to the symmetric Poincaré fibre
σ∗(p−1τ) over Z represents an element [F, p]L ∈ H−m(B; L.) with assembly

A([F, p]L) = σ∗(F, p) ∈ Lm(π1(B),Z). The canonical L.
-homology funda-

mental class [E]L ∈ Hm+n(E; L.) has image

p ![E]L = [F, p]L ∩ [B]L ∈ Hm+n(B; L.) .

Proposition 21.2 Let F−−→E
p
−−→B be a PL fibration with the base B

a finite n-dimensional geometric Poincaré complex and the fibre F a finite
m-dimensional geometric Poincaré complex, so that the total space E is a

finite (m+ n)-dimensional geometric Poincaré complex.
(i) The 1/2-connective visible symmetric signature of E is the transfer

σ∗(E) = p !σ∗(B) ∈ V Lm+n(E)

of the 1/2-connective visible symmetric signature σ∗(B) ∈ V Ln(B), and the
total surgery obstruction is

s(E) = ∂σ∗(E) = ∂p !σ∗(B) ∈ Sm+n(E) .

(ii) If F is an m-dimensional homology manifold the total surgery obstruc-
tion of E is the transfer

s(E) = p !s(B) ∈ Sm+n(E)

of the total surgery obstruction s(B) ∈ Sn(B).

Remark 21.3 For any PL fibration F−−→E
p
−−→B with the fibre F a finite

m-dimensional geometric Poincaré complex the composite

p !p
! : Ln(Z[π1(B)]) −−→ Lm+n(Z[π1(E)]) −−→ Lm+n(Z[π1(B)])

is shown in Lück and Ranicki [100] to depend only the π1(B)-equivariant
Witt class σ∗(F, p) ∈ Lm(π1(B),Z) of the symmetric Poincaré complex

of F over Z with the chain homotopy π1(B)-action by fibre transport.
See [100] for the equivariant L-groups L∗(π,Z) and the assembly map
A:H−m(B;L.)−−→Lm(π1(B),Z). If B is a compact n-dimensional homol-

ogy manifold and F is a compact m-dimensional homology manifold then
E is a compact (m + n)-dimensional homology manifold, and the ∆-map
B−−→L−m(Z) sending each simplex τ ∈ B to the symmetric Poincaré fibre
σ∗(p−1τ) over Z represents an element [F, p]L ∈ H−m(B;L.) with assembly

A([F, p]L) = σ∗(F, p) ∈ Lm(π1(B),Z). The canonical L.
-homology funda-

mental class [E]L ∈ Hm+n(E;L.) has image

p ![E]L = [F, p]L ∩ [B]L ∈ Hm+n(B;L.
) .
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This is a generalization of the characteristic class formula of Atiyah [6]
expressing the signature of the total space E of a differentiable fibre bundle
in the case m = 2i, m+n ≡ 0( mod 4) as a higher signature (cf. 24.3 below)

signature (E) = p !σ
∗(E) = A(p ![E]L)

= 〈L(B) ∪ x, [B]Q〉 ∈ Lm+n(Z) = Z

with x = c̃h([Γ]K) ∈ H2∗(B;Q) the modified Chern character (involving

multiplication by powers of 2) of the

{
real
complex

K-theory signature [Γ]K ∈
{
KO(B)
KU(B)

of the flat bundle Γ of nonsingular (−)i-symmetric forms over B

with fibres Hi(Fx;R) (x ∈ B) for i ≡
{

0
1

(mod 2)

[F, p]L ⊗ 1 = c̃h([Γ]K) ∈ H−2i(B;L.)⊗Q ⊆ H2∗(B;Q) .

In the special case when π1(B) acts trivially on H∗(F ;R) this gives the
product formula of Chern, Hirzebruch and Serre [36]

signature (E) = signature (B) signature (F ) ∈ Z .

Remark 21.4 A finite d-sheeted covering is a fibration F−−→E
p
−−→B with

the fibre F a 0-dimensional manifold consisting of d points. It is convenient
to write B = X, E = X. The covering is classified by the subgroup

π = π1(X) ⊂ π = π1(X)

of finite index d. The transfer maps in the quadratic L-groups

p ! : Ln(Z[π]) −−→ Ln(Z[π])

are given algebraically by the functor

p ! : {Z[π]-modules } −−→ {Z[π]-modules } ; M −−→ M !

sending a Z[π]-module M to the Z[π]-module M ! obtained by restricting the

action to Z[π] ⊂ Z[π]. The transfer maps define a map of exact sequences
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This is a generalization of the characteristic class formula of Atiyah [6]

expressing the signature of the total space E of a differentiable fibre bundle
in the case m = 2i, m+n ≡ 0( mod 4) as a higher signature (cf. 24.3 below)

signature (E) = p !σ
∗(E) = A(p ![E]L)

= ⟨L(B) ∪ x, [B]Q⟩ ∈ Lm+n(Z) = Z

with x = c̃h([Γ]K) ∈ H2∗(B; Q) the modified Chern character (involving

multiplication by powers of 2) of the

{
real
complex

K-theory signature [Γ]K ∈
{
KO(B)
KU(B)

of the flat bundle Γ of nonsingular (−)i-symmetric forms over B

with fibres Hi(Fx; R) (x ∈ B) for i ≡
{

0
1

(mod 2)

[F, p]L ⊗ 1 = c̃h([Γ]K) ∈ H−2i(B; L.)⊗Q ⊆ H2∗(B; Q) .

In the special case when π1(B) acts trivially on H∗(F ; R) this gives the
product formula of Chern, Hirzebruch and Serre [36]

signature (E) = signature (B) signature (F ) ∈ Z .

Remark 21.4 A finite d-sheeted covering is a fibration F−−→E
p
−−→B with

the fibre F a 0-dimensional manifold consisting of d points. It is convenient
to write B = X, E = X. The covering is classified by the subgroup

π = π1(X) ⊂ π = π1(X)

of finite index d. The transfer maps in the quadratic L-groups

p ! : Ln(Z[π]) −−→ Ln(Z[π])

are given algebraically by the functor

p ! : {Z[π]-modules } −−→ {Z[π]-modules } ; M −−→ M !

sending a Z[π]-module M to the Z[π]-module M ! obtained by restricting
the action to Z[π] ⊂ Z[π]. The transfer maps define a map of exact sequences

. . . w Hn(X; L.) w

u
p !

V Ln(X) w

u
p !

Sn(X) w

u
p !

Hn−1(X; L.) w

u
p !

. . .

. . . w Hn(X; L.) w V Ln(X) w Sn(X) w Hn−1(X; L.) w . . . .
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Also, there are defined commutative diagrams

Hn(X; L.)

u
p !

w
A Ln(Z)

u
d·

Hn(X; L.) w
A Ln(Z)

Hn(X; L̂.)

u
p !

w
A L̂n(Z)

u
d·

Hn(X; L̂.) w
A L̂n(Z)

with A the simply connected assembly, and d· multiplication by

σ∗(p−1(pt.)) = d ∈ L0(Z) = Z .

If X is a finite n-dimensional geometric Poincaré complex then so is X, with
total surgery obstruction given by 21.2 (ii) to be

s(X) = p !s(X) ∈ Sn(X) .

The normal L-theory fundamental class [X ]̂L ∈ Hn(X; L̂.) of X lifts to the

normal L-theory fundamental class of X

p ![X ]̂L = [X ]̂L ∈ Hn(X; L̂.) ,

so that for n = 4k the mod 8 signature is multiplicative

signature (X) = d · signature (X) ∈ L̂4k(Z) = Z8 .

If s(X) = 0 then s(X) = 0 and there exists a symmetric L-theory funda-
mental class [X]L ∈ Hn(X; L.) such that

p ![X]L = [X]L ∈ Hn(X; L.)

is a symmetric L-theory fundamental class for X. Thus for n = 4k the
actual signature is multiplicative for finite geometric Poincaré complexes X
with s(X) = 0

signature (X) = d · signature (X) ∈ L4k(Z) = Z .

See §22 for further discussion of the multiplicativity of signature for finite
coverings.

Next, we consider the Morita theory for projective K- and L-groups.

Given a ring R and an integer d ≥ 1 let Md(R) ring of d×d matrices with

entries in R. Regard Rd =
∑
d

R as an (R,Md(R))-bimodule by

R×Rd ×Md(R) −−→ Rd ; (x, (yi), (zjk)) −−→
( d∑

j=1

xyjzjk
)
,

and as an (Md(R), R)-bimodule by

Md(R)×Rd ×R −−→ Rd ; ((xij), (yk), z) −−→
( d∑

j=1

xijyjz
)
.

with A the simply connected assembly, and d· multiplication by

σ∗(p−1(pt.)) = d ∈ L0(Z) = Z .

If X is a finite n-dimensional geometric Poincaré complex then so is X, with
total surgery obstruction given by 21.2 (ii) to be

s(X) = p !s(X) ∈ Sn(X) .

The normal L-theory fundamental class [X ]̂L ∈ Hn(X; L̂.) of X lifts to the

normal L-theory fundamental class of X

p ![X ]̂L = [X ]̂L ∈ Hn(X; L̂.) ,

so that for n = 4k the mod 8 signature is multiplicative

signature (X) = d · signature (X) ∈ L̂4k(Z) = Z8 .

If s(X) = 0 then s(X) = 0 and there exists a symmetric L-theory funda-
mental class [X]L ∈ Hn(X;L.) such that

p ![X]L = [X]L ∈ Hn(X;L.
)

is a symmetric L-theory fundamental class for X. Thus for n = 4k the

actual signature is multiplicative for finite geometric Poincaré complexes X
with s(X) = 0

signature (X) = d · signature (X) ∈ L4k(Z) = Z .

See §22 for further discussion of the multiplicativity of signature for finite
coverings.

Next, we consider the Morita theory for projective K- and L-groups.

Given a ring R and an integer d ≥ 1 let Md(R) ring of d×d matrices with
entries in R. Regard Rd =

∑
d

R as an (R,Md(R))-bimodule by

R×Rd ×Md(R) −−→ Rd ; (x, (yi), (zjk)) −−→
( d∑

j=1

xyjzjk
)
,

and as an (Md(R), R)-bimodule by

Md(R)×Rd ×R −−→ Rd ; ((xij), (yk), z) −−→
( d∑

j=1

xijyjz
)
.
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The Morita equivalence of categories

µ : { f.g. projective Md(R)-modules } '−−→ { f.g. projective R-modules } ;

P −−→ P ! = Rd ⊗Md(R) P

has inverse

µ−1 : { f.g. projective R-modules } '−−→
{ f.g. projective Md(R)-modules } ; Q −−→ Rd ⊗R Q .

The Morita isomorphism of the projective class groups

µ : K0(Md(R))
'−−→ K0(R) ; [P ] −−→ [P !]

is such that

µ[Md(R)] = d[R] , µ[Rd] = [R] ∈ K0(R) .

For any ring with involution R and ε = ±1 let

{
L∗(R, ε)
L∗(R, ε)

be the
{
ε-symmetric
ε-quadratic

L-groups of R (Ranicki [144]), such that

{
L∗(R, 1) = L∗(R)

L∗(R, 1) = L∗(R) .

The 0-dimensional L-group

{
L0(R, ε)
L0(R, ε)

is the Witt group of nonsingular
{
ε-symmetric
ε-quadratic

forms over R. The ε-symmetrization maps

1 + Tε : L∗(R, ε) −−→ L∗(R, ε)

are isomorphisms modulo 8-torsion, so that

L∗(R, ε)[1/2] = L∗(R, ε)[1/2] .

The ε-quadratic L-groups are 4-periodic

L∗(R, ε) = L∗+2(R,−ε) = L∗+4(R, ε) .

The ε-symmetric L-groups are 4-periodic for a Dedekind ring with involution
R, and are 4-periodic modulo 2-primary torsion for any R.

Definition 21.5 Given a ring with involution R and a nonsingular ε-
symmetric form (Rd, φ) over R let Md(R)φ denote the d × d matrix ring

Md(R)

Md(R)φ = HomR(Rd, Rd)

with the involution

Md(R)φ
'−−→ Md(R)φ ; f −−→ φ−1f∗φ .
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Proposition 21.6 The projective L-groups of R and Md(R)φ are related

by Morita isomorphisms of projective

{
η-symmetric
η-quadratic

L-groups




µ : L∗p(R, η)

'−−→ L∗p(Md(R)φ, εη)

µ : Lp∗(R, η)
'−−→ Lp∗(Md(R)φ, εη)

with η = ±1. The Morita isomorphism µ:L0
p(Md(R)φ)

'−−→L0
p(R, ε) sends

the unit element 1 = (Md(R)φ, 1) ∈ L0
p(Md(R)φ) to

µ(1) = [(Md(R)φ) !, 1 ! ] = (Rd, φ) ∈ L0
p(R, ε) .

Proof The Morita equivalence of additive categories with involution

µ : { f.g. projective Md(R)φ-modules } '−−→
{ f.g. projective R-modules} ; P −−→ P !

induces an isomorphism of the projective ±1-quadratic L-groups

µ : Lp∗(Md(R)φ, η)
'−−→ Lp∗(R, εη) ; [P, θ] −−→ [P !, θ !] .

Similarly for the projective ±1-symmetric L-groups L∗p.

Remark 21.7 Let p :X−−→X be a finite d-sheeted covering as in 21.4, so
that the fibre F = p−1({∗}) is the discrete space with d points and

p ! : π = π1(X) −−→ π = π1(X)

is the inclusion of a subgroup of finite index d. The algebraic K-theory

transfer maps associated to p are the composites

p ! = µi ! : K∗(Z[π]) −−→ K∗(Md(Z[π]))
'−−→ K∗(Z[π])

with i ! induced by the inclusion of rings

i : Z[π] −−→ HomZ[π](i
!Z[π], i !Z[π]) = Md(Z[π])

and µ the Morita isomorphisms, such that p !Z[π] = Z[π]d . The projective

L-theory transfer maps associated to p are the composites

p ! = µi ! : Lp∗(Z[π]) −−→ Lp∗(Md(Z[π])φ)
'−−→ Lp∗(Z[π])

with µ the Morita isomorphisms of 21.6 for the nonsingular symmetric form

σ∗(F ) = (p !Z[π], φ) over Z[π], with φ = 1⊕1⊕ . . .⊕1. For the free L-groups
actually considered in 21.4 the transfer maps are

p ! = µi ! : L∗(Z[π]) −−→ LI∗(Md(Z[π])φ)
'−−→ L∗(Z[π])

with

I = im(K0(Z)) = dZ ⊂ K0(Md(Z[π])) = Z .
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§22. Finite fundamental group
The computation of the structure groups S∗(X) of a space X requires the
calculation of the generalized homology groups H∗(X;L.), the L-groups

L∗(Z[π]) (π = π1(X)) and the assembly map A:H∗(X;L.)−−→L∗(Z[π]).
The classical methods of algebraic topology can deal withH∗(X;L.), but the
more recent methods of algebraic K- and L-theory are required for L∗(Z[π])
and A. In fact, it is quite difficult to obtain S∗(X) in general, but for finite π

there is a highly evolved computational technique fulfilling the programme
set out by Wall [176, 4.9] for using localization and completion to determine
the L-theory of Z[π] from the classification of quadratic forms over algebraic

number fields and rings of algebraic integers. Apart from Wall himself, this
has involved the work (in alphabetic order) of Bak, Carlsson, Connolly,
Hambleton, Kolster, Milgram, Pardon, Taylor, Williams and others.

The topological spherical space form problem is the study of free actions
of finite groups on spheres, or equivalently of compact manifolds with finite
fundamental group and the sphere Sn as universal cover. A finite group
π acts freely on a CW complex X homotopy equivalent to Sn with trivial

action on H∗(X) if and only if the cohomology of π is periodic of order q
dividing n+ 1, with q necessarily even and n necessarily odd. The quotient
X/π is a finitely dominated n-dimensional geometric Poincaré complex with

fundamental group π and universal coverX. There exists such an action of π
on X with X/π homotopy equivalent to a compact n-dimensional manifold if
(and for n ≥ 5 only if) π acts freely on Sn. Swan [172] applied algebraic K-
theory to the spherical space form problem. The subsequent investigation

of the spherical space form problem was one of the motivations for the
development of non-simply-connected surgery theory in general, and the
computation of L∗(Z[π]) for finite π in particular. Madsen, Thomas and

Wall [103] used surgery theory to classify the finite groups which act freely
on spheres. Madsen and Milgram then classified the actions in dimensions
≥ 5. See Davis and Milgram [44] for a survey.

The computations of L∗(Z[π]) have included the determination of the as-
sembly map A:H∗(Bπ;L.)−−→L∗(Z[π]) for finite π by Hambleton, Milgram,
Taylor and Williams [69] and Milgram [109]. The multisignature, Arf invari-
ants, various semi-invariants and Whitehead torsion are used there to detect

the surgery obstructions in im(A) ⊆ L∗(Z[π]) of normal maps of closed man-
ifolds with finite fundamental group π. It appears that such invariants also
suffice to detect the surgery obstructions in L∗(Z[π]) of normal maps of

finite geometric Poincaré complexes with finite fundamental group π. Such
a detection should allow the total surgery obstruction s(X) ∈ Sn(X) of
a finite geometric Poincaré complex X with finite π1(X) to be expressed

in terms of the underlying homotopy type and these surgery invariants.
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See Hambleton and Madsen [67] for the detection of the projective surgery
obstructions in Lp∗(Z[π]) of normal maps of finitely dominated geometric
Poincaré complexes with finite fundamental group π in terms of the mul-
tisignature, Arf invariants and various semi-invariants as well as the Wall

finiteness obstruction, which together with the underlying homotopy type
can be used to at least express the projective total surgery obstruction
sp(X) ∈ Spn(X) (Appendix C) in terms of computable invariants.

The multisignature is the fundamental invariant of surgery obstruction
theory with finite fundamental group π. It is a collection of integers indexed
by the irreducible real representations of π, generalizing the signature in the
simply connected case. The multisignature suffices for the computation of

the projective L-groups Lp∗(R[π]) = L∗p(R[π]), and for the determination of
the quadratic L-groups L∗(Z[π]) and the quadratic structure groups S∗(Bπ)
modulo torsion. In 22.36 below it is explicitly verified that for an oriented

finite n-dimensional geometric Poincaré complex X with a map π1(X)−−→π
to a finite group π the multisignature determines the image of the total
surgery obstruction s(X) ∈ Sn(X) in Sn(Bπ) modulo torsion. For the sake

of brevity only the oriented case is considered in §22.
There are two distinct approaches to the multisignature, both of which

were applied to the L-theory of finite groups by Wall [180, 13A,B]:
(i) The K-theoretic G-signature method of Atiyah and Singer [7] and

Petrie [128], which depends on the character theory of finite-dimensional F -
representations of a compact Lie group G, with F = R or C . Only the case
of a discrete finite group is considered here, with G = π. The ‘K-theory F -

multisignature’ for L2∗
p (F [π]) consists of the rank invariants of the algebraic

K-group K0(F [π]) giving a natural isomorphism L4∗
p (F [π]) ∼= K0(F [π]),

with the complex conjugation involution if F = C . There is a similar (but
more complicated) result for L4∗+2

p (F [π]).

(ii) The L-theoretic method of Wall [176], [180], Fröhlich and McEvett
[57] and Lewis [95], which depends on the algebraic properties of the ring
F [π] for a finite group π, with F any field of characteristic 0. The ‘L-theory

F -multisignature’ for L2∗
p (F [π]) consists of the signature invariants of the

L-groups of the division rings appearing in the Wedderburn decomposition
of F [π] as a product of matrix algebras over division rings.

The K- and L-theory F -multisignatures coincide whenever both are de-
fined. The Q-multisignature coincides with the R-multisignature.

Definition 22.1 (i) Given a commutative ring with involution F and a
group π let the group ring F [π] have the involution

¯ : F [π] −−→ F [π] ;
∑

g∈π
agg −−→

∑

g∈π
āgg
−1 (ag ∈ F ) .
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The involution on F [π] is real if it is the identity on F .
The involution on F [π] is hermitian if it is not the identity on F .
(ii) For F = C let C+ (resp. C−) denote C with the identity (resp. complex
conjugation) involution, so that C+[π] (resp. C−[π]) is C [π] with the real

(resp. hermitian) involution.

For a finite group π and any field F of characteristic not divisible by |π|
the ring F [π] is semi-simple, by Maschke’s theorem, so every F [π]-module
is projective. For any involution on F the F [π]-dual of a f.g. F [π]-module

M is a f.g. F [π]-module M∗ = HomF [π](M,F [π]), with F [π] acting by

F [π]×M∗ −−→ M∗ ; (ag, f) −−→ (x −−→ f(x)āg−1) (a ∈ F, g ∈ π) .

The F -module isomorphism

HomF (M,F )
'−−→ M∗ ; f −−→ (x −−→

∑

g∈π
f(gx)g−1)

is an F [π]-module isomorphism, with F [π] acting by

F [π]×HomF (M,F ) −−→ HomF (M,F ) ; (ag, f) −−→ (x −−→ f(gx)ā) .

For ε = ±1 the ε-symmetric forms (M,φ) over F [π] are in one–one cor-
respondence with the ε-symmetric forms (M,φ !) over F which are π-equi
variant, that is

φ !(gx, gy) = φ !(x, y) ∈ R (x, y ∈M, g ∈ π) .

The forms (M,φ), (M,φ !) correspond if

φ(x, y) =
∑

g∈π
φ !(gx, y)g ∈ F [π] ,

or equivalently

φ !(x, y) = coefficient of 1 in φ(x, y) ∈ F ⊂ F [π] .

Lemma 22.2 Let F = R or C−. A f.g. F [π]-module M supports a nonsin-
gular symmetric form (M, θ) over F [π] which is positive definite:

θ !(x, x) > 0 (x ∈M\{0}) .
Any two such forms θ(0), θ(1) are homotopic, i.e. related by a continuous
map θ: I−−→HomF [π](M,M∗) with each (M, θ(t)) (t ∈ I) positive definite.
Proof The underlying F -module of M supports a positive definite symmet-

ric form (M, θ0) over F , which is unique up to homotopy. The symmetric
form (M, θ !) over F obtained by averaging

θ !(x, y) = (1/|π|)
∑

g∈π
θ0(gx, gy) ∈ F (x, y ∈M)

is positive definite and π-equivariant, corresponding to a nonsingular sym-
metric form (M, θ) over F [π].
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Let F = R or C−, as before. Given a f.g. F [π]-module M and an
endomorphism f :M−−→M let

f t = θ−1f∗θ : M −−→ M

be the endomorphism adjoint with respect to the nonsingular symmetric
form (M, θ) over F [π] with the form (M, θ !) over F positive definite.

The following definition of the multisignature is just a translation into

the language of algebraic K-theory of the definition of the G-signature due
to Atiyah and Singer [7, pp. 578–579] in the case of a discrete finite group
G = π.

Definition 22.3 Let F = R or C−. The K-theory F -multisignature of a
projective nonsingular ε-symmetric form (M,φ) over F [π] is the element

[M,φ] ∈ K0(F [π], ε)

defined as follows:

(i) If ε = +1 then K0(F [π], ε) = K0(F [π]) (by definition). The F [π]-module

morphism f = θ−1φ:M−−→M is self-adjoint, that is f t = f , and may be
diagonalized by the spectral theorem with real eigenvalues. The positive
and negative eigenspaces M+, M− are π-invariant, so that they are f.g.
projective F [π]-modules, and

[M,φ] = [M+]− [M−] ∈ K0(F [π]) .

(ii) If F = C− and ε = −1 then K0(F [π], ε) = K0(C [π]) (by definition).

The K-theory F -multisignature of (M,φ) is defined to be the K-theory F -
multisignature (as in (i)) of the nonsingular symmetric form (M, iφ) over
C−[π]

[M,φ] = [M, iφ] = [M+]− [M−] ∈ K0(C [π]) .

(iii) If F = R and ε = −1 then

K0(F [π], ε) = {x− x∗ |x ∈ K0(C [π]) } ⊂ K0(C [π])

(by definition). The R[π]-module morphism f = θ−1φ:M−−→M is skew-
adjoint, that is f t = −f . If (ff t)1/2 denotes the positive square root of ff t

the automorphism

J = f/(ff t)1/2 : M −−→ M

is such that J2 = −1 and commutes with the action of π. Let (M,J),

(M,−J) be the f.g. projective C [π]-modules defined by the two π-invariant
complex structures J , −J on M . The K-theory R-multisignature of (M,φ)
is given by

[M,φ] = [M,J ]− [M,−J ] ∈ K0(R[π],−1) ⊂ K0(C [π]) .
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This is the K-theory C-multisignature (as in (i)) of the nonsingular sym-
metric form (C⊗R M, i⊗ φ) over C−[π], with

(C⊗R M)± = { 1⊗ x∓ i⊗ Jx |x ∈M } ∼= (M,±J) .

Proposition 22.4 The K-theory F -multisignature defines isomorphisms

L0
p(F [π], ε)

'−−→ K0(F [π], ε) ; (M,φ) −−→ [M,φ] (F = R or C−) .

Proof For ε = 1 the inverse isomorphism is defined by sending a projective
class [M ] ∈ K0(F [π]) to the Witt class [M, θ] ∈ L0

p(F [π]) of the positive

definite nonsingular symmetric form (M, θ) over F [π] given by 22.2. Simi-
larly for (F, ε) = (C−,−1), with [M ] sent to (M, iθ). For (F, ε) = (R,−1)
see 22.19 below.

Let F be a field of characteristic 0, and let π be a finite group. The

L-theory multisignature for L∗p(F [π]) is an analogue of ‘multirank’ for the
projective class group K0(F [π]). Both the multirank and the multisignature
are collections of integer-valued rank invariants indexed by the irreducible
F -representations of the finite group π, obtained as follows.

By Wedderburn’s theorem F [π] is a finite product of simple rings

F [π] = S1(F, π)× S2(F, π)× . . .× Sα(F,π)(F, π) ,

starting with S1(F, π) = F . Each of the factors is a matrix algebra

Sj(F, π) = Mdj(F,π)(Dj(F, π))

over a simple finite-dimensional F -algebra

Dj(F, π) = EndF [π](Pj) ,

which is the endomorphism ring of the corresponding simple f.g. projective
F [π]-module Pj = Dj(F, π)dj(F,π), with centre F . Let G be the Galois
group of the field extension of F obtained by adjoining the |π|th roots of 1.

G is a subgroup of Z•|π|, the multiplicative group of units in Z|π|\{0}. Two
elements x, y ∈ π are F -conjugate if

xg = h−1yh ∈ π
for some g ∈ G, h ∈ π. The number of simple factors in F [π] is given by

α(F, π)

= no. of isomorphism classes of irreducible F -representations of π

= no. of F -conjugacy classes in π .

See Serre [157, 12.4] or Curtis and Reiner [42, 21.5] for the details. For

each isomorphism class of simple finite-dimensional algebras D over F let
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αD(F, π) be the number of factors Sj(F, π) in F [π] with Dj(F, π) = D, so
that

α(F, π) =
∑

D

αD(F, π) .

For a division ring R f.g. projective R-modules are f.g. free, and rank

defines an isomorphism

K0(R)
'−−→ Z ; [Rm]− [Rn] −−→ m− n .

The algebraic K-groups of a product of rings R = R1 ×R2 are given by

K∗(R1 ×R2) = K∗(R1)⊕K∗(R2) .

For any finite group π

K0(F [π]) =

α(F,π)∑

j=1

K0(Sj(F, π)) =

α(F,π)∑

j=1

K0(Dj(F, π)) =

α(F,π)∑

j=1

Z .

The F -multirank MULRAN228!!multirank r∗(P ) of a f.g. projective F [π]-

module P is the collection of α(F, π) rank invariants

rj(P ) = [Sj(F, π)⊗F [π] P ] ∈ K0(Sj(F, π)) = K0(Dj(F, π)) = Z ,

one for each simple factor Sj(F, π) in F [π]. The F -multirank defines an
isomorphism

r∗(P ) : K0(F [π])
'−−→

α(F,π)∑

j=1

Z ; [P ] −−→ (r1(P ), r2(P ), . . . , rα(F,π)(P )) ,

with r∗((Dj)
dj ) = (0, . . . , 0, 1, 0, . . . , 0) and r∗(Sj) = (0, . . . , 0, dj , 0, . . . , 0)

(dj = dj(F, π)). The inclusion i:F−−→F [π] induces a rudimentary algebraic

K-theory assembly map

i ! =




d1

d2
...

dα(F,π)


 :

H0(Bπ;K(F )) = K0(F ) = Z −−→ K0(F [π]) =

α(F,π)∑

j=1

Z ;

[F ] = 1 −−→ r∗(F [π]) = (d1, d2, . . . , dα(F,π))

with K(F ) the algebraic K-theory spectrum of F . The transfer map is given
by

i ! = (c1d1 c2d2 . . . cα(F,π)dα(F,π)) : K0(F [π]) =

α(F,π)∑

j=1

Z −−→K0(F ) = Z
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with cj = dimF (Dj(F, π)), and

i !i ! =

α(F,π)∑

j=1

cj(dj)
2 = |π| : K0(F ) = Z −−→ K0(F ) = Z .

The reduced projective class group K̃0(Z[π]) is finite for a finite group π

by a theorem of Swan, and every f.g. projective Z[π]-module P induces a
f.g. free Q[π]-module Q[π]⊗Z[π] P , so that

im(K̃0(Z[π])−−→K̃0(Q[π])) = {0}
and the Q-multirank is not useful for detecting K̃0(Z[π]). The F -multitorsion
is defined for any field F of characteristic 0 by means of the identification

K1(F [π]) =

α(F,π)∑

j=1

K1(Dj(F, π)) .

By a theorem of Bass the torsion group K1(Z[π]) and the Whitehead group
Wh(π) are finitely generated for finite π, with the same rank

dimQ Q⊗K1(Z[π]) = dimQ Q⊗Wh(π) = α(R, π)− α(Q, π)

detected by the Q-multitorsion subject to the restrictions given by the
Dirichlet unit theorem: each of the α(Q, π) simple factors S = Md(D)

in Q[π] contributes α(R, S)− 1, with α(R, S) the number of simple factors
in R⊗Q S.

The character of an F -representation ρ:π−−→GLd(F ) is the (conjugacy)

class function

χ(ρ) : π −−→ F ; g −−→ tr(ρ(g)) .

LetRF (π) be the F -coefficient character group of π, the free abelian group of
Z-linear combinations of the characters of the irreducible F -representations.
The F -multirank also defines an isomorphism

K0(F [π])
'−−→ RF (π) ; [P ] −−→

α(F,π)∑

j=1

rj(P )χ(ρj)

with ρj the irreducible F -representation

ρj : π −−→ AutF (Dj(F, π)dj ) = GLcjdj (F )

of degree cjdj defined by the composite

π −−→ F [π] −−→ Sj(F, π) = EndDj(F,π)(Dj(F, π)dj ) .

Example 22.5 (i) The element i![F ] = [F [π]] ∈ K0(F [π]) corresponds to
the character

χ : π −−→ F ; g −−→
{
|π|
0

if

{
g = 1

g 6= 1
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of the regular F -representation F [π] of π with degree |π|.
(ii) Regarded as a character, the K-theory F -multisignature (22.3) of a
nonsingular ε-symmetric form (M,φ) over F [π] (F = R or C−) is the class
function

[M,φ] : π −−→
{
F
C

; g −−→ σ(g, (M,φ)) =

{
tr(g|M+)− tr(g|M−)

tr(g|(M,J))− tr(g|(M,J))

if (F, ε) =

{
(R, 1) or (C−,±1)

(R,−1) .

In particular, for (M,φ) = (F [π], 1) this is the character of the regular F -
representation, as in (i).

If {ρ1, ρ2, . . . , ρα(F,π)} is a complete set of irreducible F -representations
of π with characters {χ1, χ2, . . . , χα(F,π)} then the central idempotent

ej(F, π) = ej(F, π)2 ∈ F [π]

IDEM230!!xxhfilxxbreak idempotent ej(F, xxpi) with

ej(F, π)F [π] = Sj(F, π) , ej(F, π)ek(F, π) = 0 (j 6= k)

is given by

ej(F, π) = (fj/|π|)
∑

g∈π
χj(g)g−1 ∈ F [π]

for some fj ∈ F .
As a purely algebraic invariant the multisignature is a generalization of

the signatures used by Hasse [73] and Landherr [89] to classify quadratic
and hermitian forms over algebraic number fields. The total signature map
on the symmetric Witt group L0(F ) of a field F with the identity involution

σ =

α∑

j=1

σj : L0(F ) −−→
α∑

j=1

L0(R) =

α∑

j=1

Z

has one component for each embedding σj :F ⊂ R (Milnor and Husemoller
[113, 3.3.10], Scharlau [156, 3.6]). The kernel of σ is the torsion subgroup of
L0(F ), with 2-primary torsion only. The image of σ is constrained by the

congruences

σj(M,φ) ≡ dimF (M) (mod 2) (1 ≤ j ≤ α)

for any nonsingular symmetric form (M,φ) over F . For an algebraic number

field F the image of σ is such that

2(
α∑

j=1

Z) ⊆ im(σ) ⊆
α∑

j=1

Z

and σ is an isomorphism modulo 2-primary torsion [113, p. 65]. For any
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field F of characteristic 6= 2 L∗(F ) = L∗(F ) and every nonsingular skew-
symmetric form over F is hyperbolic, so that L2(F ) = L2(F ) = 0.

The product decomposition

F [π] =

α(F,π)∏

j=1

Mdj(F,π)(Dj(F, π))

reduces the computation of L∗(F [π]) for finite π to that of L∗(D) for division

rings with involution D which are finite-dimensional algebras over F . By
assumption F has characteristic 0, so that 1/2 ∈ F and there is no difference
between the quadratic and symmetric L-groups

L∗(F [π]) = L∗(F [π]) .

The calculations are particularly easy for projective L-theory L∗p, since this
has better categorical properties than the free L-theory L∗, while differing
from it in at most 2-primary torsion:

Proposition 22.6 For any ring with involution A the forgetful maps L∗(A)
−−→L∗p(A) from the free to the projective L-groups are isomorphisms modulo

2-primary torsion, so that

L∗(A)[1/2] = L∗p(A)[1/2] .

Proof Immediate from the exact sequence of Ranicki [139]

. . . −−→ Ln(A) −−→ Lnp (A) −−→ Ĥn(Z2 ; K̃0(A)) −−→ Ln−1(A) −−→ . . . ,

since the Tate Z2 -cohomology groups Ĥ∗ are of exponent 2.

Proposition 22.7 (i) The odd-dimensional projective L-groups of a semi-
simple ring A with involution vanish:

L2∗+1
p (A) = 0 .

(ii) For a finite group π and any field F with |π| 6 | char(F )

L2∗+1
p (F [π]) = 0 .

Proof (i) The proof of Lp2∗+1(A) = 0 in Ranicki [141] extends to symmetric
L-theory.
(ii) Immediate from (i), since F [π] is semi-simple.

A division ring D is such that K̃0(D) = 0, and so L∗(D) = L∗p(D) for any
involution on D. Also, D is simple, so that L2∗+1(D) = 0. Let D• = D\{0},
and for ε = ±1 let

D•ε = {x ∈ D• | x̄ = εx} .
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Every nonsingular ε-symmetric form over D is equivalent in the Witt group

to a diagonal form
n∑

m=1
(D,xm) with xm ∈ D•ε , so that the morphism

Z[D•ε ] −−→ L0(D, ε) ; [x] −−→ (D,x)

is onto.

Proposition 22.8 The ε-symmetric Witt group L0(D, ε) of a division ring
with involution D is given in terms of generators and relations by

L0(D, ε) = Z[D•ε ]/Nε

with Nε the subgroup of Z[D•ε ] generated by elements of the type

[x]− [axā] , [x] + [−x] , [x] + [y]− [x+ y]− [x(x+ y)−1y]

for any a ∈ D•, x, y ∈ D•ε with x+ y 6= 0.
Proof See Scharlau [156, 2.9] and Cibils [37]. (For a field F of character-
istic 6= 2 with the identity involution such a presentation of L0(F, 1) was

originally obtained by Witt himself).

The projective L-theory of products is given by:

Proposition 22.9 Let R be a ring which is a product

R = R1 ×R2 .

For an involution on R which preserves the factors (Ri = Ri)

L∗p(R) = L∗p(R1)⊕ L∗p(R2) ,

while for an involution which interchanges the factors (R1 = R2)

L∗p(R) = 0 .

Similarly for the quadratic L-groups L∗.
Proof The central idempotents

e1 = (1, 0) , e2 = (0, 1) ∈ R = R1 ×R2

are such that

eiR = Ri , (ei)
2 = ei , e1 + e2 = 1 , e1e2 = 0 ∈ R (i = 1, 2) .

An involution on R preserves the factors if and only if ēi = ei in which case

there are defined isomorphisms

L∗p(R)
'−−→ L∗p(R1)⊕ L∗p(R2) ; (C, φ) −−→ (e1C, e1φ)⊕ (e2C, e2φ) .

An involution on R interchanges the factors if and only if ē1 = e2, in which
case for every projective symmetric Poincaré complex (C, φ) over R there
is defined a null-cobordism (C−−→e1C, (0, φ)), and so L∗p(R) = 0.
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A simple factor Sj(F, π) of F [π] is preserved by the involution

Sj(F, π) = Sj(F, π)

if and only if the idempotent ej(F, π) ∈ F [π] is such that

ej(F, π) = ej(F, π) ∈ F [π] .

Proposition 22.10 The projective L-groups of F [π] are such that

L∗p(F [π]) =
∑

j∈J(F,π)

L∗p(Sj(F, π))

with

J(F, π) = {j |Sj = Sj} ⊆ {1, 2, . . . , α(F, π)}
the indexing set for the simple factors Sj = Sj(F, π) preserved by the invo-
lution on F [π], depending on the choice of involution on the ground field F .

(In fact, L2∗+1
p (F [π]) = 0, by 22.7.)

Proof Immediate from 22.9, since the simple factors Sj(F, π) of F [π] not
preserved by the involution come in pairs Sj(F, π) × Sj(F, π)op with the
hyperbolic involution (x, y)−−→(y, x).

From now on, only the ground fields F = C,R,Q will be considered.

Proposition 22.11 Let D be a division ring such that Md(D) is a simple
factor of F [π] for some finite group π. For any involution on D and ε = ±1

the ε-symmetric Witt group L0(D, ε) is a countable abelian group of finite
rank, with 2-primary torsion only.
Proof See Wall [181].

The 2-primary torsion in L0(D, ε) may well be infinitely generated in the

case F = Q (Hasse–Witt invariants), e.g. if D = Q, ε = +1

L0(Q, 1) = L0(Q) = L0(R)⊕
⊕

q prime

L0(Fq) = Z⊕ (Z2)∞ ⊕ (Z4)∞

with Fq the finite field of q elements and

L0(Fq) =





Z2 if q = 2

Z2 ⊕ Z2 if q ≡ 1(mod 4)

Z4 if q ≡ 3(mod 4)

(Milnor and Husemoller [113, IV §§1,2]).

Terminology 22.12 Given a division ring with involution D as in 22.11
let rk(D) ≥ 0 be the rank of the (−)k-symmetric Witt group of D, so that

L0(D, (−)k)[1/2] =
∑

rk(D)

Z[1/2] .
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The rank of the Witt group L2k(D) = L0(D, (−)k) of a division ring with
involution D is the number of the signatures given by the embeddings of D
in R, H and C−, whose L-theory is tabulated in 22.16 below.

The following definition of the multisignature is just a translation into
the language of algebraic L-theory of the definition due to Wall [176, 4.9],
[180, p. 164].

Definition 22.13 The L-theory F -multisignature of a nonsingular (−1)k-
symmetric form (M,φ) over F [π] for a finite group π is the collection of

αk(F, π) signature invariants

σj(M,φ) = [Sj(F, π)⊗F [π] (M,φ)] ∈ im
(
L2k(Sj(F, π))−−→

∑

rk(Dj(F,π))

Z
)

with αk(F, π) =
∑

j∈J(F,π)

rk(Dj(F, π)).

Proposition 22.14 The L-theory F -multisignature map

σ =
∑

j∈J(F,π)

σj : L2k(F [π]) −−→
∑

j∈J(F,π)

∑

rk(Dj(F,π))

Z =
∑

αk(F,π)

Z

is an isomorphism modulo 2-primary torsion, with

L2k(F [π])[1/2] =
∑

j∈J(F,π)

L2k(Dj(F, π))[1/2]
'−−→

∑

αk(F,π)

Z[1/2] .

Proof Immediate from 21.6 and 22.10.

The (α, β)-quaternion algebra over a field F is the division F -algebra with
centre F defined for any α, β ∈ F • by(

α, β

F

)
= {w + xi+ yj + zk |w, x, y, z ∈ F}

with

i2 = α , j2 = β , ij = −ji = k , k2 = −αβ .
Now specialize to the case F = R. The ring R[π] is a product of simple

finite-dimensional algebras over R. Such an algebra is a matrix ring Md(D)

with D one of R, H, C.
The quaternion ring

H =

(−1,−1

R

)
= {w + xi+ yj + zk |w, x, y, z ∈ R}

is given the quaternion conjugation involution

H −−→ H ; v = w + xi+ yj + zk −−→ v̄ = w − xi− yj − zk .
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Definition 22.15 Let D be one of the rings with involution R, H, C−. The
signature of a nonsingular symmetric form (M,φ) SIG234!!xxhfilxxbreak
signature over D is defined by

signature (M,φ) =

n∑

m=1

signxm ∈ Z

using any diagonalization (M,φ) ∼=
n∑

m=1
(D,xm), with xm ∈ D•+1 = R\{0}.

Equivalently,

signature (M,φ) = [M+]− [M−] ∈ K0(D) = Z
for any decomposition (M,φ) = (M+, φ+)⊕ (M−, φ−) into positive definite

and negative definite parts.

Proposition 22.16 (i) The L-groups of R are given by

Ln(R) =

{
Z
0

if n

{≡ 0

6≡ 0
(mod 4)

with isomorphisms

signature : L4∗(R)
'−−→ K0(R) = Z ,

so that r0(R) = 1, r1(R) = 0.
(ii) The L-groups of H are given by

Ln(H ) =





Z
Z2

0

if n ≡





0

2

1, 3

(mod 4)

with isomorphisms

signature : L4∗(H )
'−−→ K0(H ) = Z ,

so that r0(H ) = 1, r1(H ) = 0. The generator 1 ∈ L4∗+2(H ) = Z2 is

represented by the nonsingular skew-symmetric form (H , i).
(iii) The L-groups of C− are given by

Ln(C−) =

{
Z
0

if n ≡
{

0

1
(mod 2)

with isomorphisms

signature : L2∗(C−)
'−−→ K0(C) = Z ,

so that r0(C−) = r1(C−) = 1.
(iv) The L-groups of C+ are given by

Ln(C+) =

{
Z2

0
if n

{≡ 0

6≡ 0
(mod 4)

so that r0(C+) = r1(C+) = 0.
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The number of simple factors Sj = Sj(R, π) = Mdj (Dj(R, π)) in R[π] is

α(R, π) = no. of irreducible R-representations of π

= no. of conjugacy classes of unordered pairs {g, g−1} in π

= αR(R, π) + αC(R, π) + αH(R, π)

with αD(R, π) the number of simple factors Sj such that Dj(R, π) = D.

The projective class group of R[π] is given by

K0(R[π]) =

α(R,π)∑

j=1

K0(Sj(R, π)) =

α(R,π)∑

j=1

K0(Dj(R, π))

=
∑

αR(R,π)

K0(R)⊕
∑

αH(R,π)

K0(H )⊕
∑

αC(R,π)

K0(C) =
∑

α(R,π)

Z .

Every simple factor Sj(R, π) in R[π] is preserved by the involution, and the

duality involution ∗:K0(R[π])−−→K0(R[π]) is the identity.
In order to obtain the corresponding computation of L2∗

p (R[π]) it is nec-
essary to consider the action of the involution on R[π] on the simple factors

Sj(R, π).
Let A be a central simple algebra over a field K of characteristic 6= 2,

with dimK(A) = d2. Involutions

I :A
'−−→ A ; a −−→ ā

are classified by the dimensions of the I-invariant subspaces

A+ = H0(Z2 ;A) = {a ∈ A | ā = a} ,
A− = H1(Z2 ;A) = {a ∈ A | ā = −a}

with A = A+ ⊕A−, as follows:

(I) (first kind, orthogonal type)

dimK(A+) = d(d+ 1)/2 , dimK(A−) = d(d− 1)/2 ,

in which case I|:K−−→K is the identity,

(II) (first kind, symplectic type)

dimK(A+) = d(d− 1)/2 , dimK(A−) = d(d+ 1)/2 ,

in which case I|:K−−→K is the identity,
(III) (second kind, unitary type) d is even and

dimK(A+) = dimK(A−) = d2 ,

in which case I|:K−−→K is not the identity.

See Scharlau [156, §8.7] for further details.

Example 22.17 Let (V, φ) be a nonsingular ε-symmetric form over a field

with involution K of characteristic 6= 2, and let dimK(V ) = d. Define an
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involution on the d2-dimensional central simple K-algebra A = HomK(V, V )
by

I : A
'−−→ A ; f −−→ φ−1f∗φ .

Let Md(K)φ be the matrix ring with involution defined in 21.5. A choice of
basis for V determines an identification A = Md(K)φ. Use the isomorphism

A = HomK(V, V )
'−−→ HomK(V, V ∗) ; f −−→ φf

to identify I with the ε-duality involution

I : HomK(V, V ∗)
'−−→ HomK(V, V ∗) ; f −−→ εf∗ .

The I-invariant subspaces

A± = {f ∈ HomK(V, V ∗) | εf∗ = ±f}
are the spaces of ±ε-symmetric forms on V . The involution I:A−−→A cor-
responds to the ε-transposition involution x ⊗ y−−→εy ⊗ x on V ∗ ⊗K V ∗

under the isomorphism

V ∗ ⊗K V ∗
'−−→ HomK(V, V ∗) ; f ⊗ g −−→ (x −−→ (y −−→ f(x)g(y))) ,

allowing the identifications

Aε = Sym(V ∗ ⊗K V ∗) , A−ε = Alt(V ∗ ⊗K V ∗) .

For the identity involution on F and ε = +1 (resp. −1) the involution on A
is of the first kind and the orthogonal (resp. symplectic) type (I) (resp. (II)).
If (V, φ) admits a complex structure, an automorphism J : (V, φ)−−→(V, φ)

such that J2 = −1, there is defined an isomorphism

A+ '−−→ A− ; θ −−→ Jθ

and the involution on A is of the second kind and unitary type.

The round free quadratic L-groups Lr∗(R) are the quadratic L-groups of
a ring with involution R defined using f.g. free R-modules of even rank,
which differ from the projective and free L-groups by the exact sequences

. . . −−→ Ĥn+1(Z2 ;K0(R)) −−→ Lrn(R) −−→ Lpn(R)

−−→ Ĥn(Z2 ;K0(R)) −−→ . . . ,

. . . −−→ Ĥn+1(Z2 ; im(K0(Z)−→K0(R))) −−→ Lrn(R) −−→ Lhn(R)

−−→ Ĥn(Z2 ; im(K0(Z)−→K0(R))) −−→ . . . .

Similarly for the round free symmetric L-groups L∗r(R). See Hambleton,
Ranicki and Taylor [70] for further details.

Theorem 22.18 Let π be a finite group.
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(i) The projective L-groups of R[π] are given by

Lnp (R[π]) =





∑
α(R,π)

Z
∑

αH(R,π)

Z2 ⊕
∑

αC(R,π)

Z

0

if n ≡





0

2

1, 3

(mod 4) ,

with the Z-components detected by the R-multisignature.
(ii) The round free L-groups of R[π] are given by

Lnr (R[π]) =





∑
α(R,π)

2Z
∑

αR(R,π)

Z2

∑
αC(R,π)

2Z

0

if n ≡





0

1

2

3

(mod 4) ,

with 2Z denoting the corresponding subgroup of Z ⊆ Lnp (R[π]).
(iii) The free L-groups of R[π] are given by

Ln(R[π]) =





Z⊕ ∑
α(R,π)−1

2Z
∑

αR(R,π)−1

Z2

∑
αC(R,π)

2Z

0

if n ≡





0

1

2

3

(mod 4) .

Proof (i) Each of the idempotents ej = ej(R, π) ∈ R[π] is such that ēj = ej ,
so that the involution on R[π] preserves each simple factor

Sj(R, π) = Mdj (Dj(R, π)) (dj = dj(R, π)) ,

and as a ring with involution

R[π] = S1(R, π)× S2(R, π)× . . .× Sα(R,π)(R, π) .

Each Dj(R, π) is one of R, H, C with the standard involution, respectively
the identity, quaternion conjugation, and complex conjugation. The three
types are distinguished by the type of the involution on Sj(R, π), or by the

ring structure of C⊗R Sj(R, π), as follows:

(I) (orthogonal) Dj(R, π) = R if the involution on Sj(R, π) is of the or-

thogonal type, with

C⊗R Sj(R, π) = Mdj (C) .

(II) (symplectic) Dj(R, π) = H if the involution on Sj(R, π) is of the sym-
plectic type, with

C⊗R Sj(R, π) = M2dj (C) .
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(III) (unitary) Dj(R, π) = C if the involution on Sj(R, π) is of the unitary
type, with

C⊗R Sj(R, π) = Mdj (C)×Mdj (C) .

By the Morita isomorphisms of 21.6

L2k
p (R[π]) =

αk(R,π)∑

j=1

L2k
p (Sj(R, π))

=
∑

αR(R,π)

L2k(R)⊕
∑

αH(R,π)

L2k(H )⊕
∑

αC(R,π)

L2k(C−)

and by 22.16

r0(Dj(R, π)) = 1 ,

α0(R, π) = αR(R, π) + αH(R, π) + αC(R, π) = α(R, π) ,

r1(Dj(R, π)) =

{
1

0
if Dj(R, π) =

{
C
R or H ,

α1(R, π) = αC(R, π) .

(ii) Immediate from (i) and the exact sequence

. . . −−→ Lnr (R[π]) −−→ Lnp (R[π]) −−→ Ĥn(Z2 ;K0(R[π]))

−−→ Ln−1
r (R[π]) −−→ . . .

with

Ĥn(Z2 ;K0(R[π])) =

{
K0(R[π])/2K0(R[π])

0
if n ≡

{
0

1
(mod 2) .

(iii) Immediate from (i) and the exact sequence

. . . −−→ Ln(R[π]) −−→ Lnp (R[π]) −−→ Ĥn(Z2 ; K̃0(R[π]))

−−→ Ln−1(R[π]) −−→ . . . .

Proposition 22.19 Let F = R or C−. The K-theory F -multisignature

(22.3) coincides with the L-theory F -multisignature σ (22.13), defining iso-
morphisms

σ : L4∗
p (R[π])

'−−→ K0(R[π]) =
∑

α(R,π)

Z ,

σ : L4∗+2
p (R[π])

'−−→ K0(R[π],−1) =
∑

αC(R,π)

Z

with

K0(R[π],−1) =
{
χ− χ̄ |χ ∈

∑

αC(R,π)

Z
}
⊆ K0(C [π]) =

∑

α(C,π)

Z
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indexed by the conjugate pairs of irreducible C-representations of π of the
unitary type (III).
Proof Immediate from 22.18.

The only simple finite-dimensional algebra over C is C itself, so that the
simple factors in the Wedderburn decomposition

C [π] =

α(C,π)∏

j=1

Sj(C, π)

are matrix algebras Sj(C, π) = Mdj (C), one for each degree dj irreducible
C-representation of π. The type of an irreducible C-representation ρ of

degree d is distinguished by the Frobenius–Schur number associated to its
character χ

c(ρ) = (1/|π|)
∑

g∈π
χ(g2) ∈ C .

This is the coefficient of the trivial representation C in the C-representation
of degree d(d+ 1)/2

Sym(V ⊗C V ) = H0(Z2 ;V ⊗C V )

of symmetric forms on V ∗ = HomC(V,C) over C+, with V = Cd the repre-
sentation space of ρ (cf. 22.17). Equivalently, the type of the representation

is determined by the type of form supported by V over C+[π], as follows:

(I) (orthogonal) c(ρ) = 1 if and only if χ = χ̄ is real and ρ is equivalent
to an R-representation of degree d, i.e. if there exists a C[π]-module

isomorphism V ∼= C[π]⊗R[π] V0 for some f.g. R[π]-module V0 which is
a d-dimensional real vector space. This is the case if and only if there
exists a nonsingular symmetric form (V, φ) over C+[π]. The simple

factor Md(R) of R[π] induces the simple factor C⊗RMd(R) = Md(C)
of C [π].

(II) (symplectic) c(ρ) = −1 if and only if χ = χ̄ is real but ρ is not

equivalent to an R-representation, in which case d is even and there
exists an irreducible R-representation σ of degree d/2 of quaternionic
type. This is the case if and only if there exists a nonsingular skew-
symmetric form (V, φ) over C+[π]. The simple factor Md/2(H ) of R[π]

induces the simple factor C⊗R Md/2(H ) = Md(C) of C [π].
(III) (unitary) c(ρ) = 0 if and only if χ 6= χ̄ is not real, so that it is

purely imaginary and ρ is not isomorphic to the complex conjugate

representation ρ̄. This is the case if and only if V is not C [π]-module
isomorphic to its C+[π]-dual V ∗. The simple factor Md(C) of R[π]
induces a product of simple factors C⊗RMd(C) = Md(C)×Md(C) in

C [π] interchanged by the real involution.
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See Serre [157, §13] and Curtis and Reiner [42, §73A] for further details.

Example 22.20 (i) For any finite group π the trivial irreducible C-represent-
ation of degree 1

π −−→ GL1(C) ; g −−→ 1

is of the orthogonal type (I).
(ii) Let Q8 = 〈x, y |x4 = 1, x2 = y2, xyx−1 = y−1〉 be the quaternion group
of order 8. The irreducible C-representation ρ of degree 2 defined by

Q8 −−→ GL2(C) ; x −−→
(
i 0

0 −i

)
, y −−→

(
0 −1

1 0

)

is of the symplectic type (II).
(iii) Let Zm = 〈T |Tm = 1〉 be the cyclic group of order m. The irreducible
C-representations of Zm of degree 1 defined by

ρj : Zm −−→ GL1(C) ; T −−→ e2πij/m (0 ≤ j < m)

are of the orthogonal type (I) if j = 0 or m/2 (m even), and of the unitary
type (III) otherwise, with ρ̄j = ρm−j .

The number of simple factors Sj(C, π) in C [π] is

α(C, π) = no. of irreducible C-representations of π

= no. of conjugacy classes in π

= αR(R, π) + αH(R, π) + 2αC(R, π)

with




(I) αR(R, π)

(II) αH(R, π)

(III)2αC(R, π)

= no. of irreducible C-representations ρ with c(ρ) =





1

−1

0 .

Proposition 22.21 (i) The projective L-groups of C+[π] are given by

Lnp (C+[π]) =





∑
αR(R,π)

Z2

∑
αH(R,π)

Z2

0

if n ≡





0

2

1, 3

(mod 4) .

The inclusion i+:R[π]−−→C+[π] induces
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i+! =
∑

αR(R,π)

1⊕ 0⊕ 0 : L4∗
p (R[π]) =

∑

αR(R,π)

Z⊕
∑

αH(R,π)

Z⊕
∑

αC(R,π)

Z

−−→ L4∗
p (C+[π]) =

∑

αR(R,π)

Z2 ,

i+! = 0 : L4∗+2
p (R[π]) =

∑

αH(R,π)

Z2 ⊕
∑

αC(R,π)

Z

−−→ L4∗+2
p (C+[π]) =

∑

αH(R,π)

Z2 .

(ii) The projective L-groups of C−[π] are given by

Lnp (C−[π]) =

{ ∑
α(C,π)

Z

0
if n ≡

{
0

1
(mod 2) ,

with the Z-components detected by the C−-multisignature. The inclusion
i−:R[π]−−→C−[π] induces

i−! =
∑

αR(R,π)

1⊕
∑

αH(R,π)

2⊕
∑

αC(R,π)

(
1
1

)
:

L4∗
p (R[π]) =

∑

αR(R,π)

Z⊕
∑

αH(R,π)

Z⊕
∑

αC(R,π)

Z

−−→ L4∗
p (C−[π]) =

∑

αR(R,π)

Z⊕
∑

αH(R,π)

Z⊕
∑

αC(R,π)

(Z⊕ Z) ,

i−! = 0⊕
∑

αC(R,π)

(
1
−1

)
:

L4∗+2
p (R[π]) =

∑

αH(R,π)

Z2 ⊕
∑

αC(R,π)

Z

−−→ L4∗+2
p (C−[π]) =

∑

αR(R,π)

Z⊕
∑

αH(R,π)

Z⊕
∑

αC(R,π)

(Z⊕ Z) .

Remark 22.22 For any ring A and a non-square central unit a ∈ A let

A[
√
a ] = A[t]/(t2 − a)

be the quadratic extension ring obtained by adjoining the square roots of a.

Given an involution :̄A−−→A with a = a let A[
√
a ]+, A[

√
a ]− denote the

rings with involution defined by A[
√
a ] with the involution on A extended

by

¯ : A[
√
a ]± −−→ A[

√
a ]± ; x+ y

√
a −−→ x± y√a .
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(In the classic case A = R, a = −1, A[
√
a] = C). Jacobson’s work on

hermitian forms over quadratic field extensions was used by Milnor and
Husemoller [113, p. 116] to obtain an exact sequence

0 −−→ L0(A[
√
a ]−) −−→ L0(A) −−→ L0(A[

√
a ]+)

in the case when A is a field with the identity involution. See Wall [180, 12C],
Hambleton [65], Harsiladze [72], Hambleton, Taylor and Williams [71], Lewis

[96], Ranicki [147] for various generalizations to the L-theory of quadratic
extensions of more general rings with involution A. The isomorphisms
of relative L-groups of the induction and transfer maps of the inclusions
i±:A−−→A[

√
a ]± obtained in [147] for any A

L∗(i
−
! :A−−→A[

√
a ]−) ∼= L∗+1(i+! :A[

√
a ]+−−→A) ,

L∗((i
−) !:A−−→A[

√
a ]−) ∼= L∗+1((i+) !:A[

√
a ]+−−→A)

and the skew-suspension isomorphisms

Ln(A[
√
a ]−)

'−−→ Ln+2(A[
√
a ]−) ; (C,ψ) −−→ (SC,

√
aSψ)

were combined into a commutative braid of exact sequences
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(In the classic case A = R, a = −1, A[
√
a] = C). Jacobson’s work on

hermitian forms over quadratic field extensions was used by Milnor and
Husemoller [113, p. 116] to obtain an exact sequence

0 −−→ L0(A[
√
a ]−) −−→ L0(A) −−→ L0(A[

√
a ]+)

in the case when A is a field with the identity involution. See Wall [180, 12C],
Hambleton [65], Harsiladze [72], Hambleton, Taylor and Williams [71], Lewis
[96], Ranicki [147] for various generalizations to the L-theory of quadratic

extensions of more general rings with involution A. The isomorphisms
of relative L-groups of the induction and transfer maps of the inclusions
i±:A−−→A[

√
a ]± obtained in [147] for any A

L∗(i
−
! :A−−→A[

√
a ]−) ∼= L∗+1(i

+
! :A[
√
a ]+−−→A) ,

L∗((i
−) !:A−−→A[

√
a ]−) ∼= L∗+1((i

+) !:A[
√
a ]+−−→A)

and the skew-suspension isomorphisms

Ln(A[
√
a ]−)

≃−−→ Ln+2(A[
√
a ]−) ; (C,ψ) −−→ (SC,

√
aSψ)

were combined into a commutative braid of exact sequences

[
[

[[

'
'
'')

[
[
[[

'
'
'')

[
[
[[

'
'
'')

Ln(A[
√
a ]−) Ln(A) Ln(A[

√
a ]+) Ln(A)

Ln+1(i
+
! )

)'
''

[
[[]

Ln+1((i
+) !)

)'
''

[
[[]

Ln(i
+
! )

)'
''

[
[[]

Ln+1(A[
√
a ]+)
[
[[]

Ln+1(A)

)'
''

h
hhj

Ln−1(A[
√
a ]−)

64
44

[
[[]

Ln−1(A) .

)'
''

N
N

NN







�

N
N

NN







�

N
N

NN







�

If the rings A and A[
√
a ] are semisimple then

Lp2∗+1(A) = Lp2∗+1(A[
√
a ]±) = 0 ,

so that in the projective version of the braid with even n the L-groups at
the bottom are all 0 and the L-groups at the top fit into an octagon

If the rings A and A[
√
a ] are semisimple then

Lp2∗+1(A) = Lp2∗+1(A[
√
a ]±) = 0 ,

so that in the projective version of the braid with even n the L-groups at



244 Algebraic L-theory and topological manifolds

the bottom are all 0 and the L-groups at the top fit into an octagon
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Lp0(A[
√
a ]−) w Lp0(A)[

[
[]

Lp2(A)

�
�
��

Lp0(A[
√
a ]+)

u
Lp2(A[

√
a ]+)

u

Lp0(A)

�
�
��

Lp2(A)

[
[[̂

u Lp2(A[
√
a ]−)

of exact sequences of projective Witt groups. The projective L-groups of
R[π], C+[π], C −[π] computed in 22.18 and 22.21 fit into this octagon with
A = R[π], a = −1, A[

√
a ]± = C±[π].

The transfer map associated to the inclusion i: R−−→R[π]

i ! : Lnp (R[π]) −−→ Ln(R) ; (C, ϕ) −−→ (C !, ϕ !)

sends a f.g. projective n-dimensional symmetric Poincaré complex (C, ϕ)
over R[π] to the f.g. free n-dimensional symmetric Poincaré complex (C !, ϕ !)
over R with C ! obtained from C by the restriction of the R[π]-action to

R ⊂ R[π] and

ϕ !(x)(y) = coefficient of 1 in ϕ(x)(y) ∈ R ⊂ R[π] .

For n = 4k the signature

i !(C, ϕ) = (C !, ϕ !) ∈ L4k(R) = Z
is determined by the L-theory R-multisignature according to

i ! = (c1d1 c2d2 . . . cα(R,π)dα(R,π)) :

L4k
p (R[π]) =

α(R,π)∑

j=1

Z −−→ L4k(R) = Z ,

with

cj = cj(R, π) = dimR(Dj(R, π)) =





1

2

4

if Dj(R, π) =





R
C
H

,

dj = dj(R, π) .

In terms of the character of the K-theory R-multisignature (22.5 (ii))

i !(M,ϕ) = σ(1, (M,ϕ)) ∈ Z ⊂ R .

of exact sequences of projective Witt groups. The projective L-groups of
R[π], C+[π], C−[π] computed in 22.18 and 22.21 fit into this octagon with

A = R[π], a = −1, A[
√
a ]± = C±[π].

The transfer map associated to the inclusion i:R−−→R[π]

i ! : Lnp (R[π]) −−→ Ln(R) ; (C, φ) −−→ (C !, φ !)

sends a f.g. projective n-dimensional symmetric Poincaré complex (C, φ)
over R[π] to the f.g. free n-dimensional symmetric Poincaré complex (C !, φ !)
over R with C ! obtained from C by the restriction of the R[π]-action to
R ⊂ R[π] and

φ !(x)(y) = coefficient of 1 in φ(x)(y) ∈ R ⊂ R[π] .

For n = 4k the signature

i !(C, φ) = (C !, φ !) ∈ L4k(R) = Z
is determined by the L-theory R-multisignature according to

i ! = (c1d1 c2d2 . . . cα(R,π)dα(R,π)) :

L4k
p (R[π]) =

α(R,π)∑

j=1

Z −−→ L4k(R) = Z ,

with

cj = cj(R, π) = dimR(Dj(R, π)) =





1

2

4

if Dj(R, π) =





R
C
H

,

dj = dj(R, π) .

In terms of the character of the K-theory R-multisignature (22.5 (ii))

i !(M,φ) = σ(1, (M,φ)) ∈ Z ⊂ R .
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Proposition 22.23 (i) The R-coefficient algebraic L-theory assembly map
of a finite group π

A : H∗(Bπ;L.(R)) −−→ L∗p(R[π])

is given by the composite

A : H∗(Bπ;L.(R)) −−→ L∗(R)
i !−−→ L∗p(R[π])

with i:R−−→R[π] the inclusion. In the non-zero case ∗ = 4k

i ! =

( ∑

Dj=R
dj ,

∑

Dj=H
dj ,

∑

Dj=C
dj

)
:

L4k(R) = Z −−→ L4k
p (R[π]) =

∑

αR(R,π)

Z⊕
∑

αH(R,π)

Z⊕
∑

αC(R,π)

Z ,

with Dj = Dj(R, π), dj = dj(R, π).

(ii) The transfer map is given by

i ! =

( ∑

Dj=R
dj ,

∑

Dj=H
4dj ,

∑

Dj=C
2dj

)
:

L4k
p (R[π]) =

∑

αR(R,π)

Z⊕
∑

αH(R,π)

Z⊕
∑

αC(R,π)

Z −−→ L4k(R) = Z

with

i !i ! =
∑

Dj=R
(dj)

2 +
∑

Dj=H
4(dj)

2 +
∑

Dj=C
2(dj)

2

= |π| : L4k(R) = Z −−→ L4k(R) = Z .

Example 22.24 The irreducible C-representations of the cyclic group Zm
are the representations

ρj : Zm −−→ C ; T −−→ e2πij/m (0 ≤ j < m)

classified in 22.20 (iii), so that

α(R,Zm) = αR(R,Zm) + αC(R,Zm) , αH(R,Zm) = 0 ,

αR(R,Zm) =

{
1

2
, αC(R,Zm) =

{
(m− 1)/2

(m− 2)/2 ,

R[Zm] =





R⊕ ⊕
(m−1)/2

C

R2 ⊕ ⊕
(m−2)/2

C if m is

{
odd

even .
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The projective L-groups of R[Zm] are given by

L4k
p (R[Zm]) =





Z⊕ ⊕
(m−1)/2

Z

Z2 ⊕ ⊕
(m−2)/2

Z ,

L4k+2
p (R[Zm]) =





⊕
(m−1)/2

Z

⊕
(m−2)/2

Z if m is

{
odd

even ,

L2∗+1
p (R[Zm]) = 0 .

The 4k-dimensional assembly map

A : H4k(BZm;L.(R)) =
∞∑

j=0

H4j(BZm;L4k−4j(R))

−−→ H0(BZm;L4k(R)) = L4k(R) = Z
i !−−→ L4k

p (R[Zm])

has image the cyclic subgroup generated by A(1) = (1, 1, . . . , 1), and the
(4k+ 2)-dimensional assembly map has image 0. The projective Witt class

of a nonsingular symmetric form over R[Zm] is in the image of the assembly
map if and only if the R-multisignature components are equal. The 4k-
dimensional transfer map is given by

i ! =

{
(1 2 . . . 2)

(1 1 2 . . . 2)

: L4k
p (R[Zm]) =





Z⊕ ⊕
(m−1)/2

Z

Z2 ⊕ ⊕
(m−2)/2

Z −−→ L4k
p (R) = Z if m is

{
odd

even .

Remark 22.25 The C−-coefficient algebraic L-theory assembly map

A : H∗(Bπ;L.
(C−)) −−→ L∗p(C−[π])

is given by the composite

A : H∗(Bπ;L.
(C−)) −−→ L∗(C−)

i !−−→ L∗p(C−[π]) .

The inclusion i:C−−−→C−[π] induces

i ! =

( ∑

Dj=R
dj

∑

Dj=H
2dj

∑

Dj=C
dj

(
1
1

) )
:

L2k(C−) = Z −−→ L2k
p (C−[π]) =

∑

αR(R,π)

Z⊕
∑

αH(R,π)

Z⊕
∑

αC(R,π)

(Z⊕ Z) ,

with Dj = Dj(R, π), dj = dj(R, π) as in 22.23. The transfer map is given
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by

i ! =

( ∑

Dj=R
dj

∑

Dj=H
2dj

∑

Dj=C
dj
(
1 1
) )

:

L2k
p (C−[π]) =

∑

αR(R,π)

Z⊕
∑

αH(R,π)

Z⊕
∑

αC(R,π)

(Z⊕ Z) −−→ L2k(C−) = Z

with

i !i ! =
∑

Dj=R
(dj)

2 +
∑

Dj=H
4(dj)

2 +
∑

Dj=C
2(dj)

2 = |π| :

L2k(C−) = Z −−→ L2k(C−) = Z .

A nonsingular symmetric form (M,φ) over R[π] is such that

(M,φ) ∈ im(A:H4k(Bπ;L.
(R))−−→L4k

p (R[π]))

if and only if the character of the K-theory R-multisignature (22.5 (ii)) is a
multiple of the character of the regular R-representation R[π], as originally

proved by Wall [180, 13B.1].

Let j:R[π]−−→S1(R, π) = R be the projection, with kernel

ker(j) =

α(R,π)∏

m=2

Sm(R, π) .

The induced map

j ! : L4k
p (R[π]) −−→ L4k(R)

sends a 4k-dimensional symmetric Poincaré complex (C, φ) over R[π] to the

signature of the 4k-dimensional symmetric Poincaré complex R⊗R[π] (C, φ)
over R, with components

j ! = (1 0 . . . 0) : L4k
p (R[π]) =

α(R,π)∑

m=1

Z −−→ L4k(R) = Z .

In terms of the character of the K-theory R-multisignature (22.5 (ii))

j !(M,φ) = (1/|π|)
∑

g∈π
σ(g, (M,φ)) ∈ Z ⊂ R ,

the coefficient of the trivial representation R in the virtual R-representation
[M,φ] = [M+]− [M−] ∈ K0(R[π]) (cf. Hirzebruch and Zagier [78, p. 31]).

Proposition 22.26 (i) For any element x ∈ im(A) ⊆ L4k
p (R[π]) the signa-

ture of the transfer i !(x) ∈ L4k(R) is |π| times the signature of the projection
j !(x) ∈ L4k(R), that is

i !(x) = |π| j !(x) ∈ L4k(R) = Z .
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(ii) For a regular covering M of a compact 4k-dimensional manifold M with
finite group of covering translations π

signature (M) = |π| signature (M) ∈ L4k(R) = Z .

Proof (i) This is immediate from 22.23.
(ii) Apply (i) to the symmetric signature σ∗(M) = (∆(M), φ) ∈ L4k

p (R[π]).

The multiplicativity of the signature for finite coverings of manifolds (21.4,
22.26) is traditionally proved by the Hirzebruch formula

signature (M) = 〈L(M), [M ]Q〉 ∈ L4k(Z) = Z .

Proposition 22.27 Let X be a finite 4k-dimensional geometric Poincaré
complex, and let X be a regular cover of X with finite group of covering

translations π. The symmetric signature

σ∗(X) = (∆(X), φ) ∈ L4k(R[π])

is such that

i !σ∗(X) = signature (X) ,

j ! σ
∗(X) = signature (X) ∈ L4k(R) = Z .

If X is homotopy equivalent to a compact topological manifold then

σ∗(X) = A([X]L) ∈ im(A:H4k(X;L.
(R))−−→L4k(R[π]))

and by 22.26

i !σ∗(X) = |π|j ! σ
∗(X) ∈ L4k(R) ,

signature (X) = |π| signature (X) ∈ Z .

The examples of geometric Poincaré complexes with non-multiplicative
signature constructed by Wall [177] will now be related to elements x ∈
L4k(Z[Zq]) which are not in the image of the assembly map A:H4k(BZq;L.)
−−→L4k(Z[Zq]).

Example 22.28 The quadratic L-groups L∗(Z[Zq]) (q prime) can be com-
puted using the Rim-Milnor cartesian square of rings with involution
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(ii) For a regular covering M of a compact 4k-dimensional manifold M with

finite group of covering translations π

signature (M) = |π| signature (M) ∈ L4k(R) = Z .

Proof (i) This is immediate from 22.23.
(ii) Apply (i) to the symmetric signature σ∗(M) = (∆(M), ϕ) ∈ L4k

p (R[π]).

The multiplicativity of the signature for finite coverings of manifolds (21.4,
22.26) is traditionally proved by the Hirzebruch formula

signature (M) = ⟨L(M), [M ]Q⟩ ∈ L4k(Z) = Z .

Proposition 22.27 Let X be a finite 4k-dimensional geometric Poincaré

complex, and let X be a regular cover of X with finite group of covering
translations π. The symmetric signature

σ∗(X) = (∆(X), ϕ) ∈ L4k(R[π])

is such that

i !σ∗(X) = signature (X) ,

j ! σ
∗(X) = signature (X) ∈ L4k(R) = Z .

If X is homotopy equivalent to a compact topological manifold then

σ∗(X) = A([X]L) ∈ im(A:H4k(X; L.(R))−−→L4k(R[π]))

and by 22.26

i !σ∗(X) = |π|j ! σ
∗(X) ∈ L4k(R) ,

signature (X) = |π| signature (X) ∈ Z .

The examples of geometric Poincaré complexes with non-multiplicative
signature constructed by Wall [177] will now be related to elements x ∈
L4k(Z[Zq]) which are not in the image of the assembly map A:H4k(BZq; L.)

−−→L4k(Z[Zq]).

Example 22.28 The quadratic L-groups L∗(Z[Zq]) (q prime) can be com-
puted using the Rim-Milnor cartesian square of rings with involution

Z[Zq] w

u

Z[ζ]

u
Z w Zq

where

Z[ζ] = Z[z]/(1 + z + z2 + . . .+ zq−1) (z̄ = z−1)
where

Z[ζ] = Z[z]/(1 + z + z2 + . . .+ zq−1) (z̄ = z−1)
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is the extension of Z by the primitive qth root of unity ζ = e2πi/q with the
complex conjugation involution. As in Ranicki [146, 6.3] there is defined an
L-theory Mayer–Vietoris exact sequence

0 −−→ L4k(Z[Zq]) −−→ L4k(Z)⊕ L4k(Z[ζ])

−−→ L4k(Zq) −−→ L4k−1(Z[Zq]) −−→ 0 .

As in Wall [177] the pullback construction can be used to obtain a non-
singular quadratic form (K,λ, µ) over Z[Zq] with K = Z[Zq]8 a f.g. free

Z[Zq]-module of rank 8, such that

Z⊗Z[Zq ] (K,λ, µ) = (Z8, E8) = 1 ∈ L4k(Z) = Z ,

Z[ζ]⊗Z[Zq ] (K,λ, µ) = H+(Z[ζ]4) = 0 ∈ L4k(Z[ζ])

with H+(Z[ζ]4) the hyperbolic form of rank 8 over Z[ζ]. The Witt class
(K,λ, µ) ∈ L4k(Z[Zq]) does not belong to the image of the assembly map

(K,λ, µ) /∈ im(A:H4k(BZq;L.)−−→L4k(Z[Zq]))
since the R-multisignature is such that

R⊗ (1 + T )(K,λ, µ) = (8, 0) /∈ im(A) = { (s, s, . . . , s) | s ∈ Z }

⊂ L4k
p (R[Zq]) = L4k(R)⊕ L4k

p (R[ζ]) =

{Z⊕ Z if q = 2

Z⊕ ∑
(q−1)/2

Z if q 6= 2 .

As in 19.5 the element x = (K,λ, µ) ∈ L4k(Z[Zq]) is realized by the surgery
obstruction x = σ∗(f, b) of a normal map (f, b):M4k−−→X to a finite 4k-
dimensional geometric Poincaré complex X with π1(X) = Zq, and

s(X) = −[σ∗(f, b)] = −[x] 6= 0

∈ im(L4k(Z[Zq])−−→S4k(BZq)) = coker(A:H4k(BZq;L.)−−→L4k(Z[Zq])) .

The signature of the universal cover X̃ of X is not multiplicative, with

σ∗(X) = σ∗(X̃) = 8 , σ∗(X̃) 6= q σ∗(X) ∈ L4k(Z) = Z .

Thus s(X) 6= 0 ∈ S4k(X) and X is not homotopy equivalent to a compact

manifold (cf. 19.4).

Next, consider the L-theory of the rational group ring Q[π] for a finite
group π, which is built up from the Witt groups of quadratic and hermitian
forms over algebraic number fields and quaternion algebras.

Definition 22.29 (i) For any field F let nR(F ) be the number of embed-

dings F ⊂ R, one for each ordering of F , and let nC(F ) be the number of
conjugate pairs of embeddings F ⊂ C.
(ii) For any field with involution F let nC(F,Z2 ) be the number of conjugate

pairs of embeddings F ⊂ C−.
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(iii) A field F is totally real if nC(F ) = 0.
(iv) A field F is totally imaginary if nR(F ) = 0.

An algebraic number field F is a finite extension of Q with degree

dimQ(F ) = nR(F ) + 2nC(F ) .

Proposition 22.30 (Milnor and Husemoller [113], Scharlau [156], Wall
[181])
(i) If F is a field of characteristic 6= 2 with the identity involution then

r0(F ) = nR(F ) , r1(F ) = 0 .

(ii) If D is a division ring with an involution with the centre an algebraic

number field F with a non-trivial involution then

r0(D) = r1(D) = nC(F,Z2 ) .

(iii) If D =

(
α, β

F

)
is a 4-dimensional quaternion algebra over an algebraic

number field F such that either (a) the involution is by i = −i, j = −j,
k = −k and the identity on F , and α, β ∈ F • are totally negative (= have
negative valuation for each embedding F ⊂ R) or (b) the involution is by
i = i, j = j, k = −k and the identity on F , and α, β ∈ F • are not both

totally negative, then

r0(D) = nR(F ) , r1(D) = 0 .

Proof (i) The total signature map∑

nR(F )

signature : L4∗(F ) −−→
∑

nR(F )

L4∗(R) =
∑

nR(F )

Z

is an isomorphism modulo 2-primary torsion.
(ii) Consider first the special case D = F . Let F0 = {z ∈ F | z̄ = z} be the
fixed field of the involution, so that F = F0(

√
a) is a quadratic extension of

F0 for some a ∈ F\F0 and x+ y
√
a = x − y√a (x, y ∈ F0). Let n+

R (F0, a)

(resp. n−R (F0, a)) be the number of embeddings e:F0 ⊂ R such that e(a) > 0
(resp. e(a) < 0), so that

nC(F,Z2 ) = n−R (F0, a) , nR(F0) = n+
R (F0, a) + n−R (F0, a) ,

nR(F ) = 2n+
R (F0, a) , nC(F ) = 2nC(F0) + n−R (F0, a) ,

in agreement with the exact octagon of 22.22. The total signature map∑

nC(F,Z2 )

signature : L2∗(F ) −−→
∑

nC(F,Z2 )

L2∗(C−) =
∑

nC(F,Z2 )

Z

is an isomorphism modulo 2-primary torsion.
For arbitrary D each complex embedding F ⊂ C gives a map

L2∗(D) −−→ L2∗(C⊗F D)[1/2] = L2∗(Md(C−))[1/2] = Z[1/2]
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and the total signature map∑

nC(F,Z2 )

signature : L2∗(D) −−→
∑

nC(F,Z2 )

Z[1/2]

is again an isomorphism modulo 2-primary torsion.

(iii) (a) Each real embedding F ⊂ R gives a map

L2k(D) −−→ L2k(

(
α, β

R

)
) = L2k(H ) =

{
Z if k = 0

Z2 if k = 1 .

The total signature map

∑

nR(F )

signature : L4∗(
(
α, β

F

))
−−→

∑

nR(F )

L4∗(H ) =
∑

nR(F )

Z

is an isomorphism modulo 2-primary torsion.
(iii) (b) Each real embedding F ⊂ R gives a map

L2k(D) −−→ L2k(

(
α, β

R

)
) = L2k(M2(R))[1/2]

= L2k(R)[1/2] =

{
Z[1/2] if k = 0

0 if k = 1 .

The total signature map

∑

nR(F )

signature : L4∗(
(
α, β

F

))
−−→

∑

nR(F )

L4∗(R)[1/2] =
∑

nR(F )

Z[1/2]

is an isomorphism modulo 2-primary torsion.

Given an irreducible C-representation ρ of π let Q(χ) be the field extension
of Q obtained by adjoining all the characters χ(g) = tr(ρ(g)) ∈ C (g ∈ π).
Two such representations ρ, ρ′ are Galois conjugate if Q(χ) = Q(χ′) and

χ′(g) = χ(γ(g)) (g ∈ π) for some Galois automorphism γ ∈ Gal(Q(χ)/Q).
The C-representation of π induced from an irreducible Q-representation of
π is the sum of Galois conjugacy classes of an irreducible C-representation.

The number of simple factors Md(D) in Q[π] is

α(Q, π)

= no. of irreducible Q-representations of π

= no. of conjugacy classes of cyclic subgroups of π

= no. of Galois conjugacy classes of irreducible C-representations of π .

The involution on Q[π] preserves each of the simple factors S = Md(D). As
a ring with involution

S = Md(D)φ
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in the terminology of 21.5, for some nonsingular ε-symmetric form (Dd, φ)
over a central simple Q-algebra with involution D with ε = ±1, so that by
21.6

Lp∗(S) = L∗(D, ε) =

{
L∗(D)

L∗+2(D)
if ε =

{
+1

−1 .

As before, D is one of three types:

(I) (orthogonal) χ = χ̄ is real and ρ is equivalent to an R-representation.
In this case the centre Q(χ) of D is totally real with the identity
involution, ε can be chosen to be +1 and

R⊗Q Md(D) =
∏

nR(Q(χ))

Md(R) .

Either D = Q(χ) with the identity involution, or D =

(
α, β

Q(χ)

)
with

α, β ∈ Q(χ)• not both totally negative and with the involution i = i,

j = j, k = −k.
(II) (symplectic) χ = χ̄ is real but ρ is not equivalent to an R-represent-

ation. In this case the centre Q(χ) of D is totally real with the identity

involution, ε can be chosen to be +1 and

R⊗Q Md(D) =
∏

nR(Q(χ))

Md(H ) .

D =

(
α, β

Q(χ)

)
is a quaternion algebra over Q(χ), with α, β totally

negative and with the involution i = −i, j = −j, k = −k.

(III) (unitary) χ 6= χ̄ is not real. In this case the centre Q(χ) of D is to-
tally imaginary with non-trivial involution such that nC(Q(χ),Z2 ) =
nC(Q(χ)), ε can be chosen to be +1 and

R⊗Q Md(D) =
∏

nC(Q(χ))

Md(C) .

Proposition 22.31 (Wall [181])
(i) Let S = Md(D)φ be a simple factor of the ring with involution Q[π] for

a finite group π, with (Dd, φ) a nonsingular symmetric form over a division
ring with involution D with centre Q(χ). The L-groups of S and R ⊗Q D
coincide modulo 2-primary torsion, with

Ln(S)[1/2] = Ln(R⊗Q D)[1/2] =

{ ∑
rk(D)

Z[1/2]

0
if n =

{
2k

2k + 1

given by the multisignature. The rank

{
r0(D)
r1(D)

of

{
L4∗(D)
L4∗+2(D)

is the number
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of simple factors in R⊗Q D of
{ any

unitary type, that is

r0(D) =





nR(Q(χ))

nR(Q(χ))

nC(Q(χ))

, r1(D) =





0

0

nC(Q(χ))

in the case





(I)

(II)

(III) .

(ii) The L-groups of Q[π] =
∏
S are such that

L∗(Q[π])[1/2] =
∑

S

L∗(S)[1/2]

=
∑

S

L∗(R⊗Q D)[1/2] = L∗(R[π])[1/2] ,

with S = Md(D)φ as in (i).

Example 22.32 The Wedderburn decomposition of the rational group ring

of the cyclic group Zm is

Q[Zm] =
∏

d|m
Q(d) ,

with Q(d) = Q(e2πi/d) the cyclotomic number field obtained from Q by
adjoining the dth roots of unity. Now Q(d) is totally real for d = 1, 2 and

totally imaginary for d ≥ 3, with one embedding

Q(d) −−→ C ; e2πi/d −−→ e2πiu/d

for each unit u ∈ Z•d ⊂ Zd. Thus

nR(Q(d)) =

{
1

0
if

{
d = 1, 2

d ≥ 3 ,

nC(Q(d)) = nC(Q(d),Z2 ) =

{
0

φ(d)/2
if

{
d = 1, 2

d ≥ 3

with φ(d) = |Z•d | the Euler function, the number of positive integers < d
which are coprime to d. By 22.30 the symmetric Witt group of Q(d) is such

that

L0(Q(d))[1/2] =

{
Z[1/2]

Z[1/2]φ(d)/2 if

{
d = 1, 2

d ≥ 3 .

By 22.31 the symmetric Witt group of Q[Zm] is such that

L0(Q[Zm])[1/2] =
∑

d|m
L0(Q(d))[1/2] =

{
Z[1/2](m+1)/2

Z[1/2](m+2)/2
if m is

{
odd

even ,

using
∑
d|m

φ(d) = m. This agrees with the computation of L0
p(R[Zm]) in

22.24.
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The Q-multisignature gives as much information in L-theory as the R-
multisignature:

Proposition 22.33 The L-groups of Q[π] and R[π] for a finite group π
agree modulo 2-primary torsion

Ln(Q[π])[1/2] = Ln(R[π])[1/2] =





∑
α(R,π)

Z[1/2]

∑
αC(R,π)

Z[1/2]

0

if n ≡





0

2

1, 3

(mod 4)

detected by the R-multisignature. (In fact, L2∗+1
p (Q[π]) = 0).

Proof Write the simple factors Mdj(Q,π)(Dj(Q, π)) of Q[π] as

Sj = Mdj (Dj) (1 ≤ j ≤ α(Q, π)) .

The involution on Q[π] preserves each Sj , so that by 22.10

L2k
p (Q[π]) =

α(Q,π)∑

j=1

L2k
p (Sj) .

Let (D
dj
j , φj) be a nonsingular εj-symmetric form over Dj such that

Sj = Mdj (Dj)
φj , L2k

p (Sj) = L2k(Dj , εj) .

The projective L-groups L2∗
p (Q[π]) are given by

L2k
p (Q[π]) =

α(Q,π)∑

j=1

L2k(Dj , εj) .

The contributions to the Q-multisignature of all the simple factors Sj of
Q[π] are thus just the R-multisignatures of the induced products of simple

factors R⊗Q Sj of R[π], with

α0(Q, π) =
∑

χ=χ̄

nR(Q(χ)) +
∑

χ 6=χ̄
nC(Q(χ)) = α(R, π) = α0(R, π) ,

α1(Q, π) =
∑

χ 6=χ̄
nC(Q(χ)) = αC(R, π) = α1(R, π) .

The computation of the L-theory of Q[π] is now applied to the compu-
tation of the L-theory of Z[π] modulo 2-primary torsion, and hence the

determination of the image of the total surgery obstruction in S∗(Bπ) mod-
ulo torsion.

Proposition 22.34 (i) The symmetrization and localization maps

L∗(Z[π]) −−→ L∗(Z[π]) , L∗(Z[π]) −−→ L∗(Q[π]) , L∗(Z[π]) −−→ L∗(Q[π])

are isomorphisms modulo 2-primary torsion for any group π, so that

L∗(Z[π])[1/2] = L∗(Q[π])[1/2] = L∗(Z[π])[1/2] = L∗(Q[π])[1/2] .
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(ii) For a finite group π

Ln(Z[π])[1/2] = Ln(Q[π])[1/2] = Ln(R[π])[1/2]

=

{ ∑
αk(R,π)

Z[1/2]

0
if n =

{
2k

2k + 1

with αk(R, π) = αk(Q, π) =

{
α(R, π)
αC(R, π)

for k ≡
{

0
1

(mod 2).

(iii) The reduced quadratic L-groups

L̃∗(Z[π]) = L∗(Z−−→Z[π])

are such that

L∗(Z[π]) = L∗(Z)⊕ L̃∗(Z[π]) .

For a finite group π the reduced L-groups are detected modulo 2-primary

torsion by the reduced R-multisignature

L̃n(Z[π])[1/2] =





coker

(
A =

α(R,π)∑
j=1

dj : Z−−→ ∑
α(R,π)

Z
)

[1/2]

∑
αC(R,π)

Z[1/2]

0

if n ≡





0

2

1, 3

(mod 4) (dj = dj(R, π)) .

Proof (i) The profinite completion of Z and its fraction field (the finite
adeles) are given by

Ẑ = lim←−m Z/mZ =
∏

q prime

Ẑq , Q̂ = (Ẑ\{0})−1Ẑ =
∏∐

q

(Q̂q, Ẑq) ,

using the q-adic completions of Z and Q
Ẑq = lim←−

k
Z/qkZ , Q̂q = (Ẑq\{0})−1Ẑq .

The L-groups of the inclusions

i : Z[π] −−→ Q[π] , î : Ẑ[π] −−→ Q̂[π]

are related by a natural transformation of localization exact sequences
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(ii) For a finite group π

Ln(Z[π])[1/2] = Ln(Q[π])[1/2] = Ln(R[π])[1/2]

=

{ ∑
αk(R,π)

Z[1/2]

0
if n =

{
2k

2k + 1

with αk(R, π) = αk(Q, π) =

{
α(R, π)
αC(R, π)

for k ≡
{

0
1

(mod 2).

(iii) The reduced quadratic L-groups

L̃∗(Z[π]) = L∗(Z−−→Z[π])

are such that

L∗(Z[π]) = L∗(Z)⊕ L̃∗(Z[π]) .

For a finite group π the reduced L-groups are detected modulo 2-primary
torsion by the reduced R-multisignature

L̃n(Z[π])[1/2] =





coker

(
A =

α(R,π)∑
j=1

dj : Z−−→ ∑
α(R,π)

Z
)

[1/2]

∑
αC(R,π)

Z[1/2]

0

if n ≡





0

2

1, 3

(mod 4) (dj = dj(R, π)) .

Proof (i) The profinite completion of Z and its fraction field (the finite

adeles) are given by

Ẑ = lim←−m Z/mZ =
∏

q prime

Ẑq , Q̂ = (Ẑ\{0})−1Ẑ =
∏⨿

q

(Q̂q, Ẑq) ,

using the q-adic completions of Z and Q

Ẑq = lim←−
k

Z/qkZ , Q̂q = (Ẑq\{0})−1Ẑq .

The L-groups of the inclusions

i : Z[π] −−→ Q[π] , î : Ẑ[π] −−→ Q̂[π]

are related by a natural transformation of localization exact sequences

. . . w Lpn(Z[π]) w

u

LXn (Q[π]) w

u

LXn (i) w

u
∼=

Lpn−1(Z[π]) w

u

. . .

. . . w Lpn(Ẑ[π]) w LX̂n (Q̂[π]) w LX̂n ( î ) w Lpn−1(Ẑ[π]) w . . .
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with excision isomorphisms LX∗ (i) ∼= LX̂∗ ( î ) of the relative L-groups, where

X = im(K̃0(Z[π])−−→K̃0(Q[π])) , X̂ = im(K̃0(Ẑ[π])−−→K̃0(Q̂[π])) .

(If π is finite then X = {0} by a result of Swan). The projective symmetric
Witt group of Ẑ

L0
p(Ẑ) =

∏

q

L0(Ẑq) = L0(Z8)⊕
∏

q 6=2

L0(Fq)

is a ring with 1 of exponent 8, which acts on LX̂∗ ( î ). See Ranicki [142, 4.4],

[144, §8], [146, §3.6] for further details.
(ii) Immediate from (i) and 22.33.
(iii) Immediate from (ii).

Remark 22.35 The computation of L∗(Z[π]) (π finite) modulo 2-primary

torsion was originally obtained by Wall [180, pp. 167–168], [181] using the
work of Kneser on Galois cohomology to formulate the L-theory Hasse prin-
ciple

L∗(Z[π])[1/2] = L∗(Q̂[π])[1/2]⊕ L∗(R[π])[1/2] .

Ian Hambleton has pointed out that the action of L0(Q̂) on L∗(Q̂[π]) gives
a direct derivation of

L∗(Z[π])[1/2] = L∗(R[π])[1/2] ,

which avoids the detailed analysis in 22.33 of L∗(Q[π])[1/2], as follows. The
symmetric Witt ring of Q̂

L0(Q̂) =

( ∏

q prime

L0(Ẑq)
)
⊕
( ∑

q

L0(Fq)
)

=

(
L0(Z8)⊕

∏

q 6=2

L0(Fq)
)
⊕
( ∑

q

L0(Fq)
)

has exponent 8, so that L∗(Q̂[π])[1/2] = 0. In fact

LX∗ (R[π])[1/2] = L∗(R[π])[1/2]

for any ring R with Z ⊆ R ⊆ Q, with any decoration subgroup X ⊆
K̃i(R[π]) (i = 0, 1). See Bak and Kolster [8], Carlsson and Milgram [33],
Kolster [88], Hambleton and Madsen [67] for the computation of the torsion
in the projective L-groups Lp∗(Z[π]), which is all 2-primary.

The classifying space Bπ of a finite group π has the rational homotopy

type of a point: the transfer map p ! associated to the universal covering
projection p :Eπ−−→Bπ is such that

p !p
! = |π| : h∗(Bπ) −−→ h∗(Eπ) −−→ h∗(Bπ)
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for any generalized homology theory h∗, with Eπ ' {pt.} and h∗(Eπ) =
h∗({ pt.}). It follows that the maps

Hn({pt.};L.) = Ln(Z) −−→ Hn(Bπ;L.) (n > 0)

are isomorphisms modulo torsion. The natural transformation of exact se-
quences
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for any generalized homology theory h∗, with Eπ ≃ {pt.} and h∗(Eπ) =

h∗({pt.}). It follows that the maps

Hn({pt.}; L.) = Ln(Z) −−→ Hn(Bπ; L.) (n > 0)

are isomorphisms modulo torsion. The natural transformation of exact se-

quences

. . . w Ln(Z) w

u

Ln(Z[π]) w L̃n(Z[π]) w
0

u

Ln−1(Z) w

u

. . .

. . . w Hn(Bπ; L.) w
A Ln(Z[π]) w Sn(Bπ) w Hn−1(Bπ; L.) w . . .

is an isomorphism modulo torsion, with

S2∗+1(Bπ)⊗Q = L̃2∗+1(Z[π])⊗Q = 0 .

Theorem 22.36 Let X be a finite 2k-dimensional geometric Poincaré com-
plex, with a regular finite cover X classified by a morphism π1(X)−−→π to
a finite group π.

(i) The symmetric signature σ∗(X) = (C(X), ϕ) ∈ L2k(Z[π]) is determined
modulo 2-primary torsion by the R-multisignature of the nonsingular (−)k-
symmetric form (Hk(X; R), ϕ0) over R[π]

σ∗(X) = R-multisignature (Hk(X; R), ϕ0)

∈ L2k
p (R[π]) =





∑
α(R,π)

Z
∑

αC(R,π)

Z if k ≡
{

0

1
(mod 2) ,

with L2k(Z[π])[1/2] = L2k
p (R[π])[1/2].

(ii) The image in S2k(Bπ) of the total surgery obstruction s(X) ∈ S2k(X)

is determined up to torsion by the reduced R-multisignature

[s(X)]⊗Q = σ∗(X)⊗Q ∈ S2k(Bπ)⊗Q = L̃2k(Z[π])⊗Q

=





coker

(
A =

α(R,π)∑
j=1

dj(R, π) : Q−−→ ∑
α(R,π)

Q
)

∑
αC(R,π)

Q
if k ≡

{
0

1
(mod 2) .

Proof The symmetrization maps

1 + T : S∗(X) = S⟨1⟩∗(X) −−→ S⟨1⟩∗(X)

are isomorphisms modulo 2-primary torsion for any space X, and

(1 + T )s(X) = [σ∗(X)] ∈ im(Ln(Z[π1(X)])−−→Sn(X))

for any finite n-dimensional geometric Poincaré complex X.
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Example 22.37 Let X be a finite 2k-dimensional geometric Poincaré com-
plex, with a regularm-fold cyclic coverX classified by a morphism π1(X)−−→
Zm. The multisignature of X with respect to X is an element

σ∗(X) = (s1, s2, . . . , sαk(R,Zm)) ∈ L2k
p (R[Zm]) =

αk(R,Zm)∑

j=1

Z

with

α0(R,Zm) =

{
(m+ 1)/2

(m+ 2)/2
, α1(R,Zm) =

{
(m− 1)/2

(m− 2)/2
if m is

{
odd

even

(cf. 22.24, 22.32). The total surgery obstruction s(X) ∈ S2k(X) has image

[s(X)]⊗Q = (s1, s2, . . . , sαk(R,Zm))

∈ S2k(BZm)⊗Q =





coker

(
(1 1 . . . 1):Q−−→ ∑

α0(R,Zm)

Q
)

∑
α1(R,Zm)

Q

if k ≡
{

0

1
(mod 2) .

For k ≡ 0 (mod 2) there is one multisignature component sj for each irre-

ducible R-representation of Zm = 〈T |Tm = 1〉

ρj : Zm −−→ Dj =

{
R if j = 1 or (m+ 2)/2 (m even)

C otherwise ;

T −−→ e2πij/m (0 ≤ j < α0(R,Zm)) ,

with
signature (X) = s1 ∈ L4k(R) = Z ,

signature (X) =

α0(R,Zm)∑

j=1

cjsj ∈ L4k(R) = Z (cj = dimR(Dj)) .

The total surgery obstruction is such that

[s(X)]⊗Q = 0 ∈ S2k(BZm)⊗Q
if and only if the multisignature components are equal

signature (X) = s1 = s2 = . . . = sα0(R,Zm) ∈ Z ,

in which case

signature (X) =

(α0(R,Zm)∑

j=1

cj

)
s1 = m signature (X) ∈ Z

confirming the multiplicativity of the signature for finite covers of manifolds

(21.4, 22.26) in the cyclic case.
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§23. Splitting

The algebraic methods appropriate to the computation of L∗(Z[π]) and
S∗(Bπ) for finite groups π do not in general extend to infinite groups π.

At present, systematic computations are possible only for infinite groups π
which are geometric in some sense, such as the following.

(i) π is an n-dimensional Poincaré duality group, i.e. such that the classi-
fying space Bπ is an n-dimensional geometric Poincaré complex. Differential

and hyperbolic geometry provide many examples of Poincaré duality groups
π acting freely on an open contractible n-dimensional manifolds with com-
pact quotient, such as the torsion-free crystallographic groups acting on

Rn. The generic result expected in this case is that the assembly map
A:H∗(Bπ;L.)−−→L∗(Z[π]) is an isomorphism for ∗ > n, with S∗(Bπ) = 0
for ∗ > n and s(Bπ) = 0 ∈ Sn(Bπ) = Z, so that Bπ is homotopy equivalent

to an aspherical compact n-dimensional topological manifold with topologi-
cal rigidity. This is the strongest form of the Novikov and Borel conjectures,
which will be discussed (but alas not proved) in §24 below.

(ii) π acts on a tree with compact quotient, so that by the Bass–Serre the-

ory π is either an amalgamated free product or an HNN extension. The
generic result available in this case is that if π is obtained from the trivial
group {1} by a sequence of amalgamated free products and HNN exten-

sions then S∗(Bπ) can be expressed in terms of the Tate Z2-cohomology
groups of the duality involution on the algebraic K-theory of Z[π], the UNil-
groups of Cappell [23] and the generalized Browder–Livesay LN -groups of

Wall [180, §12C], which arise from the codimension 1 splitting obstruction
theory. It is this splitting theory which will be considered now.

Definition 23.1 A homotopy equivalence f :M ′−−→M of compact n-dimen-

sional manifolds splits along a compact submanifold Nn−q ⊂ Mn if f is
h-cobordant a homotopy equivalence (also denoted by f) transverse regular
at N ⊂ M , such that the restriction f |:N ′ = f−1(N)−−→N is a homotopy
equivalence of compact (n− q)-dimensional manifolds.

If a homotopy equivalence of compact manifolds f :M ′−−→M is h-cobord-

ant to a homeomorphism then f splits along every submanifold N ⊂ M .
Conversely, if f :M ′−−→M does not split along some submanifold N ⊂ M
then f cannot be h-cobordant (let alone homotopic) to a homeomorphism.

In general, homotopy equivalences do not split along submanifolds. Surgery

theory provides various K- and L-theory obstructions to splitting, whose
vanishing is both necessary and sufficient for splitting if n−q ≥ 5, and which
are also the obstructions to transversality for geometric Poincaré complexes.

There is also an obstruction theory for the more delicate problem of split-
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ting up to homotopy, i.e. replacing h-cobordisms by s-cobordisms, which
involves Whitehead torsion. See Ranicki [146, §7] for a preliminary account
of the splitting obstruction theory from the chain complex point of view.

The geometric codimension q splitting obstruction LS-groups LS∗(Φ) of

Wall [180, §11] are defined using normal maps with reference maps to a space
X which is expressed as a union

X = E(ξ) ∪S(ξ) Z

with (E(ξ), S(ξ)) the (Dq, Sq−1)-bundle associated to a topological block

bundle ξ:Y−−→BT̃OP (q) over a subspace Y ⊂ X, for some q ≥ 1. By
the Seifert–Van Kampen theorem the fundamental group(oid)s fit into a
pushout square
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π1(S(ξ)) w

u

π1(Z)

u
Φ

π1(Y ) w π1(X) .

The LS-groups are designed to fit into an exact sequence

. . . −−→ LSn−q(Φ) −−→ Ln(ξ
!:Y → Z)

−−→ Ln(X) −−→ LSn−q−1(Φ) −−→ . . .

with L∗(X) = L∗(Z[π1(X)]). In the original setting of [180] these were the

obstruction groups appropriate to simple homotopy equivalences. Here, only
ordinary homotopy equivalences are being considered, with free L-groups
and the corresponding modification in the definition of LS∗(Φ). The free

and simple LS-groups differ in 2-primary torsion only, being related by the
appropriate Rothenberg-type exact sequence.

A map from a compact n-dimensional manifold r:Mn−−→X = E(ξ)∪S(ξ)

Z can be made transverse regular at the zero section Y ⊂ E(ξ) ⊂ X, with

r−1(Y ) = Nn−q ⊂Mn

a codimension q compact submanifold and the restriction

s = r| : Nn−q = r−1(Y ) −−→ Y

such that

νN⊂M = s∗ξ : N −−→ BT̃OP (q) , M = E(νN⊂M ) ∪ f−1(Z) .

Proposition 23.2 Let Mn be a closed n-dimensional manifold with a π1-
isomorphism reference map r:Mn−−→X = E(ξ) ∪S(ξ) Z transverse regular

at Y ⊂ X, such that the restriction r|:Nn−q = r−1(Y )−−→Y is also a
π1-isomorphism.

The LS-groups are designed to fit into an exact sequence

. . . −−→ LSn−q(Φ) −−→ Ln(ξ !:Y → Z)

−−→ Ln(X) −−→ LSn−q−1(Φ) −−→ . . .

with L∗(X) = L∗(Z[π1(X)]). In the original setting of [180] these were the
obstruction groups appropriate to simple homotopy equivalences. Here, only
ordinary homotopy equivalences are being considered, with free L-groups

and the corresponding modification in the definition of LS∗(Φ). The free
and simple LS-groups differ in 2-primary torsion only, being related by the
appropriate Rothenberg-type exact sequence.

A map from a compact n-dimensional manifold r:Mn−−→X = E(ξ)∪S(ξ)

Z can be made transverse regular at the zero section Y ⊂ E(ξ) ⊂ X, with

r−1(Y ) = Nn−q ⊂Mn

a codimension q compact submanifold and the restriction

s = r| : Nn−q = r−1(Y ) −−→ Y

such that

νN⊂M = s∗ξ : N −−→ BT̃OP (q) , M = E(νN⊂M ) ∪ f−1(Z) .

Proposition 23.2 Let Mn be a closed n-dimensional manifold with a π1-
isomorphism reference map r:Mn−−→X = E(ξ) ∪S(ξ) Z transverse regular

at Y ⊂ X, such that the restriction r|:Nn−q = r−1(Y )−−→Y is also a
π1-isomorphism.
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(i) The codimension q splitting obstruction of a homotopy equivalence f :M ′

−−→M of compact n-dimensional manifolds is the image of the structure
invariant s(f) ∈ Sn+1(X)

sY (f) = [s(f)] ∈ im(Sn+1(X)−−→LSn−q(Φ)) ,

such that sY (f) = 0 if (and for n − q ≥ 6 only if) f splits along N ⊂ M .
The image of the splitting obstruction

[sY (f)] = σ∗(g, c) ∈ im(A:Hn−q(Y ;L.)−−→Ln−q(Y ))

is the surgery obstruction of the normal map of compact (n−q)-dimensional
manifolds obtained by codimension q transversality

(g, c) = f | : (N ′)n−q = f−1(N) −−→ N .

(ii) For n − q ≥ 6 every element x ∈ LSn−q+1(Φ) is realized as the rel ∂

codimension q splitting obstruction x = sY (F ) of a homotopy equivalence
of compact (n+ 1)-dimensional manifolds with boundary

F : (Wn+1;Mn,M ′n)
'−−→ Mn × ([0, 1]; {0}, {1})

such that

F |M = identity : M −−→ M × {0} ,
F |M ′ = split homotopy equivalence : M ′ −−→ M × {1} .

Proof See Wall [180, §11].

Proposition 23.3 The exact sequence of Ranicki [146, 7.2.6] relating the
codimension q splitting obstruction groups LS∗(Φ) and the quadratic struc-
ture groups S∗ for X = E(ξ) ∪S(ξ) Z

. . . −−→ LSn−q(Φ) −−→ Sn(ξ !:Y → Z) −−→ Sn(X)

−−→ LSn−q−1(Φ) −−→ . . .

extends to a commutative braid of exact sequences
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h
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The codimension q Poincaré transversality obstruction theory is a deloop-
ing of the codimension q splitting obstruction theory for homotopy equiva-

lences of compact manifolds.

Proposition 23.4 (i) If P is an n-dimensional geometric Poincaré com-
plex with a map f :P−−→X = E(ξ) ∪S(ξ) Z then

sY (P ) = [∂σ∗(P )] = [s(P )] ∈ LSn−q−1(Φ)

is the codimension q Poincaré transversality obstruction, such that sY (P ) =

0 if (and for n− q ≥ 6 only if) there exists a geometric Poincaré bordism

(g; f, f ′) : (Q;P, P ′) −−→ X

such that (f ′)−1(Y ) ⊂ P ′ is a codimension q Poincaré subcomplex.
(ii) The geometric Poincaré bordism groups fit into the commutative braid

of exact sequences analogous to the braids of 19.6 (i) and 23.3
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with ΩP. = ΩP. ({∗}) the Poincaré bordism spectrum of a point.

For q ≥ 3 the fundamental groups are all the same

π1(X) = π1(Y ) = π1(Z) = π1(S(ξ)) (= π , say)

and LS∗(Φ) = L∗(Z[π]). For LS∗(Φ) in the case q = 2 see Ranicki [146, 7.8].

For q = 1 with X, Y connected, there are the usual three cases:
(A) the normal bundle ξ is trivial, and the complement Z = X\Y is dis-

connected, with components Z1 , Z2 , so that the fundamental group

of X is the amalgamated free product

π1(X) = π1(Z1) ∗π1(Y ) π1(Z2)

determined by the two group morphisms

(i1)∗ : π1(Y ) −−→ π1(Z1) , (i2)∗ : π1(Y ) −−→ π1(Z2)

induced by the inclusions i1:Y−−→Z1, i2:Y−−→Z2,

with ΩP. = ΩP. ({∗}) the Poincaré bordism spectrum of a point.

For q ≥ 3 the fundamental groups are all the same

π1(X) = π1(Y ) = π1(Z) = π1(S(ξ)) (= π , say)

and LS∗(Φ) = L∗(Z[π]). For LS∗(Φ) in the case q = 2 see Ranicki [146, 7.8].

For q = 1 with X, Y connected, there are the usual three cases:
(A) the normal bundle ξ is trivial, and the complement Z = X\Y is dis-

connected, with components Z1 , Z2 , so that the fundamental group
of X is the amalgamated free product

π1(X) = π1(Z1) ∗π1(Y ) π1(Z2)

determined by the two group morphisms

(i1)∗ : π1(Y ) −−→ π1(Z1) , (i2)∗ : π1(Y ) −−→ π1(Z2)

induced by the inclusions i1:Y−−→Z1, i2:Y−−→Z2,
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(B) the normal bundle ξ is trivial, and the complement Z is connected, so
that the fundamental group of X is the HNN extension

π1(X) = π1(Z) ∗π1(Y ) Z
determined by the two group morphisms

(i1)∗ , (i2)∗ : π1(Y ) −−→ π1(Z)

induced by the two inclusions i1, i2:Y−−→Z.
(C) the normal bundle ξ is non-trivial.

If the group morphisms (i1)∗, (i2)∗ in cases (A) and (B) are injections then
the LS-groups are direct sums

LSn−1(Φ) = UNiln+1(Φ)⊕ Ĥn(Z2 ; I)

of the UNil-groups of Cappell [23] and the Tate Z2-cohomology groups with

respect to the duality Z2-action on the algebraic K-group

I = im(∂:Wh(π1(X))−−→K̃0(Z[π1(Y )]))

=

{
ker((i1)∗ ⊕ (i2)∗: K̃0(Z[π1(Y )])→ K̃0(Z[π1(Z1)])⊕ K̃0(Z[π1(Z2)]))

ker((i1)∗ − (i2)∗: K̃0(Z[π1(Y )])→ K̃0(Z[π1(Z)]))

for

{
(A)

(B) .

Here, ∂:Wh(π1(X))−−→K̃0(Z[π1(Y )]) is a component of the connecting map
in the algebraic K-theory exact sequence of Waldhausen [175]



. . . −−→ Wh(π1(Y ))⊕ Ñil1(Φ) −−→ Wh(π1(Z1))⊕Wh(π1(Z2))

−−→ Wh(π1(X))
∂
−−→ K̃0(Z[π1(Y )])⊕ Ñil0(Φ) −−→ . . .

. . . −−→ Wh(π1(Y ))⊕ Ñil1(Φ) −−→ Wh(π1(Z))

−−→ Wh(π1(X))
∂
−−→ K̃0(Z[π1(Y )])⊕ Ñil0(Φ) −−→ . . . .

The split surjection LSn−1(Φ)−−→Ĥn(Z2 ; I) fits into a commutative square
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−−→ Wh(π1(X))
∂
−−→ K̃0(Z[π1(Y )])⊕ Ñil0(Φ) −−→ . . . .

The split surjection LSn−1(Φ)−−→Ĥn(Z2 ; I) fits into a commutative square

Sn+1(X) w

u

Ĥn+1(Z2 ;Wh(π1(X)))

u
∂

LSn−1(Φ) w Ĥn(Z2 ; I)

with

Sn+1(X) −−→ Ĥn+1(Z2 ;Wh(π1(X))) ; (C,ψ) −−→ τ(C(X̃))

the map which sends the cobordism class of an n-dimensional locally Poincaré
globally contractible complex (C,ψ) in A (Z, X) to the Tate Z2-cohomology

with

Sn+1(X) −−→ Ĥn+1(Z2 ;Wh(π1(X))) ; (C,ψ) −−→ τ(C(X̃))

the map which sends the cobordism class of an n-dimensional locally Poincaré

globally contractible complex (C,ψ) in A (Z, X) to the Tate Z2-cohomology
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class of the Whitehead torsion of the assembly contractible Z[π1(X)]-module
chain complex C(X̃)

τ(C(X̃)) = (−)n+1τ(C(X̃))∗ ∈Wh(π1(X)) .

For n ≥ 5 every element x ∈ Ln+1(X) is realized as the rel ∂ surgery
obstruction σ∗(F,B) of a normal map of compact (n+ 1)-dimensional man-

ifolds with boundary

(F,B) : (Wn+1;Mn,M ′n) −−→ M × ([0, 1]; {0}, {1})
such that

F |M = identity : M −−→ M × {0} ,
F |M ′ = f = homotopy equivalence : M ′ −−→ M × {1}

with a π1-isomorphism reference map r:M−−→X = E(ξ)∪S(ξ) Z transverse
regular at Y ⊂ X, such that Nn−1 = r−1(Y ) ⊂ Mn is a codimension 1

submanifold with π1(N) ∼= π1(Y ) , and such that F is transverse regular at
N × [0, 1] ⊂M × [0, 1] with

(V n;Nn−1, N ′n−1) = F−1(N × ([0, 1]; {0}, {1})) ⊂ (Wn+1;Mn,M ′n)

a codimension 1 cobordism. If x ∈ UNiln+1(Φ) ⊆ Ln+1(X) the surgery

obstruction may be identified with the structure invariant of h and also
with the codimension 1 splitting obstruction

x = σ∗(F,B) = s(f) = sY (f)

∈ im(UNiln+1(Φ) ⊆ Ln+1(X)) = im(UNiln+1(Φ) ⊆ Sn+1(X))

= im(UNiln+1(Φ) ⊆ LSn−1(Φ)) .

The identification space

P = W ∪1tf M × [0, 1]

is an (n+ 1)-dimensional geometric Poincaré complex with a reference map

e:P−−→X such that

Q = e−1(Y ) = V ∪1tg N × [0, 1] ⊂ P
is a codimension 1 normal subcomplex, with

(g, c) = f | : N ′n−1 = f−1(N) −−→ Nn−1

the normal map of compact (n−1)-dimensional manifolds defined by restric-

tion. The element x ∈ UNiln+1(Φ) may also be identified with the image
of the total surgery obstruction of P , and with the codimension 1 Poincaré
transversality obstruction to making Q ⊂ P a codimension 1 Poincaré sub-

complex

x = [s(P )] = sY (P ) ∈ UNiln+1(Φ) .
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Example 23.5A Let Y = { pt.} ⊂ X = B(Z2 ∗Z2 ) = RP∞∨RP∞. Cappell
[23], [24] constructed non-trivial elements

x 6= 0 ∈ UNil4k+2(Φ) ⊂ L4k+2(Z[Z2 ∗ Z2]) ,

and used them to obtain homotopy equivalences of compact (4k+1)-dimen-
sional manifolds

f : M4k+1 −−→ RP4k+1 #RP4k+1 (k ≥ 1)

which do not split along the separating codimension 1 4k-sphere S4k ⊂
RP4k+1 #RP4k+1, with

s(f) = x 6= 0 ∈ UNil4k+2(Φ) = LS4k(Φ) ⊂ S4k+2(B(Z2 ∗ Z2 )) .

Example 23.5B Let X = Y × S1, π1(Y ) = π, so that

π1(X) = π × Z , Z[π1(X)] = Z[π][z, z−1] (z = z−1) .

The algebraic splitting theorem of Ranicki [140]

Lhn(Z[π][z, z−1]) = Lhn(Z[π])⊕ Lpn−1(Z[π])

extends to an algebraic splitting theorem

Sn(X) = Sn(Y )⊕ Spn−1(Y )

with Sp∗(Y ) the projective S-groups defined to fit into the exact sequence

. . . −−→Hn(Y ;L.)−−→ Lpn(Z[π1(Y )])−−→ Spn(Y )−−→Hn−1(Y ;L.)−−→ . . . .

(See Appendix C for more on Sp∗). The UNil-groups vanish in this case, and
the codimension 1 splitting obstruction groups are given by

LS∗(Φ) = Ĥ∗+1(Z2 ; K̃0(Z[π])) ,

with an exact sequence

. . . −−→ Sn(Y )⊕ Sn−1(Y ) −−→ Sn(X) −−→ LSn−2(Φ)

−−→ Sn−1(Y )⊕ Sn−2(Y ) −−→ . . . .

The codimension 1 splitting obstruction along Y ×{∗} ⊂ X = Y ×S1 of a ho-

motopy equivalence of compact (n− 1)-dimensional manifolds f :M ′−−→M
with respect to a map M−−→X is the image of the structure invariant
s(f) ∈ Sn(X)

sY (f) = [s(f)] = [Bτ(f)] ∈ LSn−2(Φ) = Ĥn−1(Z2 ; K̃0(Z[π]))

with B:Wh(π×Z)−−→K̃0(Z[π]) the Bass–Heller–Swan projection, as in the

splitting theorem of Farrell and Hsiang [48]. See Milgram and Ranicki [110],
Ranicki [149] for a chain complex treatment of this codimension 1 splitting
obstruction, and the extension to lower K- and L-theory.
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In case (C) if X, Y are connected and π1(X) ∼= π1(Y ) then Z is connected
and π1(Z) ∼= π1(S(ξ)) is the fundamental group of a nontrivial double cover
S(ξ) of Y , so that π1(X) = π is an extension of π1(Z) = π′ by Z2

{1} −−→ π′
i
−−→ π

ξ
−−→ Z2 −−→ {1} .

It is necessary to use the nonorientable version of the theory here (cf. Ap-
pendix A). Given a choice of orientation map w:π−−→Z2 let

w′ = wi : π′ −−→ Z2 .

The LS-groups are the generalized Browder–Livesay LN -groups of Wall
[180, 12C], with

LS∗(Φ) = LN∗(i
w:Z[π′]w

′−→Z[π]w) = L∗+2(Z[π′], α)

for an appropriate ‘antistructure’ α on Z[π′] depending on the choice of w.

(The isomorphism L∗(i
+
! ) ∼= L∗+1(i−! ) was obtained by Wall [180, 12.9.2] in

the split case π′ = π × Z2, and by Hambleton [65] in general. See 22.22 for
a discussion of this phenomenon in the split case.) See Ranicki [146, §7.6]

for the chain complex treatment. The map

i !t : Ln(Z[π]w) −−→ LNn−2(iw) = Ln(Z[π′], α) ; (C,ψ) −−→ (i !C, i !t ψ)

in the exact sequence

. . . −−→ Ln((iw) !:Z[π]wξ → Z[π′]w
′
) −−→ Ln(Z[π]w)

i !t
−−→ LNn−2(iw) −−→ Ln−1((iw) !) −−→ . . .

sends an n-dimensional quadratic Poincaré complex (C,ψ) over Z[π]w to

the n-dimensional quadratic Poincaré complex (i !C, i !t ψ) over (Z[π′], α),
for some fixed choice of t ∈ π\π′. Similarly for the map

i !t : V Ln(Bπw) = V Ln(Z[π]w) −−→ LNn−2(iw) ; (C, φ) −−→ (i !C, i !t φ)

in the exact sequence

. . . −−→ V Ln((iw) !) −−→ V Ln(Z[π]w)
i !t
−−→ LNn−2(iw)

−−→ V Ln−1((iw) !) −−→ . . . .

The visible symmetric structure φ ∈ V Qn(C) determines the α-twisted
quadratic structure i !t φ ∈ Qn(i !C,α) by the algebraic analogue of the

‘antiquadratic construction’ of [146, pp. 687-735].

Example 23.5C Let Y = RP∞−1 ⊂ X = RP∞, with the oriented involu-

tion w = + on

Z[π1(X)] = Z[Z2] = Z[T ]/(T 2 − 1) ,

so that π′ = {1}, π = Z2 , t = T , w(T ) = +1. The codimension 1 splitting
obstruction groups in this case are given by Wall [180, 13A.10] to be

LSn(Φ) = LNn(i+:Z−→Z[Z2]+) = Ln+2(Z) .
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From the tabulation of A:H∗(BZ+
2 ;L.(Z))−−→L∗(Z[Z2]+) in 9.17 the quad-

ratic S-groups of BZ2 = RP∞ in the oriented case are given by

Sn(BZ+
2 ) = LNn−2(i+)⊕





∑
k 6=−1

Hn−k(BZ+
2 ;Lk−1(Z))

∑
k∈Z

Hn−k(BZ+
2 ;Lk−1(Z))

if n ≡
{

0

1
(mod 2) .

The map

i !t : V L4k(BZ+
2 ) −−→ S4k(BZ+

2 ) −−→ LN4k−2(i+) = L4k(Z)

sends a 4k-dimensional visible symmetric Poincaré complex (C, φ) over

Z[Z2]+ to

i !t (C, φ) = (1/8) signature (C, i !t φ) ∈ L4k(Z) = Z .

As in 9.17 let

s±(C, φ) = signature j±(C, φ) ∈ L4k(Z) = Z ,

with

j± : Z[Z2] −−→ Z ; a+ bT −−→ a± b .
For any a+ bT ∈ Z[Z2] the eigenvalues of

i !t (a+ bT ) =

(
b a
a b

)
: i !Z[Z2] = Z⊕ Z −−→ Z⊕ Z

are j±(b+ aT ) = b± a, so that

i !t (C, φ) = (s+(C, φ)− s−(C, φ))/8 ∈ L4k(Z) = Z .

If f :M ′4k−1−−→M4k−1 is a homotopy equivalence of oriented compact
(4k−1)-dimensional manifolds and e:M−−→RP∞ classifies an oriented dou-
ble cover M = e∗S∞ then the codimension 1 splitting obstruction of the

structure invariant s(f) ∈ S4k(BZ+
2 ) is just the desuspension invariant of

Browder and Livesay [18]

[s(f)] = i !t σ∗(g, c) = (1/8) signature (i !C, i !t ψ)

∈ LN4k(i−) = LN4k−2(i+) = L4k(Z) = Z ,

with σ∗(g, c) = (C,ψ) the kernel (4k − 2)-dimensional quadratic Poincaré

complex over Z[Z2]− of the normal map of nonorientable compact (4k− 2)-
dimensional manifolds

(g, c) = f | : N ′4k−2 = (ef)−1(RP∞−1) −−→ N4k−2 = e−1(RP∞−1)

obtained by codimension 1 transversality at RP∞−1 ⊂ RP∞. See Lopez
de Medrano [98] for the surgery classification of involutions on simply
connected high-dimensional compact manifolds. The splitting obstruction

groups LN∗(i±:Z−→Z[Z2]±) are denoted by BL∗+1(±) in [98].
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For the remainder of 23.5C let (W,∂W ) be an oriented 4k-dimensional
geometric Poincaré pair with an oriented double cover (W,∂W ).

The multisignature components of the 4k-dimensional visible symmetric
complex (∆(W,∂W ), φ) over Z[Z2]+

s±(W ) = s±(∆(W,∂W ), φ) = signature j±(∆(W,∂W ), φ) ∈ Z
are such that

signature (W ) = s+(W ) , signature (W ) = s+(W ) + s−(W ) ∈ Z .

The Z2-signature ofW (22.1) is the signature of the 4k-dimensional quadratic
complex (∆(W,∂W ), i !t φ) over Z

signature (W,T ) = signature (∆(W,∂W ), i !t φ)

= s+(W )− s−(W ) ∈ 8Z ⊂ Z .

The signature of the cover fails to be multiplicative by

2 signature (W )− signature (W ) = s+(W )− s−(W )

= signature (W,T ) ∈ 8Z ⊂ Z .

The signature defect for finite covers of compact 4k-dimensional manifolds
with boundary has been studied by Hirzebruch [77] and his school (Jänich,

Knapp, Kreck, Neumann, Ossa, Zagier) using the methods of the Atiyah-
Singer index theorem, which also apply in the case k = 1.

Let ∂W = ∅, so that W is an oriented finite 4k-dimensional geomet-
ric Poincaré complex with an oriented double cover W . The total surgery

obstruction s(W ) ∈ S4k(W ) has image the codimension 1 Poincaré transver-
sality obstruction

sY (W ) = [s(W )] = signature (W,T )/8 = (s+(W )− s−(W ))/8

= (2 signature (W )− signature (W ))/8

∈ LN4k−2(i+) = L4k(Z) = Z ,

which has been studied by Hambleton and Milgram [68].
If (W 4k, ∂W ) is an oriented compact 4k-dimensional manifold with bound-

ary and (f, b): (W ′4k, ∂W ′)−−→(W,∂W ) is a normal map which restricts to

a homotopy equivalence on the boundaries

h = ∂f : ∂W ′
'−−→ ∂W

then the rel ∂ surgery obstruction is given by

σ∗(f, b) = ( s+(W
′
)− s+(W ) , s−(W

′
)− s−(W ) )

∈ L4k(Z[Z2]+) = Z⊕ Z .

The identification space

P = W ′ ∪h −W
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is an oriented 4k-dimensional geometric Poincaré complex with an oriented
double cover P classified by a map P−−→X = RP∞. The structure invariant
s(h) ∈ S4k(∂W ) and the total surgery obstruction s(P ) ∈ S4k(P ) have the
same image

[s(h)] = [s(P )] = [σ∗(f, b)] ∈ im(L4k(Z[Z2]+)−−→S4k(BZ+
2 )) ,

and the codimension 1 splitting obstruction along Y = RP∞−1 ⊂ X is given
by the Browder–Livesay invariant

sY (h) = sY (P ) = signature (P , T )/8

= (2 signature (P )− signature (P ))/8

= (signature (W
′
, T )− signature (W,T ))/8

∈ LN4k−2(i+) = L4k(Z) = Z .

If (W 4k, ∂W ) is an oriented compact 4k-dimensional manifold with bound-
ary then the classifying map

e : (W,∂W ) −−→ RP∞

for the double cover (W
4k
, ∂W ) can be made transverse regular at RP∞−1 ⊂

RP∞ with

(V 4k−1, ∂V ) = e−1(RP∞−1) ⊂ (W 4k, ∂W )

a codimension 1 nonorientable submanifold. The double cover V of V is
oriented, and separates W as

W = W
+ ∪V W

−

with T (W
±

) = W
∓

. The singular symmetric forms on H2k(W
±

) and
H2k(W ) have the same radical quotients, so that

signature (W
±

) = signature (W ) ∈ Z .

The signature defect is

signature (W,T ) = 2 signature (W )− signature (W )

= signature (W
+

) + signature (W
−

)− signature (W )

= the signature non-additivity invariant of Wall [178]

= the ρ-invariant of Wall [180, 13B.2] ∈ Z .

This invariant depends only on the (4k−1)-dimensional boundary manifold
∂W , for if (W ′, ∂W ′) is another oriented manifold with the same boundary

∂W ′ = ∂W the union P 4k = W ′∪∂ −W is a closed oriented 4k-dimensional
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manifold such that

signature (W
′
, T )− signature (W,T )

= signature (P , T )

= 2 signature (P )− signature (P )

= 0 ∈ Z
by Novikov additivity and the multiplicativity of the signature for finite
covers of manifolds. See Hirzebruch and Zagier [78, 4.2] and Neumann [120]
for the connections with the Atiyah–Patodi–Singer α-, γ- and η-invariants

of odd-dimensional manifolds.
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§24. Higher signatures

The higher signatures are non-simply connected generalizations of the L-

genus, corresponding to the rational part of the canonical L.
-orientation of

compact topological manifolds. A general discussion of the connections be-
tween the algebraic L-theory assembly map and the Novikov conjecture on
the homotopy invariance of the higher signatures is followed by the particu-

lar discussion of the homotopy types of the classifying spaces Bπ of Poincaré
duality groups satisfying the conjecture. The total surgery obstruction of
such geometric Poincaré complexes is detected by codimension n signatures.

Definition 24.1 (i) The higher signature of an oriented compact n-dimen-
sional manifold Mn with respect to a cohomology class x ∈ Hn−4∗(M ;Q)

is

σx(M) = 〈L(M) ∪ x, [M ]Q〉 ∈ Q ,

with L(M) = L(τM ) = L−1(νM ) ∈ H4∗(M ;Q) the L-genus and [M ]Q ∈
Hn(M ;Q) the rational fundamental class.
(ii) A higher signature σx(M) is universal if x = f∗y is the pullback of a

class y ∈ Hn−4∗(Bπ;Q) (π = π1(M)) along a classifying map f :M−−→Bπ
for the universal cover of M .

A universal higher signature σf∗y(M) is usually written as σy(M).

Example 24.2 (i) For x = 1 ∈ H0(M ;Q) the universal higher signature
σx(M) ∈ Q of an oriented compact n-dimensional manifold M with n ≡
0(mod 4) is just the ordinary signature, since by the Hirzebruch formula

σ1(M) = 〈L(M), [M ]Q〉 = signature (M) ∈ Z ⊂ Q .

If n 6≡ 0(mod 4) then σ1(M) = 0.
(ii) Given an oriented compact n-dimensional manifold Mn and an oriented

compact 4k-dimensional submanifold N4k ⊆Mn write the inverse L-genus
of the normal block bundle νN⊆M :N−−→BST̃OP (n− 4k) as

L(N,M) = L−1(νN⊆M ) ∈ H4∗(N ;Q) .

Let i:N−−→M be the inclusion, and let

x = i !L(N,M) ∈ Hn−4k+4∗(M ;Q)

be the image of L(N,M) under the Umkehr map

i ! : H4∗(N ;Q) ∼= H4k−4∗(N ;Q)
i∗−−→ H4k−4∗(M ;Q) ∼= Hn−4k+4∗(M ;Q) .

It follows from the identity νN = νN⊆M ⊕ i∗νM :N−−→BSTOP that

L(N) = L(N,M) ∪ i∗L(M) ∈ H4∗(N ;Q) .

The corresponding higher signature of M is the ordinary signature of N

σx(M) = 〈L(M) ∪ x, [M ]Q〉 = 〈L(N), [N ]Q〉 = signature (N) ∈ Z .
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The special case N4k = Mn is (i), with x = 1 ∈ H0(M ;Q) = Q. In the
special case N0 = {pt.} ⊂ Mn the element x = i !(1) = 1 ∈ Hn(M ;Q) =
Q is such that σx(M) = signature(N) = 1 ∈ Z ⊂ Q. As in Thom’s
combinatorial construction the L-genus L(M) ∈ H4∗(M ;Q) is characterized

by the signatures of compact submanifolds N4k ⊆ Mn with trivial normal
bundle νN⊆M = εn−4k:N−−→B ˜STOP (n− 4k)

L(M)∗ : H4∗(M ;Q) ∼= Hn−4∗(M ;Q)−−→Q ; x−−→σx(M) = signature (N)

with i∗[N ]Q ∈ H4k(M ;Q) the Poincaré dual of x = i !(1) ∈ Hn−4k(M ;Q)
and L(N,M) = 1. In general, these higher signatures are not universal.

(iii) The cap product of the canonical L.
-homology class [B]L ∈ Hn(B;L.

)
of a compact n-dimensional manifold B and an L.-cohomology class Γ ∈
H−m(B;L.) is an L.-homology class [B]L∩Γ ∈ Hm+n(B;L.) (Appendix B).

If m = 2i, n = 2j with i + j ≡ 0(mod 2) the product [B]L ∩ Γ determines
a nonsingular symmetric form φ on the jth cohomology Hj(B; {Hi(Γ)}) of
B with coefficients in the flat bundle Hi(Γ) of nonsingular (−)i-symmetric

forms over Z. The signature of this form is given by the simply connected
assembly

signature (Hj(B; {Hi(Γ)}), φ) = A([B]L ∩ Γ) ∈ L2(i+j)(Z) = Z ,

and hence as a universal higher signature

signature (Hj(B; {Hi(Γ)}), φ) = σx(B) ∈ Z ⊂ Q
with x = c̃h([Γ]K) ∈ H2∗(Bπ;Q) the modified Chern character of the topo-

logical K-theory signature [Γ]K ∈
{
KO(B)
KU(B)

(for i ≡
{

0
1

(mod 2)) deter-

mined by the action of π1(B) = π on the local system of (−)j-symmetric
forms on Hj(Γ), as in the work of Atiyah [6], Lusztig [101] and Meyer [107]

on the non-multiplicativity of the signature of a fibre bundle (cf. 21.3).
The signature of a compact 2(i + j)-dimensional manifold E which is the
total space of a fibre bundle F−−→E−−→B with the base B a compact 2j-
dimensional manifold and the fibre F a compact 2i-dimensional manifold is

given by the higher signature

signature (E) = signature (Hj(B; {Hi(Γ)}), φ) = σx(B) ∈ L2(i+j)(Z) = Z
with Γ ∈ H−2i(B;L.) such that H∗(Γ) = H∗(F ), as in Lück and Ran-
icki [100].

Proposition 24.3 (i) The canonical L.
-orientation [M ]L ∈ Hn(M ;L.

) of
an oriented compact n-dimensional manifold M determines and is deter-
mined modulo torsion by the higher signature map

Hn−4∗(M ;Q) −−→ Q ; x −−→ σx(M) .

(ii) The normal invariant [f, b]L ∈ Hn(M ;L.) of a normal map (f, b):N−−→
M of closed oriented n-dimensional manifolds determines and is determined
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modulo torsion by the differences of the higher signatures

Hn−4∗(M ;Q) −−→ Q ; x −−→ σf∗x(N)− σx(M) .

Proof (i) Every element of Hn(M ;L.) ⊗ Q is a rational multiple of the
image i∗([N ]L) ∈ Hn(M ;L.) of the L.-coefficient fundamental class [N ]L ∈
Hn(N ;L.

) of an n-dimensional submanifold i : N ⊂M × Rk (k large) with
trivial normal bundle. Define an isomorphism

Hn(M ;L.
)⊗Q −−→ Hn−4∗(M ;Q) ; i∗([N ]L) −−→ i∗(L(N)∗)

with L(N)∗ ∈ Hn−4∗(N ;Q) the Poincaré dual of the Hirzebruch L-genus

L(N) ∈ H4∗(N ;Q)

L(N)∗ = L(N) ∩ [N ]Q ∈ Hn−4∗(N ;Q) ,

with [N ]Q ∈ Hn(N ;Q) the Q-coefficient fundamental class. Both the higher
signatures and [M ]L ⊗ Q thus determine and are determined by the sig-

natures of compact submanifolds of M × Rk with trivial normal bundle,
and

σx(M) = (L(M) ∩ [M ]Q) ∩ x = ([M ]L ⊗Q) ∩ x ∈ H0(M ;Q) = Q
for any x ∈ Hn−4∗(M ;Q). The universal coefficient isomorphism

HomQ(Hn−4∗(M ;Q),Q) ∼= Hn−4∗(M ;Q)

sends the higher signature map x−−→σx(M) to the element

[M ]L ⊗Q = L(M) ∩ [M ]Q ∈ Hn−4∗(M ;Q) .

(ii) This follows from (i), since 1 + T :H∗(M ;L.)−−→H∗(M ;L.〈1〉(Z)) is an
isomorphism modulo 8-torsion, and

(1 + T )[f, b]L = f∗[N ]L − [M ]L ∈ Hn(M ;L.〈1〉(Z)) .

Conjecture 24.4 (Novikov) The universal higher signatures are homotopy
invariant for any group π.

Write the quadratic L-theory assembly map for the classifying space Bπ
of a group π as

Aπ : H∗(Bπ;L.(Z)) −−→ L∗(Z[π]) .

Proposition 24.5 The following versions of the Novikov conjecture are
equivalent for any finitely presented group π:

(i) the universal higher signatures are homotopy invariant, i.e. for any

homotopy equivalence h:N−−→M of oriented compact n-dimensional
manifolds with π1(M) = π1(N) = π and every x ∈ Hn−4∗(Bπ;Q)

σx(M) = σx(N) ∈ Q ,
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(ii) the rational canonical L.
-homology classes are homotopy invariant,

i.e. for any homotopy equivalence h:N−−→M of oriented compact n-
dimensional manifolds with π1(M) = π1(N) = π

[M ]L ⊗Q = h∗[N ]L ⊗Q ∈ Hn(M ;L.)⊗Q ,

(iii) the rational assembly map

Aπ ⊗Q : H∗(Bπ;L.(Z))⊗Q =
∑

j∈Z
H∗−4j(Bπ;Q) −−→ L∗(Z[π])⊗Q

is injective,
(iv) the dual of the rational assembly map

(Aπ ⊗Q)∗ : HomQ(L∗(Z[π])⊗Q,Q) −−→
∑

j∈Z
H∗−4j(Bπ;Q)

is surjective.
Proof (i)⇐⇒ (ii) Working as in the proof of 24.3 (i) the image f ∗ [M ]L ∈
Hn(Bπ;L.) determines and is determined modulo torsion by the universal

higher signatures σx(M) ∈ Q (x ∈ Hn−4∗(Bπ;Q)).
(iii) =⇒ (ii) Symmetric and quadratic L-theory only differ in 2-primary
torsion, so (iii) is equivalent to the injectivity of the rational assembly map
in symmetric L-theory

Aπ ⊗Q : H∗(Bπ;L.)⊗Q =
∑

j∈Z
H∗−4j(Bπ;Q) −−→ L∗(Z[π])⊗Q .

For any compact n-dimensional manifold M with π1(M) = π and classifying

map f :M−−→Bπ the assembly of f∗[M ]L ∈ Hn(Bπ;L.
) is the homotopy

invariant symmetric signature

Aπf∗[M ]L = A[M ]L = σ∗(M) ∈ Ln(Z[π]) .

(ii) =⇒ (iii) Every element in S∗+1(Bπ) is the image of the structure in-

variant s(h) of a homotopy equivalence h:N−−→M of closed manifolds with
fundamental group π. The kernel of the assembly map

ker(Aπ:H∗(Bπ;L.(Z))−−→L∗(Z[π])) = im(S∗+1(Bπ)−−→H∗(Bπ;L.(Z)))

consists of the images of the normal invariants [h]L of such homotopy equiv-

alences h, which are given modulo 2-primary torsion (and a fortiori ratio-
nally) by the differences of the canonical L.-homology classes

[h]L ⊗Q = h∗[N ]L ⊗Q− [M ]L ⊗Q

∈ H∗(Bπ;L.(Z))⊗Q = H∗(Bπ;L.(Z))⊗Q .

A cohomology class x ∈ H∗(Bπ;Q) is such that the function M−−→σx(M)
is a homotopy invariant if and only if

ker(Aπ ⊗Q) ∩ x = 0 ∈ H0(Bπ;Q) = Q .

(This is the case if and only if x ∈ H∗(Bπ;Q) is in the image of the Q-
dual assembly map (Aπ ⊗ Q)∗.) If ker(Aπ ⊗ Q) = 0 then every class x ∈
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H∗(Bπ;Q) satisfies this condition.
(iii) ⇐⇒ (iv) Trivial.

Remark 24.6 The equivalence of the Novikov conjecture for π and the

rational injectivity of the assembly map Aπ was first established by Wall
[180, §17H], Mishchenko and Solovev [118] and Kaminker and Miller [81].

Only infinite groups π need be considered for the Novikov conjecture,
since for finite π

H∗(Bπ;L.(Z))⊗Q = H∗({ pt.};L.(Z))⊗Q = L∗(Z)⊗Q ,

and Aπ ⊗ Q:L∗(Z) ⊗ Q−−→L∗(Z[π]) ⊗ Q is the injection induced by the
inclusion Z−−→Z[π].

Remark 24.7 The Novikov conjecture for the free abelian groups Zn (n ≥
1) was proved (more or less explicitly) by Novikov [123], [124], Rohlin [152],
Farrell and Hsiang [48], Kasparov [83], Lusztig [101], Shaneson [158], Ran-

icki [140], Cappell [25] using a variety of topological, analytic and algebraic
methods. This case is especially significant, on account of the related prop-
erties of the n-torus BZn = Tn used in the work of Novikov [123] on the

topological invariance of the rational Pontrjagin classes, and in the work of
Kirby and Siebenmann [87] on topological manifolds.

Remark 24.8 Cappell [25] used codimension 1 splitting methods (§23) to

construct a class of groups π satisfying the Novikov conjecture. The class is
closed under free products with amalgamation and HNN extensions which
are ‘square root closed’, and includes the trivial group {1} and the free
abelian groups Zn (n ≥ 1). See Stark [165] for an extension of the class.

Remark 24.9 The Novikov conjecture is related to Atiyah–Singer index
theory, C∗-algebras, hyperbolic geometry, differential geometry, cyclic ho-

mology, equivariant and controlled topology. The following list of references
is only a small sample of the literature: Connes and Moscovici [41], Farrell
and Hsiang [49], Kasparov [84], Mishchenko and Fomenko [117], Rosenberg
[153]. See Mishchenko [116] and Weinberger [183] for surveys.

Remark 24.10 In the analytic approaches to the Novikov conjecture the
group ring Z[π] is embedded in the reduced C∗-algebra C∗r (π). The analytic

index in K0(C∗r (π)) is identified with the image of the symmetric signature
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in L2k(Z[π]), using an isomorphism L2k(C∗r (π)) ∼= K0(C∗r (π)) generalizing
the multisignature (see Kaminker and Miller [82], for example). The al-
gebraic L-theory assembly map Aπ corresponds to a topological K-theory
assembly map β:K∗(Bπ)−−→K∗(C∗r (π)), and it is β which is proved to be

a rational split injection in various cases.

The simply connected L-groups are detected by the signatures of nonsin-
gular symmetric and quadratic forms over Z, with isomorphisms

L0(Z)
'−−→ Z ; (C, φ) −−→ signature (C, φ) ,

L0(Z)
'−−→ Z ; (C,ψ) −−→ (signature (C,ψ))/8 .

If K = Bπ is an aspherical n-dimensional geometric Poincaré complex satis-
fying a strong form of the Novikov conjecture the total surgery obstruction

s(K) ∈ Sn(K) = L0(Z)

is now interpreted as the difference between local and global codimension n
signatures.

In the first instance an equivalence is established between three formula-
tions of the algebraic L-theory assembly maps being isomorphisms in the
4-periodic range.

Lemma 24.11 For any n-dimensional simplicial complex K the following
three conditions are equivalent:

N(K) : the 0-connective quadratic S-groups of K are such that

Sm〈0〉(Z,K) = 0 for m ≥ n ,
N(K)∗ : the 0-connective quadratic L-theory assembly maps

A : Hm(K;L.〈0〉(Z)) −−→ Lm(Z[π]) (π = π1(K))

are isomorphisms for m ≥ n,

N(K)∗ : the 0-connective visible symmetric L-theory assembly maps

A : Hm(K;L.〈0〉(Z)) −−→ V Lm〈0〉(Z,K)

are isomorphisms for m ≥ n.

Proof All the groups and maps involved are 4-periodic for dimension rea-
sons and by the 4-periodicity of quadratic L-theory, except that the map
Sn〈0〉(Z,K)−−→Sn+4〈0〉(Z,K) may possibly fail to be onto. The cokernel of
this map is isomorphic to the cokernel of the first map in the exact sequence

Hn−1(K;L.〈0〉(Z)) −−→ Hn+3(K;L.〈0〉(Z)) −−→ Hn(K;L3(Z)) ,

which is onto since L3(Z) = 0. Thus each of the conditions N(K), N(K)∗,
N(K)∗ is 4-periodic. The implications N(K)⇐⇒ N(K)∗ ⇐⇒ N(K)∗ now
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follow from the commutative braid of exact sequences
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is now interpreted as the difference between local and global codimension n

signatures.
In the first instance an equivalence is established between three formula-

tions of the algebraic L-theory assembly maps being isomorphisms in the

4-periodic range.

Lemma 24.11 For any n-dimensional simplicial complex K the following
three conditions are equivalent:

N(K) : the 0-connective quadratic S-groups of K are such that

Sm⟨0⟩(Z,K) = 0 for m ≥ n ,
N(K)∗ : the 0-connective quadratic L-theory assembly maps

A : Hm(K; L.⟨0⟩(Z)) −−→ Lm(Z[π]) (π = π1(K))

are isomorphisms for m ≥ n,
N(K)∗ : the 0-connective visible symmetric L-theory assembly maps

A : Hm(K; L.⟨0⟩(Z)) −−→ V Lm⟨0⟩(Z,K)

are isomorphisms for m ≥ n.
Proof All the groups and maps involved are 4-periodic for dimension rea-
sons and by the 4-periodicity of quadratic L-theory, except that the map

Sn⟨0⟩(Z,K)−−→Sn+4⟨0⟩(Z,K) may possibly fail to be onto. The cokernel of
this map is isomorphic to the cokernel of the first map in the exact sequence

Hn−1(K; L.⟨0⟩(Z)) −−→ Hn+3(K; L.⟨0⟩(Z)) −−→ Hn(K;L3(Z)) ,

which is onto since L3(Z) = 0. Thus each of the conditions N(K), N(K)∗,
N(K)∗ is 4-periodic. The implications N(K)⇐⇒ N(K)∗ ⇐⇒ N(K)∗ now
follow from the commutative braid of exact sequences

N
N
NN

�����
N
N
NN

�����

Sm+1⟨0⟩(Z,K) Hm(K; L.(Λ⟨0⟩(Z))) Hm(K; N L.⟨0⟩(Z))

Hm(K; L.⟨0⟩(Z))

���
�

N
N
NP

V Lm⟨0⟩(Z,K)

���
�

A
N
N
NP

Hm+1(K; N L.⟨0⟩(Z))
N
N
NP

Lm(Z[π1(K)])

���
�

A
N
N
NP

Sm⟨0⟩(Z,K) .

���
�

∂

4
4

44

h
h
h
hj

4
4

44
∂

h
h
h
hj

Definition 24.12 An n-dimensional Poincaré duality group π is a group

such that the classifying space Bπ is an n-dimensional Poincaré space.

Poincaré duality groups are finitely presented, infinite and torsion-free.

Definition 24.13 An n-dimensional Novikov group π is an n-dimensional
Poincaré duality group such that the classifying space K = Bπ satisfies any

one of the three equivalent conditions N(K), N(K)∗, N(K)∗ of 24.11.

The strong form of the Novikov conjecture (24.4) is that condition N(K)
holds for any n-dimensional Poincaré duality group π, and that s(K) = 0 ∈
Sn(K) = L0(Z), so that K is homotopy equivalent to an aspherical com-

pact n-dimensional topological manifold. This includes the Borel conjecture
concerning the rigidity of aspherical manifolds, since it implies that for any
aspherical compact n-dimensional manifold M with π1(M) = π, M ' K

STOP (M) = Sn+1(M) = Sn+1(K) = {0} ,
so that any homotopy equivalence f :N−−→M of compact aspherical mani-
folds is homotopic to a homeomorphism (at least for n ≥ 5).

Remark 24.14 Many examples of Novikov groups arise geometrically as
the fundamental groups π = π1(M) of aspherical compact manifolds M =
Bπ with topological rigidity, such that STOP∂ (M × Di,M × Si−1) = 0 for

i ≥ 0. See Farrell and Hsiang [49], Farrell and Jones [50], [51], Ferry and
Weinberger [54], Yamasaki [191]. The methods of controlled topology are
particularly relevant here (see Appendix C).

For any n-dimensional simplicial complex K define also the 4-periodic

condition:
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N(K)Q : the rational 0-connective quadratic L-theory assembly maps

A⊗Q : Hm(K;L.〈0〉(Z))⊗Q −−→ Lm(Z[π])⊗Q (π = π1(K))

are monomorphisms for m ≥ n.

For K = Bπ this is just condition 24.5 (iv), so that N(Bπ)Q is equivalent
to the Novikov conjecture (24.4). Davis [45, §11] has shown that N(Bπ)Q
is true for all the groups π with Bπ the homotopy type of a finite complex

if and only if N(Bπ)Q is true for all the groups π with Bπ the homotopy
type of an aspherical compact topological manifold.

Proposition 24.15 If π is an n-dimensional Novikov group with classifying
space K = Bπ then

Sm(K) = Hm(K;L0(Z)) =

{
L0(Z) if m = n

0 if m ≥ n+ 1 .

If s(K) = 0 ∈ Sn(K) = L0(Z) then (at least for n ≥ 5) the homotopy type
of K contains an aspherical compact topological n-manifold M , and

STOP∂ (M ×Di,M × Si−1) = Sn+i+1(M) = Sn+i+1(K) = 0 (i ≥ 0) .

Proof Immediate from the exact sequence given by 15.11 (iii)

. . . −−→ Sm+1〈0〉(Z,K) −−→ Hm(K;L0(Z)) −−→ Sm(K)

−−→ Sm〈0〉(Z,K) −−→ . . . ,

and the identification in 18.5 of the Sullivan–Wall geometric surgery exact

sequence with the algebraic surgery sequence.

Example 24.16 The free abelian group Zn of rank n is an n-dimensional

Novikov group, with classifying space K(Zn, 1) = Tn the n-torus. The
assembly maps are isomorphisms

A : Hm(Tn;L.〈0〉(Z))
'−−→ V Lm〈0〉(Z, Tn) = Lm(Z[Zn]) ,

A : Hm(Tn;L.〈0〉(Z))
'−−→ Lm(Z[Zn])

for m ≥ n by the Laurent polynomial extension splitting theorems of Shane-
son [158], Wall [180, 13A.8], Novikov [124], Ranicki [140], Milgram and Ran-

icki [110] (and Wh(Zn) = 0), so that

Sm〈0〉(Tn) = 0 for m ≥ n .
Tn is a manifold, and

s(Tn) = 0 ∈ Sn(Tn) = L0(Z) ,

STOP∂ (Tn ×Di, Tn × Si−1) = Sn+i+1(Tn) = Sn+i+1〈0〉(Tn) = 0 (i ≥ 0) .
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Remark 24.17 Let π, π̄ be n-dimensional Novikov groups such that π̄ ⊂ π
is a subgroup of finite index [π: π̄] = d. As in 21.4 there is defined a d-sheeted
covering

p : K = Bπ̄ −−→ K = Bπ

with the total surgery obstruction of K the transfer of the total surgery
obstruction of K

s(K) = p !s(K) ∈ Sn(K) .

The transfer map p !:Hn(K;L0(Z)−−→Hn(K;L0(Z) is an isomorphism, be-

ing the Poincaré dual of

p∗ = 1 : H0(K;L0(Z)) = Z
'−−→ H0(K;L0(Z)) = Z .

It follows from the commutative square
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It follows from the commutative square

Hn(K;L0(Z)) w
≃

u
p ! ≃

Sn(K)

u
p !

Hn(K;L0(Z)) w
≃ Sn(K)

that p !: Sn(K)−−→Sn(K) is also an isomorphism, so that s(K) = 0 if and
only if s(K) = 0. If K is homotopy equivalent to a compact topological

manifold (s(K) = 0) then so is the finite cover K, i.e. only the converse
statement is of interest.

Definition 24.18 Let π be an n-dimensional Novikov group, with classi-

fying space K = Bπ.

(i) The codimension n

{
symmetric
quadratic

signature map is the composite




B : V Ln⟨0⟩(Z,K)

A−1

−−→ Hn(K; L.⟨0⟩(Z)) −−→ Hn(K;L0(Z)) = L0(Z)

B : Ln(Z[π])
A−1

−−→ Hn(K; L.⟨0⟩(Z)) −−→ Hn(K;L0(Z)) = L0(Z) ,

with



Hn(K; L.⟨0⟩(Z)) −−→ Hn(K;L0(Z)) ; (C, ϕ) −−→ ∑
τ∈K(n)

(C(τ), ϕ(τ))τ

Hn(K; L.⟨0⟩(Z)) −−→ Hn(K;L0(Z)) ; (C,ψ) −−→ ∑
τ∈K(n)

(C(τ), ψ(τ))τ .

(ii) The global codimension n signature of an n-dimensional 0-connective

globally Poincaré

{
normal
quadratic

complex

{
(C, ϕ)
(C,ψ)

in A (Z,K) is

{
Bglobal(C, ϕ) = B(C(K̃), ϕ(K̃)) ∈ L0(Z) ,

Bglobal(C,ψ) = B(C(K̃), ψ(K̃)) ∈ L0(Z)

with

{
(C(K̃), ϕ(K̃)) ∈ V Ln⟨0⟩(Z,K)

(C(K̃), ψ(K̃)) ∈ Ln(Z[π])
the assembly over the universal cover

K̃ of K.
(iii) The local codimension n signature of an n-dimensional 1/2-connective{

normal
quadratic

complex

{
(C, ϕ)
(C,ψ)

in A (Z,K) is





Blocal(C, ϕ) =
∑

τ∈K(n)

(C(τ), ϕ(τ))τ ∈ Hn(K;L0(Z)) = L0(Z) ,

Blocal(C,ψ) =
∑

τ∈K(n)

(C(τ), ψ(τ))τ ∈ Hn(K;L0(Z)) = L0(Z) .

that p !:Sn(K)−−→Sn(K) is also an isomorphism, so that s(K) = 0 if and

only if s(K) = 0. If K is homotopy equivalent to a compact topological
manifold (s(K) = 0) then so is the finite cover K, i.e. only the converse
statement is of interest.

Definition 24.18 Let π be an n-dimensional Novikov group, with classi-

fying space K = Bπ.

(i) The codimension n

{
symmetric
quadratic

signature map is the composite




B : V Ln〈0〉(Z,K)

A−1

−−→ Hn(K;L.〈0〉(Z)) −−→ Hn(K;L0(Z)) = L0(Z)

B : Ln(Z[π])
A−1

−−→ Hn(K;L.〈0〉(Z)) −−→ Hn(K;L0(Z)) = L0(Z) ,

with



Hn(K;L.〈0〉(Z)) −−→ Hn(K;L0(Z)) ; (C, φ) −−→ ∑
τ∈K(n)

(C(τ), φ(τ))τ

Hn(K;L.〈0〉(Z)) −−→ Hn(K;L0(Z)) ; (C,ψ) −−→ ∑
τ∈K(n)

(C(τ), ψ(τ))τ .

(ii) The global codimension n signature of an n-dimensional 0-connective

globally Poincaré

{
normal
quadratic

complex

{
(C, φ)
(C,ψ)

in A (Z,K) is

{
Bglobal(C, φ) = B(C(K̃), φ(K̃)) ∈ L0(Z) ,

Bglobal(C,ψ) = B(C(K̃), ψ(K̃)) ∈ L0(Z)



280 Algebraic L-theory and topological manifolds

with

{
(C(K̃), φ(K̃)) ∈ V Ln〈0〉(Z,K)

(C(K̃), ψ(K̃)) ∈ Ln(Z[π])
the assembly over the universal cover

K̃ of K.

(iii) The local codimension n signature of an n-dimensional 1/2-connective{
normal
quadratic

complex

{
(C, φ)
(C,ψ)

in A (Z,K) is





Blocal(C, φ) =
∑

τ∈K(n)

(C(τ), φ(τ))τ ∈ Hn(K;L0(Z)) = L0(Z) ,

Blocal(C,ψ) =
∑

τ∈K(n)

(C(τ), ψ(τ))τ ∈ Hn(K;L0(Z)) = L0(Z) .

Note that for any n-dimensional 0-connective locally Poincaré

{
normal
quadratic

complex

{
(C, φ)
(C,ψ)

in A (Z,K) and any n-simplex τ ∈ K(n)

{
Bglobal(C, φ) = Blocal(C, φ) = (C(τ), φ(τ)) ∈ L0(Z) ,

Bglobal(C,ψ) = Blocal(C,ψ) = (C(τ), ψ(τ)) ∈ L0(Z) .

Example 24.19 If X is a compact n-dimensional topological manifold with
a map X−−→K = Bπ to the classifying space of an n-dimensional Novikov

group π, and (C, φ) is the 0-connective locally Poincaré n-dimensional sym-
metric complex in A (Z,K) representing the image in Hn(K;L.) of the fun-
damental L.-homology class [X]L ∈ Hn(X;L.) then

Bσ∗(X) = Bglobal(C, φ) = Blocal(C, φ) ∈ L0(Z) = Z .

In 24.22 below this codimension n symmetric signature will be identified
with the degree of the map X−−→K.

The difference between local and global codimension n signatures detects
the total surgery obstruction for the classifying spaces of Novikov groups:

Proposition 24.20 Let π be an n-dimensional Novikov group, with classi-
fying space K = Bπ.
(i) The difference between local and global codimension n quadratic signa-

tures defines an isomorphism

Sn(K)
'−−→ L0(Z) ;

(C,ψ) −−→ Bglobal(D/C, δψ/ψ)−Blocal(D/C, δψ/ψ) .

Here, (C,ψ) is an (n − 1)-dimensional 1-connective locally Poincaré glob-
ally contractible quadratic complex in A (Z,K), and (D/C, δψ/ψ) is the
n-dimensional 0-connective globally Poincaré quadratic complex in A (Z,K)

defined by the algebraic Thom complex of any 0-connective locally Poincaré
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null-cobordism (C−−→D, (δψ, ψ)).
(ii) The n-dimensional 1/2-connective visible symmetric L-group of K is
such that

V Ln(K) = Hn(K;L.〈0〉(Z))⊕ L0(Z)

with an isomorphism

V Ln(K)
'−−→ Hn(K;L.〈0〉(Z))⊕ L0(Z) ;

(C, φ) −−→ (A−1(C(K̃), φ(K̃)) , (Bglobal(C, φ)−Blocal(C, φ))/8 ) ,

and

∂ : V Ln(K) −−→ Sn(K) = L0(Z) ;

(C, φ) −−→ (Bglobal(C, φ)−Blocal(C, φ))/8 .

(iii) The total surgery obstruction of K is

s(K) = ∂σ∗〈1/2〉(K)

= (Bglobalσ∗〈1/2〉(K)−Blocalσ∗〈1/2〉(K))/8

= (Bσ∗〈0〉(K)− 1)/8 ∈ Sn(K) = L0(Z) = Z ,

with σ∗〈q〉(K) ∈ V Ln〈q〉(Z,K) the q-connective visible symmetric signature

of K for q = 0, 1/2.
Proof (i) Note first that for any simplicial complex K there is defined a
commutative braid of exact sequences

284 Algebraic L-theory and topological manifolds

(iii) The total surgery obstruction of K is

s(K) = ∂σ∗⟨1/2⟩(K)

= (Bglobalσ∗⟨1/2⟩(K)−Blocalσ∗⟨1/2⟩(K))/8

= (Bσ∗⟨0⟩(K)− 1)/8 ∈ Sn(K) = L0(Z) = Z ,

with σ∗⟨q⟩(K) ∈ V Ln⟨q⟩(Z,K) the q-connective visible symmetric signature
of K for q = 0, 1/2.

Proof (i) Note first that for any simplicial complex K there is defined a
commutative braid of exact sequences

N
N
N
N
N

������

N
N
N
N
N

������

Hn(K;L0(Z)) Hn−1(K; L.⟨1⟩(Z)) Ln−1(Z[π1(K)])

Sn⟨1⟩(Z,K)

���
��

N
N
N
NP

Hn−1(K; L.⟨0⟩(Z))

���
��

N
N
N
NP

Ln(Z[π1(K)])
N
N
N
NP

Sn⟨0⟩(Z,K)

���
��

N
N
N
NP

Hn−1(K;L0(Z)) ,

���
��

'
'

'
'

'

[
[
[
[
[]

'
'

'
'

'

[
[
[
[
[]

and that there is defined an isomorphism

Hn(K; L.⟨1⟩(Z)−→L.⟨0⟩(Z))
≃−−→ Hn(K;L0(Z)) ;

(C−−→D, (δψ, ψ)) −−→
∑

τ∈K(n)

(D(τ)/C(τ), δψ(τ)/ψ(τ))τ

with (C−−→D, (δψ, ψ)) an n-dimensional locally Poincaré quadratic pair in
A (Z,K) such that C is 1-connective and D is 0-connective. For K = Bπ it

is also the case that Sn+1⟨0⟩(Z,K) = Sn⟨0⟩(Z,K) = 0, so there is defined
an isomorphism

Hn(K;L0(Z))
≃−−→ Sn⟨1⟩(Z,K) = Sn(K)

with the inverse specified in the statement.

(ii) Since Sn+1⟨0⟩(Z,K) = Sn⟨0⟩(Z,K) = 0 the diagram of 15.18 (iii) in-
cludes a commutative braid of exact sequences

and that there is defined an isomorphism

Hn(K;L.〈1〉(Z)−→L.〈0〉(Z))
'−−→ Hn(K;L0(Z)) ;

(C−−→D, (δψ, ψ)) −−→
∑

τ∈K(n)

(D(τ)/C(τ), δψ(τ)/ψ(τ))τ
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with (C−−→D, (δψ, ψ)) an n-dimensional locally Poincaré quadratic pair in
A (Z,K) such that C is 1-connective and D is 0-connective. For K = Bπ it
is also the case that Sn+1〈0〉(Z,K) = Sn〈0〉(Z,K) = 0, so there is defined
an isomorphism

Hn(K;L0(Z))
'−−→ Sn〈1〉(Z,K) = Sn(K)

with the inverse specified in the statement.
(ii) Since Sn+1〈0〉(Z,K) = Sn〈0〉(Z,K) = 0 the diagram of 15.18 (iii) in-
cludes a commutative braid of exact sequences
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4444444

��������

Hn(K; L.⟨0⟩(Z)) V Ln⟨0⟩(Z,K)

0
A
A
A
AAC

V Ln(K)

�





 A

A
A
A
AAC

0

�







Hn(K;L0(Z))

���
��

A
A
A
AAC

Sn(K)

�





 ∂

N
N
N
NP













A
A
A
A
A
AAC

defining a direct sum system

V Ln⟨0⟩(Z,K) = Hn(K; L.⟨0⟩(Z))
−−−→
←−−−

V Ln(K)
−−−→
←−−− Sn(K) = Hn(K;L0(Z)) .

In particular, the quadratic boundary map

∂ : V Ln(K) −−→ Sn(K) ; (C, ϕ) −−→ ∂(C, ϕ) = (∂C, ψ)

is a split surjection, with kernel isomorphic to V Ln⟨0⟩(Z,K). For any

n-dimensional 1/2-connective globally Poincaré normal complex (C, ϕ) in
A (Z,K) the image of (C, ϕ) ∈ V Ln(K) in the algebraic normal complex
cobordism group

Hn(K; L̂.) = Hn(K; L.⟨1⟩(Z)−→L.⟨0⟩(Z))

is represented by the n-dimensional 0-connective locally Poincaré normal
pair (∂C−−→D, (0, (1 + T )ψ)) with D = Cn+1−∗, (D/∂C, 0/(1 + T )ψ) =

(C, ϕ). The symmetric version of (i) now allows the identification

(1 + T )(∂C, ψ)

= Bglobal(D/∂C, 0/(1 + T )ψ)−Blocal(D/∂C, 0/(1 + T )ψ)

= Bglobal(C, ϕ)−Blocal(C, ϕ) ∈ Hn(K;L0(Z)) = L0(Z) ,

with

1 + T = 8 : L0(Z) = Z −−→ L0(Z) = Z .

(iii) The n-dimensional 1/2-connective globally Poincaré normal complex
(C, ϕ) in A (Z,K) with C = ∆(K ′) representing σ∗⟨1/2⟩(Z,K) = (C, ϕ) ∈

defining a direct sum system

V Ln〈0〉(Z,K) = Hn(K;L.〈0〉(Z))
−−−→
←−−−

V Ln(K)
−−−→
←−−− Sn(K) = Hn(K;L0(Z)) .

In particular, the quadratic boundary map

∂ : V Ln(K) −−→ Sn(K) ; (C, φ) −−→ ∂(C, φ) = (∂C, ψ)

is a split surjection, with kernel isomorphic to V Ln〈0〉(Z,K). For any
n-dimensional 1/2-connective globally Poincaré normal complex (C, φ) in
A (Z,K) the image of (C, φ) ∈ V Ln(K) in the algebraic normal complex

cobordism group

Hn(K; L̂.
) = Hn(K;L.〈1〉(Z)−→L.〈0〉(Z))

is represented by the n-dimensional 0-connective locally Poincaré normal
pair (∂C−−→D, (0, (1 + T )ψ)) with D = Cn+1−∗, (D/∂C, 0/(1 + T )ψ) =

(C, φ). The symmetric version of (i) now allows the identification

(1 + T )(∂C, ψ)

= Bglobal(D/∂C, 0/(1 + T )ψ)−Blocal(D/∂C, 0/(1 + T )ψ)

= Bglobal(C, φ)−Blocal(C, φ) ∈ Hn(K;L0(Z)) = L0(Z) ,
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with

1 + T = 8 : L0(Z) = Z −−→ L0(Z) = Z .

(iii) The n-dimensional 1/2-connective globally Poincaré normal complex
(C, φ) in A (Z,K) with C = ∆(K ′) representing σ∗〈1/2〉(Z,K) = (C, φ) ∈
V Ln(K) has codimension n symmetric signatures

Bglobal(C, φ) = Bσ∗〈0〉(K) ,

Blocal(C, φ) =
∑

τ∈K(n)

τ = [K] = 1 ∈ Hn(K;L0(Z)) = L0(Z) = Z .

Now apply (ii).

Example 24.21 The 0-connective visible symmetric signature of Tn is

σ∗(Tn) = A([Tn]L) = (0, . . . , 0, 1)

∈ V Ln〈0〉(Z, Tn) = Ln(Z[Zn])

= Ln(Z)⊕
(
n

1

)
Ln−1(Z)⊕ . . .⊕

(
n

k

)
Ln−k(Z)⊕ . . .⊕ L0(Z) .

The codimension n symmetric signature of Tn is the generator

Bσ∗(Tn) = Bglobalσ∗(Tn) = Blocalσ∗(Tn) = (Z, 1) = 1 ∈ L0(Z) = Z .
The 1/2-connective visible symmetric signature of Tn is

σ∗(Tn) = ((0, . . . , 0, 1), 0) ∈ V Ln(Tn) = Ln(Z[Zn])⊕ L0(Z) ,

and the total surgery obstruction is s(Tn) = 0 ∈ Sn(Tn) = L0(Z).

Proposition 24.22 Let X be an n-dimensional geometric Poincaré complex
with a morphism e:π1(X)−−→π to an n-dimensional Novikov group π.
(i) The total surgery obstruction s(X) ∈ Sn(X) has image

s(X) = ∂(C, φ) = (Bglobal(C, φ)−Blocal(C, φ))/8

∈ Sn(K) = L0(Z) = Z ,

with (C, φ) = σ∗(X) the n-dimensional 1/2-connective globally Poincaré
normal complex in A (Z,K) associated to a map e:X−−→K = Bπ inducing
e:π1(X)−−→π, and

Bglobal(C, φ) = Bσ∗(X) ,

Blocal(C, φ) = (degree of e:X−−→K) ∈ L0(Z) = Z .

(ii) If (f, b):Y−−→X is a normal map of n-dimensional geometric Poincaré
complexes the difference of the images in Sn(K) of the total surgery ob-

structions of X, Y is the codimension n quadratic signature of the surgery
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obstruction σ∗(f, b) ∈ Ln(Z[π])

s(Y )− s(X) = Bσ∗(f, b) ∈ Sn(K) = L0(Z) .

(iii) If νX :X−−→BG admits a topological reduction ν̃X :X−−→BTOP then
the image in Sn(K) of the total surgery obstruction s(X) ∈ Sn(X) is given
up to sign by the codimension n quadratic signature of the surgery ob-

struction σ∗(f, b) ∈ Ln(Z[π]) of the corresponding topological normal map
(f, b):M−−→X

s(X) = −Bσ∗(f, b) ∈ Sn(K) = L0(Z) .

Proof (i) The 1/2-connective visible symmetric signature σ∗(X) ∈ V Ln(K)
is represented by the n-dimensional 1/2-connective globally Poincaré nor-
mal complex (C, φ) in A (Z,K) of the n-dimensional normal complex cycle

{X(τ)|τ ∈ K} defined by the inverse images of the dual cells

X(τ) = e−1D(τ,K) ,

with (X(τ), ∂X(τ)) an (n− |τ |)-dimensional normal pair and

C(τ) = ∆(X(τ), ∂X(τ)) .

As in §16 assume that K is an n-dimensional simplicial complex with fun-
damental class

[K] =
∑

τ∈K(n)

τ = 1 ∈ Hn(K) = Z

and similarly for X. The degree of e:X−−→K is the number d ∈ Z such

that

e∗[X] = d[K] ∈ Hn(K) = Z ,

which on the chain level can be expressed as

e∗[X] =
∑

ρ∈X(n)

e(ρ) =
∑

τ∈K(n)

( ∑

ρ∈X(n),e(ρ)=τ

1

)
τ

= d

( ∑

τ∈K(n)

τ

)
= d[K] ∈ ∆n(K) .

The degree d is thus the algebraic number of n-simplexes ρ ∈ X(n) in the
inverse image e−1(τ) of any n-simplex τ ∈ K(n), which is the algebraic num-
ber of vertices ρ̂ ∈ X ′(0) in the 0-dimensional geometric Poincaré complex

X(τ) = e−1(τ̂) =
⋃

ρ∈X(n),e(ρ)=τ

ρ̂ ,

and also the symmetric signature of X(τ)

σ∗(X(τ)) =
∑

ρ∈X(n),e(ρ)=τ

(Z, 1) = d ∈ L0(Z) = Z .
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The local codimension n symmetric signature of σ∗(X) is thus

Blocal(C, φ) =
∑

τ∈K(n)

τ(C(τ), φ(τ)) = d ∈ Hn(K;L0(Z)) = L0(Z) = Z .

(ii) Apply Y−−→K to the identification s(Y ) − s(X) = ∂σ∗(f, b) ∈ Sn(Y )
given by 19.7.

(iii) Apply e:X−−→K to the identification s(X) = −∂σ∗(f, b) ∈ Sn(X).
Alternatively, substitute s(M) = 0 ∈ Sn(M) in the formula s(M)− s(X) =
Bσ∗(f, b) given by (ii).

Remark 24.23 A resolution (M,f) of a space X is a topological manifold

M together with a proper cell-like surjection f :M−−→X. Quinn [135], [136]
investigated the resolution of compact ANR homology manifolds by com-
pact topological manifolds, using controlled surgery theory and algebraic
Poincaré complexes to formulate the following obstruction. (It is now known

that this obstruction is realized, see 25.13). A compact ANR is homotopy
equivalent to a finite CW complex by the result of West, so that a com-
pact n-dimensional ANR homology manifold X is a finite n-dimensional

Poincaré space. Let X1 ⊂ X be a neighbourhood of a point x0 ∈ X. As
in [135, 4.1] there is defined a finite n-dimensional geometric Poincaré com-
plex Y with a normal map (f, b):Y−−→Tn such that the proper normal

map (f̃ , b̃): Ỹ−−→T̃n = Rn is bordant to a proper normal map X1−−→Rn.
The codimension n symmetric signatures of the associated 0-connective n-
dimensional globally Poincaré normal complex (C, φ) = σ∗(Y ) in A (Z, Tn)
are

Bglobal(C, φ) = Bσ∗(Y ) ,

Blocal(C, φ) = (degree of f :Y−−→Tn) = 1 ∈ L0(Z) = Z .

The local signature obstruction of [136] to a resolution of X by a compact
topological manifold is defined by

i(X) = Bglobal(C, φ)−Blocal(C, φ) = (Bσ∗(Y )− 1)/8 ∈ L0(Z) = Z .

(Unfortunately, the local signature Bσ∗(Y ) ∈ L0(Z) of [136] arises here as

a global codimension n signature.) The total surgery obstruction s(X) ∈
Sn(X) = Sn〈1〉(Z, X) is the image of

i(X) = ∂σ∗(f, b) = s(Y ) ∈ Sn(Tn) = Hn(X;L0(Z)) = L0(Z)

under the map in the exact sequence

. . . −−→ Sn+1〈0〉(Z, X) −−→ Hn(X;L0(Z)) −−→ Sn〈1〉(Z, X)

−−→ Sn〈0〉(Z, X) −−→ . . . .

For n ≥ 5 X is homotopy equivalent to a topological manifold (not neces-

sarily a resolution) if and only if i(X) ∈ im(Sn+1〈0〉(Z, X)−−→L0(Z)). The
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resolution obstruction of a homology manifold X is an invariant of the con-
trolled chain equivalence inducing the Poincaré duality Hn−∗(X) ∼= H∗(X).
See §25 and Appendix C for some further discussion of the surgery classifi-
cation of compact ANR homology manifolds and controlled topology.
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§25. The 4-periodic theory

The 4-periodic theory is the version of surgery in which the 1-connective
L-spectrum L. = L.〈1〉(Z) is replaced by the 4-periodic spectrum L.(Z), cor-
responding to the difference in the codimension n transversality properties

of n-dimensional topological manifolds and n-dimensional ANR homology
manifolds. The algebraic and topological properties of the 4-periodic the-
ory will now be investigated, including an interpretation of the difference
between the 4-periodic and 1-connective theories in terms of the local and

global signatures of §24.
The 4-periodicity of surgery was first observed experimentally by Kervaire

and Milnor [86], in the simply connected high-dimensional case arising in the

classification of compact (n− 1)-dimensional differentiable manifolds which
are homotopy spheres and bound framed n-dimensional manifolds Wn, with
n ≥ 5. After framed surgery below the middle dimension W can be taken

to be [(n − 2)/2]-connected. The obstruction to making W contractible
by surgery in the middle dimension is an element of the simply-connected
surgery obstruction group Ln(Z). For n = 2i this is the Witt class of the
(−)i-quadratic intersection form on Hi(W ). In particular, for n = 4k ≥ 8

the E8-plumbing of 8 copies of τS2k :S2k−−→BSO(2k) is a framed (2k − 1)-
connected 4k-dimensional differentiable manifold W 4k with boundary an
exotic (4k − 1)-dimensional sphere Σ4k−1 and symmetric intersection form

(H2k(W ), λ) = (Z8, E8) ,

such that the corresponding surgery obstruction is

signature(W )/8 = 1 ∈ L4k(Z) = Z .

There is no obstruction for n = 2i + 1, since L2i+1(Z) = 0. The simply-

connected surgery obstruction is 4-periodic since [(n − 2)/2]-connected n-
dimensional manifolds have the same homological intersection properties as
[(n+ 2)/2]-connected (n+ 4)-dimensional manifolds. The simply-connected

surgery obstruction groups Ln(Z) = πn(G/TOP ) are 4-periodic, but the
groups of h-cobordism classes of exotic spheres θn = πn(TOP/O) are not
4-periodic.

The 4-periodicity persists in surgery on n-dimensional normal maps (f, b):
Mn−−→X, which can be made [n/2]-connected by surgery below the mid-
dle dimension. The non-simply connected obstruction to surgery on (f, b)
depends only on the middle-dimensional chain level intersection properties

of the Z[π1(X)]-module homology kernels

K∗(M) = ker(f̃∗:H∗(M̃)−−→H∗(X̃)) ,

which are the same for [n/2]-connected n-dimensional normal maps and

[(n + 4)/2]-connected (n + 4)-dimensional normal maps. The surgery ob-



288 Algebraic L-theory and topological manifolds

struction groups L∗(π) = L∗(Z[π]) of Wall [180] were defined algebraically
to be such that

L∗(Z[π]) = L∗+4(Z[π]) ,

with the 4-periodicity isomorphisms realized geometrically as products with
the complex projective plane CP2

−×CP2 : Ln(Z[π])
'−−→ Ln+4(Z[π]) ;

σ∗((f, b):M−−→X) −−→ σ∗((f, b)× 1:M × CP2−−→X × CP2) .

The expression of L∗(Z[π]) as cobordism groups of quadratic Poincaré com-

plexes in Ranicki [143] allowed the 4-periodicity isomorphisms to be realized
algebraically as products with the symmetric signature of CP2

σ∗(CP2) = signature (CP2) = 1 ∈ L4(Z) = Z ,

and also as the double skew-suspension maps

S̄ 2 = −⊗ σ∗(CP2) : Ln(Z[π])
'−−→ Ln+4(Z[π]) ;

(C,ψ) −−→ (S2C, S̄ 2ψ) = (C,ψ)⊗ σ∗(CP2) .

The classifying space G/O for differentiable surgery is 4-periodic modulo

torsion, since it has the rational homotopy type

G/O ⊗Q ' BO ⊗Q '
∞∏

j=1

K(Q, 4j) .

The classifying space G/TOP for topological surgery is 4-periodic, with a
homotopy equivalence

Ω4G/TOP ' L0(Z)×G/TOP .

The geometric surgery spectra of Quinn [130] and the quadratic L-theory
spectra of Ranicki [138] with homotopy groups L∗ realize the 4-periodicity

on the spectrum level, with

L0(Z) ' L0(Z)×G/TOP , L0 ' G/TOP

in the simply-connected case.

In order to obtain an algebraic formulation of the surgery exact sequence
and the total surgery obstruction for topological manifolds it was neces-
sary to kill the 0th homotopy group π0(L〈0〉.(Z)) = L0(Z) in L〈0〉.(Z) and

work with the 1-connective quadratic L-theory spectrum L. = L〈1〉.(Z),
as in §15. The controlled and bounded surgery of Quinn [135], [136] and
Ferry and Pedersen [53] have shown that the original 0-connective 4-periodic

surgery spectra are related to the surgery exact sequence and total surgery
obstruction for compact ANR homology manifolds.

Products with the L.-coefficient fundamental class [CP2]L ∈ H4(CP2;L.)

−⊗ [CP2]L : Sn(X) −−→ Sn+4(X × CP2)
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are not in general isomorphisms, fitting into an exact sequence

. . . −−→ Hn+4(X × S2;L.) −−→ Sn(X) −−→ Sn+4(X × CP2)

−−→ Hn+3(X × S2;L.) −−→ . . . .

However, for an n-dimensional polyhedron X the 1-connective quadratic

S-groups S∗(X) = S∗〈1〉(Z, X) are themselves 4-periodic in dimensions ≥
n+ 2, with the double skew-suspension maps

S̄ 2 : Sm(X) −−→ Sm+4(X) ; (C,ψ) −−→ (S2C, S̄ 2ψ)

isomorphisms for m ≥ n + 2. In this 4-periodicity range the 1-connective
S-groups coincide with the S-groups S∗(Z, X) = S∗〈0〉(Z, X) appearing in
the 4-periodic algebraic surgery exact sequence of §14

. . . −−→ Hm(X;L.(Z))
A
−−→ Lm(Z[π1(X)])

−−→ Sm(Z, X) −−→ Hm−1(X;L.(Z)) −−→ . . . .

Abbreviate

L.〈0〉(Z) = L. , VL.({∗}) = VL.〈0〉(Z, {∗}) = L. ,

V L∗〈0〉(Z, X) = V L ∗(X) , S∗〈0〉(Z, X) = S∗(X) ,

writing the corresponding assembly maps A as A.

Proposition 25.1 (i) Up to homotopy equivalence

L.
= K.(L0(Z), 0) ∨ L.

with K.(L0(Z), 0) the Eilenberg–MacLane spectrum of L0(Z)-coefficient ho-
mology, so that for any space X

H∗(X;L.
) = H∗(X;L0(Z))⊕H∗(X;L.

) .

(ii) For any space X there are defined commutative braids of exact sequences

25. The 4-periodic theory 291

are not in general isomorphisms, fitting into an exact sequence

. . . −−→ Hn+4(X × S2; L.) −−→ Sn(X) −−→ Sn+4(X × C P2)

−−→ Hn+3(X × S2; L.) −−→ . . . .

However, for an n-dimensional polyhedron X the 1-connective quadratic
S-groups S∗(X) = S∗⟨1⟩(Z, X) are themselves 4-periodic in dimensions ≥
n+ 2, with the double skew-suspension maps

S̄ 2 : Sm(X) −−→ Sm+4(X) ; (C,ψ) −−→ (S2C, S̄ 2ψ)

isomorphisms for m ≥ n + 2. In this 4-periodicity range the 1-connective
S-groups coincide with the S-groups S∗(Z, X) = S∗⟨0⟩(Z, X) appearing in
the 4-periodic algebraic surgery exact sequence of §14

. . . −−→ Hm(X; L.(Z))
A
−−→ Lm(Z[π1(X)])

−−→ Sm(Z, X) −−→ Hm−1(X; L.(Z)) −−→ . . . .

Abbreviate

L.⟨0⟩(Z) = L. , VL.({∗}) = VL.⟨0⟩(Z, {∗}) = L. ,

V L∗⟨0⟩(Z, X) = V L ∗(X) , S∗⟨0⟩(Z, X) = S∗(X) ,

writing the corresponding assembly maps A as A.

Proposition 25.1 (i) Up to homotopy equivalence

L. = K.(L0(Z), 0) ∨ L.

with K.(L0(Z), 0) the Eilenberg–MacLane spectrum of L0(Z)-coefficient ho-
mology, so that for any space X

H∗(X; L.) = H∗(X;L0(Z))⊕H∗(X; L.) .

(ii) For any space X there are defined commutative braids of exact sequences

N
N
N

NN

A

������
N
N
N

NN

������

Hn(X; L.) Ln(Z[π1(X)]) Sn(X)

Hn(X; L.)

���
��

N
N
NNPA

Sn(X)

���
��

N
N
NNP

Sn+1(X)
N
N
NNP

Hn(X;L0(Z))

���
��

N
N
NNP

Hn−1(X; L.)

���
��

'
'

'
''

[
[
[
[[]

'
'

'
''

[
[
[
[[]
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N
N
N

NN

0

������
N
N
N

NN

������

Hn+1(X;L0(Z)) Hn(X; L.) Hn(X; L̂.)

Hn(X; L.)

���
��

N
N
NNP

Hn(X; L.)

���
��

N
N
NNP

Hn+1(X; L̂.)
N
N
NNP

Hn(X; L.)

���
��

N
N
NNP

Hn(X;L0(Z))

���
��

'
'

'
''

[
[
[
[[]

'
'

'
''

[
[
[
[[]

N
N
N

NN

A

������
N
N
N

NN

������

Hn(X; L.) V Ln(X) Sn(X)

Hn(X; L.)

���
��

N
N
NNPA

Sn(X)

���
��

N
N
NNP

Sn+1(X)
N
N
NNP

Hn(X;L0(Z))

���
��

N
N
NNP

Hn−1(X; L.)

���
��

'
'

'
''

[
[
[
[[]

'
'

'
''

[
[
[
[[]0

N
N
N

NN

������
N
N
N

NN

������

Hn(X; L.) V L n(X) Hn−1(X;L0(Z))

V Ln(X)

���
��

A
N
N
NNP

Sn(X)

���
��

N
N
NNP

Hn(X;L0(Z))
N
N
NNP

Sn(X)

���
��

N
N
NNP

Hn−1(X; L.
) .

���
��

'
'

'
''

[
[
[
[[]

'
'

'
''

[
[
[
[[]

Proof (i) The inclusion L.−−→L.
is split by the forgetful map L.−−→L.

.
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(ii) The braids of exact sequences are induced from the braids of fibrations
of spectra given by 15.18.

Remark 25.2 The fibration

L. −−→ L. −−→ K.(L0(Z), 0)

splits when localized at 2, but not away from 2. Taylor and Williams

[173, Thm. A] show that the 0-connective quadratic L-spectrum of any ring
with involution A is such that

L.〈0〉(A)[1/2] = boΛ0 ∨ ΣboΛ1 ∨ Σ2boΛ2 ∨ Σ3boΛ3

L.〈0〉(A)(2) =

∞∨

j=0

K.(Lj(A)(2), j)

where boΛi denotes connective KO theory with coefficients in the group
Λi = Li(A)[1/2]. For A = Z this gives

L.[1/2] = L.〈0〉(Z)[1/2] = bo[1/2] ,

L.[1/2] = L.〈1〉(Z)[1/2] = bo〈1〉[1/2] .

Proposition 25.3 Let X be an n-dimensional polyhedron.
(i) The S∗-groups of X are such that

Sm(X) = Sm(Z, X) = Sm+4(X) for m ≥ n ,
Sm(X) = Sm〈q〉(Z, X) = Sm(Z, X) for m ≥ n+ 1 , q ≤ 0 ,

Sm(X) = Sm(X) for m ≥ n+ 2 ,

with an exact sequence

0 −−→ Sn+1(X) −−→ Sn+1(X) −−→ Hn(X;L0(Z))

−−→ Sn(X) −−→ Sn(X) .

(ii) The V L ∗-groups of X are such that

V Lm(X) = V Lm(Z, X) = V Lm+4(X) for m ≥ n ,
V Lm(X) = V Lm〈q〉(Z, X) = V Lm(Z, X) for m ≥ n+ 1 , q ≤ 0 ,

V Lm(X) = V Lm(X) for m ≥ n+ 2 ,

with an exact sequence

0 −−→ V Ln+1(X) −−→ V L n+1(X) −−→ Hn(X;L0(Z))

−−→ V L n(X) −−→ V L n(X) .

(iii) If (C−−→D, (δψ, ψ)) is an n-dimensional locally Poincaré globally con-

tractible quadratic pair in A (Z, X) with C 1-connective and D 0-connective
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then the image in Sn(X) of the homology class

x =
∑

τ∈X(n)

((D/C)(τ), (δψ/ψ)(τ))τ ∈ Hn(X;L0(Z))

is the cobordism class

[x] = (C,ψ) ∈ ker(Sn(X)−−→Sn(X)) = im(Hn(X;L0(Z))−−→Sn(X)) .

(iv) If (E−−→F, (δφ, φ)) is an (n+ 1)-dimensional globally Poincaré normal
pair in A (Z, X) with (E, φ) 1/2-connective and F 0-connective then the
homology class x ∈ Hn(X;L0(Z)) determined in (ii) by the n-dimensional

locally Poincaré globally contractible quadratic pair (∂E−−→∂F, ∂(δφ, φ))

x =
∑

τ∈X(n)

((∂F/∂E)(τ), ∂(δφ/φ)(τ))τ ∈ Hn(X;L0(Z))

is such that

[x] = ∂(E, φ) ∈ im(Hn(X;L0(Z))−−→Sn(X)) ,

(1 + T )(x) =
∑

τ∈X(n)

(E(τ), φ(τ))τ ∈ Hn(X;L0(Z)) .

(v) The diagram
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then the image in Sn(X) of the homology class

x =
∑

τ∈X(n)

((D/C)(τ), (δψ/ψ)(τ))τ ∈ Hn(X;L0(Z))

is the cobordism class

[x] = (C,ψ) ∈ ker(Sn(X)−−→Sn(X)) = im(Hn(X;L0(Z))−−→Sn(X)) .

(iv) If (E−−→F, (δϕ, ϕ)) is an (n+1)-dimensional globally Poincaré normal

pair in A (Z, X) with (E, ϕ) 1/2-connective and F 0-connective then the
homology class x ∈ Hn(X;L0(Z)) determined in (ii) by the n-dimensional
locally Poincaré globally contractible quadratic pair (∂E−−→∂F, ∂(δϕ, ϕ))

x =
∑

τ∈X(n)

((∂F/∂E)(τ), ∂(δϕ/ϕ)(τ))τ ∈ Hn(X;L0(Z))

is such that

[x] = ∂(E, ϕ) ∈ im(Hn(X;L0(Z))−−→Sn(X)) ,

(1 + T )(x) =
∑

τ∈X(n)

(E(τ), ϕ(τ))τ ∈ Hn(X;L0(Z)) .

(v) The diagram

Hn(X; L.) w
A

u

�����A
V L n(X)

u

∂

V Ln(X)

u
∂

[
[[]

Sn(X)



�

Hn(X;L0(Z)) w

N
N
NP

Sn(X)

commutes.
Proof (i) The double skew-suspension maps define an isomorphism of exact
sequences

. . . w Hm(X; L.⟨q + 1⟩) w

u

Hm(X; L.⟨q⟩) w

u

Hm−q(X;Lq(Z)) w

u

. . .

. . . w Hm+4(X; L.⟨q + 5⟩) w Hm+4(X; L.⟨q + 4⟩) w Hm−q(X;Lq+4(Z)) w . . .

for any m, q ∈ Z, with L.⟨q⟩ = L.⟨q⟩(Z). The natural map

Hm(X; L.⟨0⟩) = Hm+4(X; L.⟨4⟩) −−→ Hm+4(X; L.⟨0⟩)

commutes.
Proof (i) The double skew-suspension maps define an isomorphism of exact
sequences
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then the image in Sn(X) of the homology class

x =
∑

τ∈X(n)

((D/C)(τ), (δψ/ψ)(τ))τ ∈ Hn(X;L0(Z))

is the cobordism class

[x] = (C,ψ) ∈ ker(Sn(X)−−→Sn(X)) = im(Hn(X;L0(Z))−−→Sn(X)) .

(iv) If (E−−→F, (δϕ, ϕ)) is an (n+1)-dimensional globally Poincaré normal

pair in A (Z, X) with (E, ϕ) 1/2-connective and F 0-connective then the
homology class x ∈ Hn(X;L0(Z)) determined in (ii) by the n-dimensional
locally Poincaré globally contractible quadratic pair (∂E−−→∂F, ∂(δϕ, ϕ))

x =
∑

τ∈X(n)

((∂F/∂E)(τ), ∂(δϕ/ϕ)(τ))τ ∈ Hn(X;L0(Z))

is such that

[x] = ∂(E, ϕ) ∈ im(Hn(X;L0(Z))−−→Sn(X)) ,

(1 + T )(x) =
∑

τ∈X(n)

(E(τ), ϕ(τ))τ ∈ Hn(X;L0(Z)) .

(v) The diagram

Hn(X; L.) w
A

u

�����A
V L n(X)

u

∂

V Ln(X)

u
∂

[
[[]

Sn(X)



�

Hn(X;L0(Z)) w

N
N
NP

Sn(X)

commutes.
Proof (i) The double skew-suspension maps define an isomorphism of exact
sequences

. . . w Hm(X; L.⟨q + 1⟩) w

u

Hm(X; L.⟨q⟩) w

u

Hm−q(X;Lq(Z)) w

u

. . .

. . . w Hm+4(X; L.⟨q + 5⟩) w Hm+4(X; L.⟨q + 4⟩) w Hm−q(X;Lq+4(Z)) w . . .

for any m, q ∈ Z, with L.⟨q⟩ = L.⟨q⟩(Z). The natural map

Hm(X; L.⟨0⟩) = Hm+4(X; L.⟨4⟩) −−→ Hm+4(X; L.⟨0⟩)
for any m, q ∈ Z, with L.〈q〉 = L.〈q〉(Z). The natural map

Hm(X;L.〈0〉) = Hm+4(X;L.〈4〉) −−→ Hm+4(X;L.〈0〉)
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is an isomorphism for m ≥ n− 1, being the composite of the isomorphisms
in the middle of each of the exact sequences

Hm−k+5(X;Lk(Z)) = 0 −−→ Hm+4(X;L.〈k + 1〉) −−→ Hm+4(X;L.〈k〉)
−−→ Hm−k+4(X;Lk(Z)) = 0

for k = 0, 1, 2, 3. A 5-lemma argument applied to these and the 4-periodicity
isomorphisms Lm(Z[π1(X)]) ∼= Lm+4(Z[π1(X)]) gives that the double skew-
suspension maps Sm(X)−−→Sm+4(X) are isomorphisms for m ≥ n. The
relationship between the S∗- and S∗-groups is given by the exact sequence
of 15.11 (iii)

. . . −−→ Hm(X;L0(Z)) −−→ Sm(X) −−→ Sm(X)

−−→ Hm−1(X;L0(Z)) −−→ . . . ,

noting that Hm(X;L0(Z)) = 0 for m ≥ n + 1. Also, 15.18 (iii) gives an
exact sequence

Hn+1(X;L−1(Z)) = 0 −−→ Sn(X) −−→ Sn〈−1〉(Z, X)

−−→ Hn(X;L−1(Z)) = 0

and by 15.11 (v)

Sn(X) = Sn〈−1〉(Z, X) = Sn(Z, X) .

(ii) This follows from (i) and the commutative braids of exact sequences
given by 25.1.
(iii) and (iv). These identities are formal consequences of the identifications
in §15 of the 0- and 1-connective quadratic L-spectra with the appropriately

connective quadratic Poincaré complexes.
(v) Let (C,ψ) be an n-dimensional quadratic complex in Λ〈0〉(Z)∗(X), rep-
resenting an element

(C,ψ) ∈ Ln(Λ〈0〉(Z)∗(X)) = Hn(X;L.)

with images

(1 + T )(C,ψ) = (C, (1 + T )ψ) ∈ V L n(X) ,

[C,ψ] =
∑

τ∈X(n)

(C(τ), ψ(τ))τ ∈ Hn(X;L0(Z)) .

Since Ln(Λ〈0〉(Z, X)) = Ln(Λ〈1〉(Z, X)) (by 15.11 (i)) there exists an (n+

1)-dimensional quadratic pair in Λ〈0〉(Z, X)

P = (C ′ ⊕ C −−→D , (δψ, ψ′ ⊕−ψ) )

with C ′ 1-connective and D 0-connective. The assembly of (C,ψ) is repre-

sented by (C ′, ψ′)

A(C,ψ) = (C ′, ψ′) ∈ Ln(Z[π1(X)]) = Ln(Λ〈1〉(Z, X)) ,
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so the composite

Hn(X;L.)
A
−−→ Ln(Z[π1(X)])

1+T
−−→ V Ln(X)

sends (C,ψ) ∈ Hn(X;L.) to (C ′, (1 + T )ψ′) ∈ V Ln(X). The boundary of
P is an n-dimensional locally Poincaré globally contractible quadratic pair

in Λ〈0〉(Z, X)

∂P = ( ∂C ′ ⊕ ∂C −−→ ∂D , ∂(δψ, ψ′ ⊕−ψ) )

with

∂Cr = Cr+1 ⊕ Cn−r , ∂C ′r = C ′r+1 ⊕ C ′n−r ,
∂Dr = Dr+1 ⊕Dn−r+1 ⊕ C ′n−r ⊕ Cn−r (r ∈ Z)

such that ∂C is locally contractible, ∂C ′ is 1-connective and ∂D is 0-
connective. The composite

Hn(X;L.)
A
−−→ Ln(Z[π1(X)]) −−→ V Ln(X)

∂
−−→ Sn(X)

sends (C,ψ) ∈ Hn(X;L.) to ∂(C ′, ψ′) ∈ Sn(X). For each n-simplex τ ∈
X(n) the 0-dimensional quadratic Poincaré complex in Λ〈0〉(Z)

∂P (τ) = ((∂D/(∂C ′ ⊕ ∂C))(τ), (δψ/(ψ′ ⊕−ψ))(τ))

is cobordant to (C(τ), ψ(τ)), so that

[∂P ] =
∑

τ∈X(n)

∂P (τ)τ =
∑

τ∈X(n)

(C(τ), ψ(τ))τ = [C,ψ] ∈ Hn(X;L0(Z)) .

An application of (ii) gives

∂(C ′, ψ′) = [∂P ] = [C,ψ]

∈ ker(Sn(X)−−→Sn(X)) = im(Hn(X;L0(Z))−−→Sn(X)) ,

verifying the commutativity of the diagram.

Remark 25.4 For a compact n-dimensional topological manifold Mn with
n ≥ 5 18.5 gives that for i ≥ 1

STOP∂ (M ×Di+4,M × Si+3) = Sn+i+5(M) = Sn+i+1(M)

= STOP∂ (M ×Di,M × Si−1) = Sn+i+1(M) .

Also, the initial part of the exact sequence

0 −−→ Sn+1(M) −−→ Sn+1(M) −−→ Hn(M ;L0(Z)) −−→ Sn(M) −−→ Sn(M)

can be expressed as

0 −−→ STOP (M) −−→ STOP∂ (M ×D4,M × S3) −−→ L0(Z) .

See Kirby and Siebenmann [87, Appendix C to Essay V], Nicas [121] and

Cappell and Weinberger [29] for geometric interpretations of this almost
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4-periodicity of the topological manifold structure sets.

Definition 25.5 The 4-periodic visible symmetric signature of a finite n-

dimensional geometric Poincaré complex X

σ ∗(X) ∈ V L n(X)

is the 0-connective visible symmetric signature defined in §9, which is an
image of the 1/2-connective visible symmetric signature σ∗(X) ∈ V Ln(X)
defined in §15.

Definition 25.6 The 4-periodic total surgery obstruction of a finite n-

dimensional geometric Poincaré complex X is the image of the total surgery
obstruction s(X) ∈ Sn(X) in the 4-periodic quadratic structure group

s̄(X) = [s(X)] ∈ Sn(X) ,

or equivalently as the boundary of the 4-periodic visible symmetric signature

s̄(X) = ∂σ ∗(X) ∈ Sn(X) .

Proposition 25.7 Let X be a finite n-dimensional geometric Poincaré
complex.
(i) The following conditions on X are equivalent:

(a) the 4-periodic total surgery obstruction is

s̄(X) = 0 ∈ Sn(X) ,

(b) there exists an L.
-homology fundamental class [X]L ∈ Hn(X;L.

) with
assembly

A([X]L) = σ ∗(X) ∈ V L n(X) ,

(c) there exists an L.-homology fundamental class [X]L ∈ Hn(X;L.) with
assembly

A([X]L) = σ∗(X) ∈ V Ln(X) .

(ii) If the Spivak normal fibration νX :X−−→BG admits a topological reduc-
tion ν̃:X−−→BTOP and there exists an element x ∈ Hn(X;L.) such that
the surgery obstruction of a corresponding normal map (f, b):M−−→X is

σ∗(f, b) = A(x) ∈ im(A:Hn(X;L.)−−→Ln(Z[π1(X)]))

then

s̄(X) = 0 ∈ Sn(X) ,

s(X) = [i(x)] ∈ ker(Sn(X)−−→Sn(X)) = im(Hn(X;L0(Z))−−→Sn(X)) ,
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with i(x) ∈ Hn(X;L0(Z)) the image of x under the natural map

Hn(X;L.) = Hn(X;L.〈0〉(Z))−−→Hn(X;π0(L.〈0〉(Z))) = Hn(X;L0(Z)) .

Proof (i) Immediate from the exact sequences

. . . −−→Hn(X;L.
)

A
−−→ V L n(X)

∂
−−→ Sn(X)−−→Hn−1(X;L.

)−−→ . . . ,

. . . −−→Hn(X;L.)
A
−−→ V Ln(X)

∂
−−→ Sn(X)−−→Hn−1(X;L.)−−→ . . . .

(ii) The natural map Hn(X;L.)−−→Hn(X;L0(Z)) coincides with the com-
posite

Hn(X;L.)
([X]L ∩ −)−1

−−−−−−−−−−−−→ H0(X;L.) = [X,L0(Z)×G/TOP ]

projection
−−−−−−−−−→ [X,L0(Z)] = H0(X;L0(Z))

[X] ∩ −
−−−−−−−→ Hn(X;L0(Z)) ,

with [X]L = f∗[M ]L ∈ Hn(X;L.) the L.-coefficient fundamental class of X
determined by (f, b), and [X] ∈ Hn(X) the ordinary (Z-coefficient) funda-

mental class. The identities s̄(X) = 0, s(X) = [i(x)] follow from 25.3 (iv).

The resolution obstruction of a compact n-dimensional ANR homology

manifold M

i(M) ∈ Hn(M ;L0(Z)) = L0(Z)

was defined by Quinn [136] as the difference of local and global codimension
n signatures (24.23).

Proposition 25.8 Let X be a finite n-dimensional geometric Poincaré
complex which is homotopy equivalent to a compact n-dimensional ANR
homology manifold M . The total surgery obstruction of X is the image of
the resolution obstruction of M

s(X) = [i(M)]

∈ im(Hn(X;L0(Z))−−→Sn(X)) = ker(Sn(X)−−→Sn(X)) ,

and the 4-periodic total surgery obstruction of X is

s̄(X) = 0 ∈ Sn(X) .

Moreover, a choice of homotopy equivalence M ' X determines an L.-
homology fundamental class [X]L ∈ Hn(X;L.) with assembly

A([X]L) = σ ∗(X) ∈ V L n(X) ,

and an L.
-homology fundamental class [X]L ∈ Hn(X;L.

) with assembly

A([X]L) = σ∗(X) ∈ V Ln(X) .

Proof The total surgery obstruction of M is determined by a normal map

(f, b):N−−→M from a compact topological manifold N associated to the
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canonical topological reduction ν̃M :M−−→BTOP of the Spivak normal fi-
bration νM :M−−→BG (Ferry and Pedersen [53])

s(M) = −[σ∗(f, b)]

∈ im(Ln(Z[π1(M)])−−→Sn(M)) = ker(Sn(M)−−→Hn−1(M ;L.)) .

The canonical L.
-homology fundamental class of M is defined by

[M ]L = f∗[N ]L ∈ Hn(M ;L.)

with assembly the 4-periodic visible symmetric signature of M

A([M ]L) = σ ∗(M) ∈ V L n(M) .

The canonical L.
-homology fundamental class of M is defined by

[M ]L = (i(M), [M ]L) ∈ Hn(M ;L.) = Hn(M ;L0(Z))⊕Hn(M ;L.)

with assembly the 1/2-connective visible symmetric signature of M

A([M ]L) = σ∗(M) ∈ V Ln(M) ,

and such that

s(M) = ∂σ∗(M) = [i(M)] = −[σ∗(f, b)] ∈ Sn(M) .

The surgery obstruction of (f, b) is the assembly of

(−i(M), 0) ∈ Hn(M ;L.) = Hn(M ;L0(Z))⊕Hn(M ;L.) ,

that is

σ∗(f, b) = A(−i(M), 0) ∈ im(A:Hn(M ;L.)−−→Ln(Z[π1(M)]))

= ker(∂:Ln(Z[π1(M)])−−→Sn(M)) .

The 0-connective visible symmetric signature of M is

σ∗(M) = σ∗(N)− (1 + T )σ∗(f, b) = A([M ]L) + (1 + T )A(i(M))

= A([M ]L) ∈ im(A:Hn(M ;L.
)−−→V Ln(M)) .

Normal maps (f, b): (N, νN )−−→(M, ν̃M ) of closed n-dimensional mani-
folds are classified by the normal invariant (18.3 (i))

[f, b]L ∈ [M,G/TOP ] = H0(M ;L.) = Hn(M ;L.)

represented by the fibre homotopy trivialized difference ν̃M − νM :M−−→
BTOP , with νM the stable normal bundle.

Definition 25.9 The 4-periodic normal invariant of a normal map (f, b):
(N, νN )−−→(M, ν̃M ) of compact n-dimensional ANR homology manifolds

is

[f, b]L = (i(N)− i(M), [f, b]L)

∈ [M,L0(Z)×G/TOP ] = H0(M ;L.) = Hn(M ;L.)

= Hn(M ;L0(Z))⊕Hn(M ;L.)
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with [f, b]L = t(b) ∈ [M,G/TOP ] represented by the fibre homotopy trivi-
alized difference ν̃M −νM :M−−→BTOP , with νM the canonical topological
reduction of the Spivak normal fibration.

The 4-periodic normal invariant will also be written as

t(i, b) = [f, b]L ∈ Hn(M ;L.)

in terms of

(i, b) = (i(N)− i(M), t(b)) ∈ Hn(M ;L0(Z)⊕Hn(M ;L.) .

The surgery obstruction of a normal map (f, b):N−−→M of closed n-
dimensional ANR homology manifolds is the assembly of the 4-periodic
normal invariant

σ∗(f, b) = A([f, b]L)

∈ im(A:Hn(M ;L.)−−→Ln(Z[π1(M)])) = ker(Ln(Z[π1(M)])−−→Sn(M)) .

Example 25.10 Given a compact n-dimensional ANR homology manifold
M let (f, b):N−−→M be the normal map associated to the canonical topo-

logical reduction of M , with N a compact n-dimensional ANR topological
manifold. The 4-periodic normal invariant of (f, b) is

[f, b]L = (−i(M), 0) ∈ Hn(M ;L.) = Hn(M ;L0(Z))⊕Hn(M ;L.) .

The structure invariant (18.3) of a homotopy equivalence f :N−−→M of
compact n-dimensional topological manifolds is the rel ∂ total surgery ob-
struction

s(f) = s̄∂(N × I ∪f M,M tN) ∈ Sn+1(M)

with image the normal invariant

[s(f)] = [f, b]L

∈ im(Sn+1(M)−−→Hn(M ;L.)) = ker(A:Hn(M ;L.)−−→Ln(Z[π1(M)])) .

of the normal map (f, b): (N, νN )−−→(M, (f−1)∗νN ), with νN the stable

normal bundle.

Definition 25.11 The 4-periodic structure invariant of a homotopy equiv-

alence f :N−−→M of compact n-dimensional ANR homology manifolds is
the rel ∂ 4-periodic total surgery obstruction

s̄(f) = s̄∂(N × I ∪f M,M tN) ∈ Sn+1(M)

with image the 4-periodic normal invariant

[s̄(f)] = [f, b]L = t(i(N)− i(M), [f, b]L)

∈ im(Sn+1(M)−−→Hn(M ;L.)) = ker(A:Hn(M ;L.)−−→Ln(Z[π1(M)]))
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of the normal map (f, b): (N, νN )−−→(M, (f−1)∗νN ), with νN :N−−→BTOP
the canonical topological reduction.

The resolution obstruction i(M) is not a homotopy invariant, with i(M) =

i(N) ∈ L0(Z) for a homotopy equivalence f :N−−→M if and only if

s̄(f) ∈ ker(Sn+1(M)−−→Hn(M ;L0(Z))) = im(Sn+1(M)−−→Sn+1(M)) .

As in §19 write the geometric Poincaré and normal bordism spectra of a

point as

ΩP. = ΩP. ({∗}) , ΩN. = ΩN. ({∗}) .

Define

Ω
P
. = cofibre(L.−−→L. ∨ ΩP. ) = fibre(ΩN. −−→ΣL.) ,

so that for any space K there is defined a commutative braid of exact
sequences
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of the normal map (f, b): (N, νN )−−→(M, (f−1)∗νN ), with νN :N−−→BTOP
the canonical topological reduction.

The resolution obstruction i(M) is not a homotopy invariant, with i(M) =
i(N) ∈ L0(Z) for a homotopy equivalence f :N−−→M if and only if

s̄(f) ∈ ker(Sn+1(M)−−→Hn(M ;L0(Z))) = im(Sn+1(M)−−→Sn+1(M)) .

As in §19 write the geometric Poincaré and normal bordism spectra of a
point as

ΩP. = ΩP. ({∗}) , ΩN. = ΩN. ({∗}) .

Define

Ω
P
. = cofibre(L.−−→L. ∨ ΩP. ) = fibre(ΩN. −−→ΣL.) ,

so that for any space K there is defined a commutative braid of exact
sequences

N
N
N

NN

������
N
N
N

NN

������

Hn+1(K;L0(Z)) Hn(K; ΩP. ) Hn(K; ΩN. )

Hn(K; L.)

���
��

N
N
NNP

Hn(K; Ω
P
. )

���
��

N
N
NNP

Hn+1(K; ΩN. )
N
N
NNP

Hn(K; L.)

���
��

N
N
NNP

Hn(K;L0(Z)) .

���
��

'
'

'
''

[
[
[
[[]

'
'

'
''

[
[
[
[[]

The relation between the 4-periodic theory and geometric Poincaré bor-
dism is given by the following generalization of 19.6:

Proposition 25.12 (i) For any polyhedron K with finitely presented π1(K)

The relation between the 4-periodic theory and geometric Poincaré bordism
is given by the following generalization of 19.6:

Proposition 25.12 (i) For any polyhedron K with finitely presented π1(K)
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and n ≥ 5 there is defined a commutative braids of exact sequences
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and n ≥ 5 there is defined a commutative braids of exact sequences

N
N
N

NN

A

������
N
N
N

NN

s

������

Hn(K; ΩP. ) ΩPn (K) Sn(K)

Hn(K; Ω
P
. )

���
��

N
N
NNPA

Sn(K)

���
��

s
N
N
NNP

Sn+1(K)
N
N
NNP

Hn(K;L0(Z))

���
��

i
N
N
NNP

Hn−1(K; ΩP. ) .

���
��

'
'

'
''

[
[
[
[[]

'
'

'
''

[
[
[
[[]

(ii) A finite n-dimensional geometric Poincaré complex X has 4-periodic
total surgery obstruction s̄(X) = 0 ∈ Sn(X) if (and for n ≥ 5 only if) there

exists an Ω
P
. -homology fundamental class [X]P ∈ Hn(X; Ω

P
. ) with assembly

the geometric Poincaré bordism class of 1:X−−→X
A([X]P ) = (1:X−−→X) ∈ ΩPn (X) ,

in which case the total surgery obstruction of X is given by

s(X) = [i[X]P ] ∈ im(Hn(X;L0(Z))−−→Sn(X)) = ker(Sn(X)−−→Sn(X)) .

The structure set SHTOP (M) of a compact n-dimensional ANR homology

manifold M is defined to be the set of h-cobordism classes of pairs

(compact n-dimensional ANR homology manifold N ,

homotopy equivalence f :N−−→M) .

Remark 25.13 Bryant, Ferry, Mio and Weinberger [21] have announced
the existence of nonresolvable compact n-dimensional ANR homology man-
ifolds realizing the Quinn resolution obstruction in each dimension n ≥ 5. It

follows that the 4-periodic total surgery obstruction of a finite n-dimensional
geometric Poincaré complex X is such that s̄(X) = 0 ∈ Sn(X) if (and for
n ≥ 5 only if) X is homotopy equivalent to a compact n-dimensional ANR

homology manifold M , in which case the total surgery obstruction of X is
the image of the resolution obstruction of M

s(X) = [i(M)] ∈ im(Hn(X;L0(Z))−−→Sn(X)) = ker(Sn(X)−−→Sn(X)) .

It also follows that the structure set SHTOP (M) of a compact n-dimensional
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P
. -homology fundamental class [X]P ∈ Hn(X; Ω

P
. ) with assembly
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in which case the total surgery obstruction of X is given by

s(X) = [i[X]P ] ∈ im(Hn(X;L0(Z))−−→Sn(X)) = ker(Sn(X)−−→Sn(X)) .

The structure set SHTOP (M) of a compact n-dimensional ANR homology

manifold M is defined to be the set of h-cobordism classes of pairs

(compact n-dimensional ANR homology manifold N ,

homotopy equivalence f :N−−→M) .

Remark 25.13 Bryant, Ferry, Mio and Weinberger [21] have announced

the existence of nonresolvable compact n-dimensional ANR homology man-
ifolds realizing the Quinn resolution obstruction in each dimension n ≥ 5. It
follows that the 4-periodic total surgery obstruction of a finite n-dimensional
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homology manifold M , in which case the total surgery obstruction of X is

the image of the resolution obstruction of M

s(X) = [i(M)] ∈ im(Hn(X;L0(Z))−−→Sn(X)) = ker(Sn(X)−−→Sn(X)) .

It also follows that the structure set SHTOP (M) of a compact n-dimensional
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ANR homology manifold M fits into an exact sequence of pointed sets

. . . −−→ Ln+1(Z[π1(M)]) −−→ SHTOP (M)

−−→ [M,L0(Z)×G/TOP ] −−→ Ln(Z[π1(M)])

with the 4-periodic structure and normal invariants defining a bijection with
the 4-periodic algebraic surgery exact sequence
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ANR homology manifold M fits into an exact sequence of pointed sets

. . . −−→ Ln+1(Z[π1(M)]) −−→ SHTOP (M)

−−→ [M,L0(Z)×G/TOP ] −−→ Ln(Z[π1(M)])

with the 4-periodic structure and normal invariants defining a bijection with

the 4-periodic algebraic surgery exact sequence

. . . w Ln+1(Z[π]) w SHTOP (M) w

u
s ≃

[M,L0(Z)×G/TOP ] w

u
t ≃

Ln(Z[π])

. . . w Ln+1(Z[π]) w Sn+1(M) w Hn(M ; L.) w
A Ln(Z[π])

with π = π1(M). The generator 1 ∈ L0(Z) is realized by a nonresolv-

able compact n-dimensional ANR homology manifold Σn with a homotopy
equivalence f : Σn−−→Sn such that

i(Σn) = s̄(f) = 1 ∈ SHTOP (Sn) = Sn+1(S
n) = L0(Z) = Z .

Remark 25.14 The 4-periodic total surgery obstruction s̄(Bπ) of the classi-
fying spaceBπ of an n-dimensional Novikov group π takes value in Sn(Bπ) =

{0}, so that by 25.13 Bπ is homotopy equivalent to a compact n-dimensional
ANR homology manifold M (at least for n ≥ 5) such that

s(M) = i(M) ∈ Sn(M) = Sn(Bπ) = L0(Z) ,

SHTOP (M) = Sn+1(M) = Sn+1(Bπ) = {0} .
In particular, M is resolvable if and only if M is homotopy equivalent to

a manifold. Ferry and Pedersen [53] used bounded surgery to show that
any compact ANR homology manifold in the homotopy type of a compact
aspherical manifold with a Novikov fundamental group π is resolvable.

Example 25.15 The 4-periodic quadratic L-theory assembly maps for Tn

are isomorphisms (24.16)

A : H∗(T
n; L.)

≃−−→ L∗(Z[Zn]) ,
so that

S∗(T
n) = 0 , S∗(T

n) = H∗(T
n;L0(Z)) (∗ ≥ n)

and the ‘4-periodic’ geometric Poincaré bordism assembly maps of 25.12 (i)
are isomorphisms for Tn

A : H∗(T
n; Ω

P
. )

≃−−→ ΩP∗ (Tn) .
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P
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In each dimension n ≥ 4 the element

i(1) = (1, 0) ∈ ΩPn (Tn) = Hn(Tn; Ω
P
. ) = L0(Z)⊕Hn(Tn; ΩP. )

is represented by a normal map (f, b):Y−−→Tn from a topologically re-

ducible finite n-dimensional geometric Poincaré complex Y , with surgery
obstruction

σ∗(f, b) = (1, 0) ∈ Ln(Z[Zn]) = L0(Z)⊕
( n∑

k=1

(
n

k

)
Lk(Z)

)

and codimension n quadratic signature

Bσ∗(f, b) = (Z8, E8) = 1 ∈ L0(Z) = Z .

The visible symmetric signature of Y is

σ∗(Y ) = σ∗(Tn) + (1 + T )σ∗(f, b) = (1, (9, 0))

∈ V Ln(Tn) = L0(Z)⊕ Ln(Z[Zn]) ,

with components the 4-periodic visible symmetric signature

σ ∗(Y ) = (9, 0)

∈ V L n(Tn) = Ln(Z[Zn]) = L0(Z)⊕
( n∑

k=1

(
n

k

)
Lk(Z)

)
,

and the image of the total surgery obstruction

s(Y ) = 1 ∈ Sn(Tn) = L0(Z) .

The actual total surgery obstruction s(Y ) ∈ Sn(Y ) is the image of 1 ∈
Hn(Y ;L0(Z)) = L0(Z) under the map in the exact sequence

. . . −−→ Sn+1(Y ) −−→ Hn(Y ;L0(Z)) −−→ Sn(Y ) −−→ Sn(Y ) −−→ . . . .

For n = 4 there is an explicit construction of Y 4 in Quinn [136, §2]

Y 4 =

(
(T 4)(3) ∨

∨

48

S2

)
∪α e4 ,

attaching a 4-cell to a 3-complex by a Whitehead product α realizing the

nonsingular quadratic form over Z[Z4] of rank 48 representing the image of
1 ∈ L0(Z) under the geometrically significant split injection of Ranicki [140]

σ∗(T 4)⊗− : L0(Z) −−→ L4(Z[Z4]) .

For n ≥ 5 the product

(f, b)× id. : Y n = Y 4 × Tn−4 −−→ T 4 × Tn−4 = Tn

has codimension n quadratic signature 1 by the surgery product formula
of Ranicki [145]. In each case the 4-periodic total surgery obstruction is
s̄(Y ) = 0 ∈ Sn(Y ), and the total surgery obstruction s(Y ) ∈ Sn(Y ) is

the image of 1 ∈ Hn(Y ;L0(Z)) = L0(Z). By 25.13 each Y n is homotopy
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equivalent to a nonresolvable compact ANR homology manifold.

See Appendix C for some further discussion of assembly and controlled

topology.

Remark 25.16 See Hambleton and Hausmann [66, p. 234] for the construc-

tion in each dimension n ≥ 4 of a finite n-dimensional geometric Poincaré
complex Y such that

(i) the fundamental group π1(Y ) = π is an n-dimensional Novikov group
(in the class of Cappell [25]) with the homology of Sn, such that

L∗(Z[π]) = H∗(Bπ;L.) = H∗(S
n;L.) = L∗−n(Z)⊕ L∗(Z) ,

(ii) the classifying map Y−−→Bπ induces an isomorphism of integral ho-
mology, with

H∗(Y ) = H∗(Bπ) = H∗(S
n) ,

(iii) the 4-periodic visible symmetric signature of Y is

σ ∗(Y ) = (9, 0)

∈ V L n(Y ) = Hn(Y ;L.) = Hn(Sn;L.) = L0(Z)⊕ Ln(Z) ,

and the 4-periodic total surgery obstruction of Y is

s̄(Y ) = ∂σ ∗(Y ) = 0 ∈ Sn(Y ) = {0} ,
(iv) the visible symmetric signature of Y is

σ∗(Y ) = (1, σ ∗(Y )) ∈ V Ln(Y ) = L0(Z)⊕ V L n(Y ) ,

and the total surgery obstruction of Y is

s(Y ) = ∂σ∗(Y ) = 1

∈ Sn(Y ) = coker(Hn(Y ;L.)−−→Ln(Z[π]))

= coker(Hn(Sn;L.)−−→Hn(Sn;L.)) = L0(Z) = Z .

By 25.13 each Y is homotopy equivalent to a nonresolvable compact ANR
homology manifold.

Remark 25.17 Let M be a compact n-dimensional ANR homology man-

ifold, and let (f, b):N−−→M be a normal map associated to the canonical
topological reduction νM of the Spivak normal fibration, with N a genuine
manifold (as in the proof of 25.8). The Poincaré dual of the L-genus

L(M) = L(−νM ) ∈ H4∗(M ;Q)

is the rational part of the canonical L.-homology fundamental class [M ]L

[M ]Q ∩ L(M) = [M ]L ⊗ 1 ∈ Hn(M ;L.
)⊗Q = Hn−4∗(M ;Q) ,

with [M ]Q ∈ Hn(M ;Q) the Q-coefficient fundamental class. Every map

g:M−−→Sn−i can be made symmetric Poincaré transverse at a point in
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Sn−i, with [M ]Z∩g∗(1) ∈ Hi(M) represented by an i-dimensional symmetric
Poincaré complex ‘g−1(pt.)’ over Z such that

g∗[M ]L = σ∗(‘g−1(pt.)’) ∈ Ḣn(Sn−i;L.) = Li(Z) ,

with 1 ∈ Hn−i(Sn−i) = Z. The composite gf :N−−→Sn−i can be made
topologically transverse, and ‘(gf)−1(pt.)’ is the symmetric complex of a

framed i-dimensional submanifold (gf)−1(pt.) ⊂ N . For i = 4j the Hirze-
bruch signature formula gives

σ∗(‘(gf)−1(pt.)’) = σ∗((gf)−1(pt.))

= 〈Lj(−νN ), [N ]Q ∩ (gf)∗(1)〉
= 〈Lj(−ν̃N ), [N ]Q ∩ g∗(1)〉 ∈ L4j(Z) = Z .

The algebraic normal map (2.16 (i)) of 4j-dimensional symmetric Poincaré

complexes over Z
‘(f, b)|’ : ‘(gf)−1(pt.)’ −−→ ‘g−1(pt.)’

has quadratic signature the assembly of a 4j-dimensional component of
[i(M)] ∈ Hn(M ;L.)

σ∗(‘(f, b)|’) =

{
0 if j > 0

i(M)g∗[M ] if j = 0

}
∈ L4j(Z) = Z ,

with symmetrization

(1 + T )σ∗(‘(f, b)|’) = σ∗(‘(gf)−1(pt.)’) − σ∗(‘g−1(pt.)’) ∈ L4j(Z) = Z .

Every element x ∈ H4j(M ;Q) is of the form x = [M ]Q ∩ g∗(1)/m for some
g:M−−→Sn−4j , m ∈ Z\{0}. The L-genus of a compact ANR homology
manifold is thus characterized by the signatures of symmetric Poincaré sub-
complexes

〈Lj(M),−〉 : H4j(M ;Q) −−→ L4j(Z)⊗Q = Q ;

x = [M ]Q ∩ g∗(1)/m −−→

〈Lj(M), x〉 =

{
σ∗(‘g−1(pt.)’)/m if j > 0

σ∗(‘g−1(pt.)’)/m + 8i(M)x if j = 0 ,

generalizing the combinatorial definition due to Thom of the L-genus of a
PLmanifold (and hence the rational Pontrjagin classes) using the signatures
of submanifolds – see Milnor and Stasheff [114, §20], and also Appendix C.16

below.
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§26. Surgery with coefficients

There is also a version of the total surgery obstruction theory for the Λ-

homology coefficient surgery theory of Cappell and Shaneson [26], which
arises in the surgery classification of codimension 2 submanifolds (cf. Ran-
icki [146, §§7.8,7.9]).

For Λ-homology surgery the Wall L-groups L∗(Z[π]) of a group ring Z[π]
are replaced by the Γ-groups Γ∗(F) of a ‘locally epic’ morphism F :Z[π]−−→Λ
of rings with involution. (A ring morphism is locally epic if for every finite

subset Λ0 ⊂ Λ there exists a unit u ∈ Λ such that uΛ0 ⊆ im(F).) By
definition, Γ2i(F) is the Witt group of Λ-nonsingular (−)i-quadratic forms
over Z[π], and Γ2i+1(F) is the Witt group of Λ-nonsingular (−)i-quadratic

formations over Z[π]. The forgetful map Γn(F)−−→Ln(Λ) is
{

onto
one−one

for

n
{ even

odd
, with Γ∗(1:Z[π]−−→Z[π]) = L∗(Z[π]). In the terminology of §3 the

Γ-groups are given by

Γ∗(F) = L∗(A (Z[π]),B (Z[π]),C (F))

with A (Z[π]) the additive category of f.g. free Z[π]-modules, B (Z[π]) the
category of finite chain complexes in A (Z[π]) and C (F) ⊆ B (Z[π]) the

subcategory of the chain complexes C which are Λ-contractible, i.e. such
that Λ⊗Z[π]C is a contractible chain complex in A (Λ). For the fundamental
group π = π1(X) of a simplicial complex X the Λ-coefficient version of the

algebraic π-π theorem of §10 gives the identification

Γn(F) = Ln(A (Z, X),B (Z, X),C (Z, X,Λ))

with C (Z, X,Λ) ⊂ C (Z, X) the subcategory of Λ-contractible complexes,
so that Γn(F) is the cobordism group of n-dimensional quadratic cycles in
X which are globally Λ-Poincaré. Define

Sn(X; Λ) = Ln(A (Z, X),C 〈1〉(Z, X,Λ),C 〈1〉(Z)∗(X)) ,

the cobordism group of 1-connective (n − 1)-dimensional quadratic cycles
in X which are locally Poincaré and globally Λ-contractible. The groups

S∗(X; Λ) are the Λ-coefficient total surgery obstruction groups of Ranicki
[146, p. 774], which fit into a Γ-theory assembly exact sequence

. . . −−→ Hn(X;L.)
A
−−→ Γn(F) −−→ Sn(X; Λ) −−→ Hn−1(X;L.) −−→ . . .

with

A : Hn(X;L.)
A
−−→ Ln(Z[π]) −−→ Γn(F) .

There is a Λ-coefficient version of the visible symmetric L-theory, with a
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commutative braid of exact sequences
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The Λ-coefficient visible symmetric L-group V Ln(X; Λ) of a simplicial
complex X is the cobordism group of 1/2-connective globally Λ-Poincaré
n-dimensional algebraic normal complexes in A (Z, X).

An n-dimensional geometric Λ-Poincaré complex X is an n-dimensional
normal complex with Λ-Poincaré duality isomorphisms

[X] ∩ − : Hn−∗(X; Λ) −−→ H∗(X; Λ) ,

with respect to a locally epic morphism F : Z[π1(X)]−−→Λ of rings with
involution. The Λ-coefficient visible symmetric signature of X is defined by

σ∗(X; Λ) = (∆(X), ϕ) ∈ V Ln(X; Λ) ,

working as in 16.5 to make (∆(X), ϕ) 1/2-connective. The Λ-coefficient

total surgery obstruction of X is defined by

s(X; Λ) = ∂σ∗(X; Λ) ∈ Sn(X; Λ) .

As in the absolute case F = 1: Z[π]−−→Λ = Z[π] (17.4):

Proposition 26.1 The Λ-coefficient total surgery obstruction of a finite
n-dimensional geometric Λ-Poincaré complex X is such that s(X; Λ) = 0
if (and for n ≥ 5 only if) X is Λ-homology equivalent to a compact n-

dimensional topological manifold.

The Λ-coefficient structure set SΛTOP (M) of a compact n-dimensional
topological manifold Mn is the pointed set of Λ-coefficient h-cobordism

The Λ-coefficient visible symmetric L-group V Ln(X; Λ) of a simplicial
complex X is the cobordism group of 1/2-connective globally Λ-Poincaré

n-dimensional algebraic normal complexes in A (Z, X).
An n-dimensional geometric Λ-Poincaré complex X is an n-dimensional

normal complex with Λ-Poincaré duality isomorphisms

[X] ∩ − : Hn−∗(X; Λ) −−→ H∗(X; Λ) ,

with respect to a locally epic morphism F :Z[π1(X)]−−→Λ of rings with
involution. The Λ-coefficient visible symmetric signature of X is defined by

σ∗(X; Λ) = (∆(X), φ) ∈ V Ln(X; Λ) ,

working as in 16.5 to make (∆(X), φ) 1/2-connective. The Λ-coefficient
total surgery obstruction of X is defined by

s(X; Λ) = ∂σ∗(X; Λ) ∈ Sn(X; Λ) .

As in the absolute case F = 1:Z[π]−−→Λ = Z[π] (17.4):

Proposition 26.1 The Λ-coefficient total surgery obstruction of a finite

n-dimensional geometric Λ-Poincaré complex X is such that s(X; Λ) = 0
if (and for n ≥ 5 only if) X is Λ-homology equivalent to a compact n-
dimensional topological manifold.

The Λ-coefficient structure set SΛTOP (M) of a compact n-dimensional

topological manifold Mn is the pointed set of Λ-coefficient h-cobordism
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classes of pairs

(compact n-dimensional topological manifold Nn ,

Λ-homology equivalence h:Nn−−→Mn)

with base point (M, id) = 0 ∈ SΛTOP (M) .
As in the absolute case (15.19, 18.2) for any simplicial complex M and

any locally epic F :Z[π1(M)]−−→Λ there is defined a Λ-coefficient algebraic
surgery exact sequence

. . . −−→ Γn+1(F) −−→ Sn+1(M ; Λ) −−→ Hn(M ;L.)
A
−−→ Γn(F) −−→ . . . ,

and for any n-dimensional manifold Mn with n ≥ 5 there is defined a Λ-
coefficient geometric surgery exact sequence

. . . −−→ Γn+1(F) −−→ SΛTOP (M) −−→ [M,G/TOP ] −−→ Γn(F) .

As in the absolute case (18.5):

Proposition 26.2 The Λ-coefficient algebraic and geometric surgery exact
sequences of a compact n-dimensional topological manifold Mn with n ≥ 5
are related by an isomorphism
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are related by an isomorphism

. . . w Γn+1(F) w SΛTOP (M) w

u
s ≃

[M,G/TOP ] w

u
t ≃

Γn(F)

. . . w Γn+1(F ) w
∂ Sn+1(M ; Λ) w Hn(M ; L.) w

A Γn(F ) .

The relative Γ-groups Γ∗(Φ) of a commutative square of locally epic mor-

phisms of rings with involution

Z[π]

u
F ′

w
1 Z[π]

u
FΦ

Λ′
w Λ

fit into an exact sequence

. . . −−→ Γn(F ′) −−→ Γn(F) −−→ Γn(Φ) −−→ Γn−1(F ′) −−→ . . . .

By [146, 2.4.6] (a special case of 3.9)

Γn(Φ) = Ln(A (Z[π]),C (F),C (F ′))

is the cobordism group of (n−1)-dimensional quadratic complexes in A (Z[π])

which are Λ-contractible and Λ′-Poincaré. The various groups are related
by a commutative braid of exact sequences

The relative Γ-groups Γ∗(Φ) of a commutative square of locally epic mor-
phisms of rings with involution
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is the cobordism group of (n−1)-dimensional quadratic complexes in A (Z[π])

which are Λ-contractible and Λ′-Poincaré. The various groups are related
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F : Z[Z] = Z[z, z−1] −−→ Z ; z −−→ 1 (z̄ = z−1)

the Z-coefficient rel ∂ total surgery obstruction defines a bijection

SZTOP
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≃−−→ Sn+3(S
1; Z) ; f −−→ s∂(f ; Z) .
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dism group Cn of locally flat knots k:Sn ⊂ Sn+2. The following natural
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1; Z) was defined in Ranicki [146, 7.9.4]. The

complement of a knot k is the (n+ 2)-dimensional manifold with boundary

(X, ∂X) = (cl(Sn+2\U), Sn × S1)

with U = k(Sn) ×D2 ⊂ Sn+2 a closed regular neighbourhood of k(Sn) in
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with U = k(Sn) ×D2 ⊂ Sn+2 a closed regular neighbourhood of k(Sn) in
Sn+2. The knot complement is equipped with a normal map

(f, b) : (X, ∂X) −−→ (Dn+1 × S1, Sn × S1)

which is a Z-homology equivalence, and the identity on the boundary.

The Blanchfield complex of k ([146, p. 822]) is the Z-contractible (n + 2)-
dimensional quadratic Poincaré complex σ∗(f, b) = (C,ψ) over Z[Z], with
H∗(C) = Ḣ∗(X) the reduced homology of the canonical infinite cyclic cover

X of X. For n ≥ 4 the cobordism class of the knot k is given by

(k:Sn ⊂ Sn+2) = s∂(f ;Z) = (C,ψ)

∈ SZTOP∂ (Dn+1 × S1, Sn × S1) = Sn+3(S1;Z) = Γn+3(Φ) = Cn .

Remark 26.5 Let f :Y−−→X be a map of compact polyhedra, with X an
n-dimensional geometric Poincaré complex. If f is a homotopy equivalence
the induced maps f∗:S∗(Y )−−→S∗(X) are isomorphisms, and Y is an n-

dimensional geometric Poincaré complex with total surgery obstruction

s(Y ) = (f∗)
−1s(X) ∈ Sn(Y ) .

If f is a Z-homology equivalence (= stable homotopy equivalence for finite

CW complexes) the induced maps f∗:H∗(Y ;L.)−−→H∗(X;L.) are isomor-
phisms, and Y is an n-dimensional Z-coefficient geometric Poincaré com-
plex with Spivak normal fibration νY = f∗νX :Y−−→BG and topological
reducibility obstruction

t(Y ) = (f∗)
−1t(X) ∈ Hn−1(Y ;L.) .

The image of the total surgery obstruction s(X) ∈ Sn(X)

[s(X)] ∈ Sn(f) = Ln(f :Z[π1(Y )]−−→Z[π1(X)])

is an obstruction to Y being a geometric Poincaré complex with f∗s(Y ) =
s(X). See Hambleton and Hausmann [66] for a study of this ‘minus’ prob-
lem for geometric Poincaré complexes, in the context of the Quillen plus
construction.

Remark 26.6 The results of §§16–25 for n-dimensional manifolds and ge-
ometric Poincaré complexes with n ≥ 5 also apply to the case n = 4, pro-
vided the fundamental group π1 is not too large – see Freedman and Quinn

[56]. However, as explained in [56, 11.8] there is a failure of 4-dimensional
homology surgery already in the case π1(X) = Z, which is detected by
the Casson–Gordon invariants of the cobordism group C1 of classical knots
k:S1 ⊂ S3. Thus the results of §26 do not in general apply to n = 4.
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Appendix A. The nonorientable case
This appendix deals with the modifications required for the twisted case, in

which the simplicial complex K is equipped with a nontrivial double cover
Kw. In particular, the universal assembly functors of §9 are generalized to
w-twisted universal assembly functors of algebraic bordism categories

A : Λ(R)∗(K,w) −−→ Λ(R,K,w) ,

A : Λ(R,K,w) −−→ Λ(R[π]w) ,

A : Λ̂(R,K,w) −−→ Λ̂(R[π]w) .

The nonorientable version of L-theory appears in the codimension 1 split-
ting obstruction theory of type (C) (as described in §23), and has been used
to determine the image of the assembly map A:H∗(Bπ;L.)−−→L∗(Z[π]) for
finite groups π in the orientable case, using appropriate index 2 subgroups –

see Wall [180, 12C], Hambleton [65], Cappell and Shaneson [27], Harsiladze
[72], Hambleton, Taylor and Williams [71] and Hambleton, Milgram, Taylor
and Williams [69].

The fundamental group of the double cover Kw

π1(Kw) = πw

is a subgroup of π1(K) = π of index 2, and the orientation character is

given by

w : π −−→ {±1} ; g −−→
{

+1 if g ∈ πw
−1 otherwise .

Let R be a commutative ring, as before, and let R[π]w be the group ring
R[π] with the w-twisted involution as in 1.4. The tensor product over R[π]w

of f.g. free R[π]-modules M,N is the abelian group

M ⊗R[π]w N = M ⊗A (R[π]w) N

= M ⊗R N/{x⊗ gy − w(g)g−1x⊗ y |x ∈M, y ∈ N, g ∈ π} .
Regard M , N as R[πw]-modules via the inclusion R[πw]−−→R[π], and let
Z[Z2] act on the abelian group M ⊗R[πw] N by

T : M ⊗R[πw] N −−→ M ⊗R[πw] N ; x⊗ y −−→ tx⊗ ty ,
using any element t ∈ π\πw, and the oriented involution on R[πw]. Let Z−
denote the Z[Z2]-module defined by Z with T ∈ Z2 acting by T (1) = −1.
The natural isomorphism of abelian groups

Z− ⊗Z[Z2] (M ⊗R[πw] N)
'−−→ M ⊗R[π]w N ; 1⊗ (x⊗ y) −−→ x⊗ y

will be used to identify

Z− ⊗Z[Z2] (M ⊗R[πw] N) = M ⊗R[π]w N .

Let

T : Kw '−−→ Kw ; σ −−→ Tσ
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be the covering translation, a free involution.

Definition A1 An (R,K,w)-module M RKW311!!(R,K,w)-module is a
f.g. free (R,Kw)-module such that

M(Tσ) = M(σ) (σ ∈ Kw) .

A morphism of (R,K,w)-modules f :M−−→N is an (R,Kw)-module mor-

phism such that

f(Tτ, Tσ) = f(τ, σ) :

M(Tσ) = M(σ) −−→ N(Tτ) = N(τ) (σ ≤ τ ∈ Kw) .

Given (R,K,w)-modules M ,N let Z[Z2] act on the abelian group
M ⊗A (R,Kw) N by

T : M ⊗A (R,Kw) N −−→ M ⊗A (R,Kw) N ;

x(σ)⊗ y(σ) −−→ x(Tσ)⊗ y(Tσ) (σ ∈ Kw) .

Definition A2 Let A (R,K,w) be the additive category of (R,K,w)-

modules and morphisms, and let

B (R,K,w) = B (A (R,K,w))

be the additive category of finite chain complexes in A (R,K,w). A (R,K,w)

has a chain duality

T : A (R,K,w) −−→ B (R,K,w) ; M −−→ TM

characterized by the identities

HomA (R,K,w)(TM,N) = M ⊗A (R,K,w)N = Z−⊗Z[Z2] (M ⊗A (R,Kw)N) .

The universal cover K̃ of K (assumed connected) is also the universal
cover of Kw. The universal assembly of an (R,K,w)-module M is a f.g.
free R[π]-module

M(K̃) =
∑

σ̃∈K̃

M(pwσ̃) ,

with pw: K̃−−→Kw the covering projection.

Definition A3 Given R,K,Kw, π, πw there are defined algebraic bordism
categories:

(i) the local f.g. free (R,K,w)-module bordism category

Λ(R)∗(K,w) = (A (R,K,w),B (R,K,w),C (R)∗(K,w)) ,

with C (R)∗(K,w) ⊆ B (R,K,w) the full subcategory of (R,K,w)-
module chain complexes C such that each C(σ) (σ ∈ Kw) is a con-

tractible R-module chain complex;
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(ii) the global f.g. free (R,K,w)-module bordism category

Λ(R,K,w) = (A (R,K,w),B (R,K,w),C (R,K,w)) ,

with C (R,K,w) ⊆ B (R,K,w) the full subcategory of (R,K,w)-mod-
ule chain complexes C such that the assembly R[π]-module chain com-

plex C(K̃) is contractible.

Proposition A4 (i) Inclusion defines a twisted universal assembly functor
of algebraic bordism categories

A : Λ(R)∗(K,w) −−→ Λ(R,K,w) .

(ii) The universal assembly functor A:A (R,K,w)−−→A (R[π]w) extends to
twisted universal assembly functors of algebraic bordism categories

A : Λ(R,K,w) −−→ Λ(R[π]w) , A : Λ̂(R,K,w) −−→ Λ̂(R[π]w) ,

with

Λ̂(R,K,w) = (A (R,K,w),B (R,K,w),B (R,K,w)) .

Definition A5 The assembly chain map for (R,K,w)-module chain com-
plexes C, D

α̃C,D : C ⊗A (R,Kw) D −−→ C(K̃)⊗R[π]w D(K̃)

is a Z[Z2]-module chain map, and so induces a twisted universal assembly
chain map

αC,D = 1⊗ α̃C,D : C ⊗(R,K,w) D = Z− ⊗Z[Z2] (C ⊗(R,Kw) D)

−−→C(K̃)⊗R[π]w D(K̃) = Z− ⊗Z[Z2] (C(K̃)⊗R[πw] D(K̃)) ; φ−−→φ(K̃) ,

with C ⊗(R,K,w) D short for C ⊗A (R,K,w) D. Here, the Z[Z2]-actions are
those induced from T :Kw−−→Kw.

In the special case C = D the assembly of A5 is a Z[Z2]-module chain
map

α = αC,C : C ⊗(R,K,w) C −−→ C(K̃)⊗R[π]w C(K̃) ; φ −−→ φ(K̃)

inducing abelian group morphisms

α% : Qn(C) = Hn(HomZ[Z2](W, (C ⊗(R,K,w) C))) −−→
Qn(C(K̃)) = Hn(HomZ[Z2](W, (C(K̃)⊗R[π]w C(K̃)))) ,

α% : Qn(C) = Hn(W ⊗Z[Z2] (C ⊗(R,K,w) C)) −−→
Qn(C(K̃)) = Hn(W ⊗Z[Z2] (C(K̃)⊗R[π]w C(K̃))) (n ∈ Z) .

Here, the Z[Z2]-actions are given by the duality involutions.
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The twisted version of 9.11 is given by:

Proposition A6 Twisted universal assembly defines functors of algebraic
bordism categories

A : Λ(R,K,w) −−→ Λ(R[π]w) , A : Λ̂(R,K,w) −−→ Λ̂(R[π]w)

inducing twisted universal assembly maps in the





symmetric
visible symmetric
quadratic
normal

L-

groups



A : Ln(R,K,w) = Ln(Λ(R,K,w)) −−→ Ln(R[π]w)

A : V Ln(R,K,w) = NLn(Λ(R,K,w)) −−→ V Ln(R[π]w)

A : Ln(R,K,w) = Ln(Λ(R,K,w)) −−→ Ln(R[π]w)

A : NLn(R,K,w) = NLn(Λ̂(R,K,w)) −−→ NLn(R[π]w) .

(n ∈ Z)

The twisted version of 9.16 is given by:

Example A7 An n-dimensional geometric

{
Poincaré complex K
normal map (f, b):M−−→K ′
normal complex K

with orientation map

w = w1(νK) : π = π1(K) −−→ {±1}

has a twisted

{
visible symmetric
quadratic
normal

signature





σ∗(K) ∈ V Ln(Z,K,w)

σ∗(f, b) ∈ Ln(Z,K,w)

σ̂∗(K) ∈ NLn(Z,K,w)

with assembly the twisted





symmetric

quadratic

normal

signature





σ∗(K) ∈ Ln(Z[π]w)

σ∗(f, b) ∈ Ln(Z[π]w)

σ̂∗(K) ∈ NLn(Z[π]w).

The algebraic π-π theorem of §10 has an evident twisted version for a dou-
ble cover Kw of K, with the twisted assembly maps defining isomorphisms

L∗(R,K,w)
'−−→ L∗(R[π1(K)]w) .

Definition A8 The twisted universal assembly map on the twisted general-
ized homology groups with quadratic L-theory coefficients is the composite

A : Hn(K,w;L.(R)) = Ln(Λ(R)∗(K,w)) −−→ Ln(R,K,w) −−→ Ln(R[π]w)

of the morphisms given by A4 and A6, with Ln(R,K,w) ∼= Ln(R[π]w).



314 Algebraic L-theory and topological manifolds

The cycle approach to generalized homology of §12 can be extended to
twisted coefficients, as follows.

Given pointed ∆-sets J , K with involutions let KJ
Z2

be the function ∆-set

with (KJ
Z2

)(p) the set of Z2-equivariant ∆-maps J ∧ (∆p)+−−→K.

Definition A9 Let F be an Ω-spectrum with an involution T :F−−→F , and
let K be a locally finite ∆-set with a double cover Kw−−→K. The w-twisted{
F -cohomology
F -homology

Ω-spectrum of K is defined by





FK+

Z2
= { (F n)

K+

Z2
|n ∈ Z }

Kw
+ ∧Z2

F = { lim−→
j

Ωj(Kw
+ ∧Z2

F n−j) |n ∈ Z }

with homotopy groups the w-twisted

{
F -cohomology
F -homology

groups of K




Hn(K,w;F ) = π−n(FK+

Z2
) = [Kw

+ ,F−n]Z2

Hn(K,w;F ) = πn(Kw
+ ∧Z2

F ) = lim−→
j
πn+j(K

w
+ ∧Z2

F−j) .

In the untwisted case of the trivial double cover Kw = K tK
H∗(K,w;F ) = H∗(K;F ) , H∗(K,w;F ) = H∗(K;F ) .

The w-twisted F -cohomology group Hn(K,w;F ) of a locally finite sim-
plicial complex K has a direct combinatorial description as the set of Z2-

equivariant homotopy classes of Z2-equivariant ∆-maps Kw
+−−→F−n, which

may be called ‘w-twisted F -cocycles in K’. The w-twisted F -homology
group Hn(K,w;F ) has a similar description as the set of cobordism classes

of ‘w-twisted F -cycles in K’, by analogy with the untwisted case.
Construct a Z2-equivariant embedding of Kw in some ∂∆2m+1, as fol-

lows. Let T :Kw−−→Kw be the free involution defined by the covering
translation, and let {v0, v1, . . . , vm} be the vertices of K. Choose lifts

{ṽ0, ṽ1, . . . , ṽm} to half the vertices of Kw, so that the other half are given
by {T ṽ0, T ṽ1, . . . , T ṽm}. Define a free action of Z2 on ∂∆2m+1 by

T : ∂∆2m+1 '−−→ ∂∆2m+1 ; i −−→
{
i+m+ 1 if 0 ≤ i ≤ m
i−m− 1 if m+ 1 ≤ i ≤ 2m+ 1,

and define a Z2-equivariant embedding

Kw −−→ ∂∆2m+1 ; ṽi −−→ i , T ṽi −−→ i+m+ 1 .

The simplicial complex Σ2m and the supplement K
w ⊆ Σ2m of Kw ⊆

∂∆2m+1 are defined as in the untwisted case. Σ2m comes equipped with a

free involution

T : Σ2m '−−→ Σ2m ; σ∗ −−→ Tσ∗ .
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The inclusion K
w−−→Σ2m is a Z2-equivariant map covering the inclusion

K = K
w
/Z2 −−→ RP2m = Σ2m/Z2 .

Definition A10 Given a simplicial complex K with a double cover Kw−−→
K and a Z2-equivariant embedding Kw ⊆ ∂∆2m+1 let

H .(K,w;F ) = {H n(K,w;F ) |n ∈ Z }
be the Ω-spectrum defined by

H n(K,w;F ) = lim−→
J

(F n−2m, ∅)(Σ2m,J
w

)
Z2

,

with the direct limit taken over the finite subcomplexes J ⊆ K and using the
canonical Z2-equivariant embedding Jw ⊆ ∂∆2m+1, with homotopy groups

πn(H .(K,w;F )) = lim−→
J
H2m−n(RP2m, J, w;F ) (n ∈ Z) .

Proposition A11 The Ω-spectrum H .(K,w;F ) is homotopy equivalent to

the w-twisted F -homology Ω-spectrum Kw
+ ∧Z2 F , with homotopy groups

πn(H .(K,w;F )) = πn(Kw
+ ∧Z2 F ) = Hn(K,w;F ) (n ∈ Z) .

Proof As for A4, using the w-twisted S-duality isomorphisms

π∗(H .(K,w;F )) = H2m−∗(RP2m,K,w;F )

'−−→ π∗(K
w
+ ∧Z2 F ) = H∗(K,w;F ) .

There are also twisted assembly maps:

Definition A12 Given an Ω-spectrum with involution F , and a Z2-invariant

subcomplex Kw ⊆ ∂∆2m+1 define the w-twisted assembly to be the com-
posite map of Ω-spectra

A : H .(K,w;F )
w !

−−→ H .(Kw;F )
A
−−→ F

inducing w-twisted assembly maps in the homotopy groups

A : πn(H .(K,w;F )) = Hn(K,w;F ) −−→ πn(F ) (n ∈ Z) ,

with w ! the transfer map forgetting the Z2-equivariance

w ! : H n(K,w;F ) = (F n−2m, ∅)(Σ2m,K
w

)
Z2

−−→ H n(Kw;F ) = (F n−2m, ∅)(Σ2m,K
w

)

and A:H .(Kw;F )−−→F the assembly map of 12.14.
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Definition A13 Given a covariant functor

F : { simplicial complexes with a double cover}
−−→ {Ω-spectra with involution} ; (K,w) −−→ F (K,w)

define the local {F }-coefficient homology Ω-spectrum of (K,w)

H .(K,w; {F }) = {H n(K,w; {F }) |n ∈ Z}
by

H n(K,w; {F }) = lim←−−−
σ̃∈Kw

(F n−2m(D(σ,K), w′), ∅)(K
w

(σ̃),K
w

)
Z2

,

with σ ∈ K the projection of σ̃ ∈ Kw. The local {F }-coefficient homology
groups of (K,w) are the homotopy groups of H .(K,w; {F })

Hn(K,w; {F }) = πn(H .(K,w; {F })) (n ∈ Z) .

As in the untwisted case (12.6, 12.8) it is possible to expressHn(K,w; {F })
as the cobordism group of n-dimensional {F }-cycles in (K,w), which are
collections

x = {x(σ̃) ∈ F n−2m(D(σ,K), w′)(2m−|σ̃|) | σ̃ ∈ Kw}

such that

(i) ∂ix(σ̃) =

{
Θix(δiσ̃) if δiσ̃ ∈ Kw

∅ if δiσ̃ /∈ Kw
(0 ≤ i ≤ 2m− |σ̃|)

(ii) x(T σ̃) = Tx(σ̃) ,

with Θi:F (D(δiσ,K), w′)−−→F (D(σ,K), w′) induced by the inclusion

D(δiσ,K) ⊂ D(σ,K).

Definition A14 The local w-twisted {F }-coefficient assembly is the map

of Ω-spectra

A : H .(K,w; {F }) −−→ F (K ′, w′)

given by the composite

A : H .(K,w; {F }) −−→ H .(K,w;F (K ′, w′))
A
−−→ F (K ′, w′)

of the forgetful map H .(K,w; {F })−−→H .(K,w;F (K ′, w′)) induced by all
the inclusions D(σ,K) ⊆ K ′ (σ ∈ K) and the w-twisted assembly of A12

A : H .(K,w;F (K ′, w′)) −−→ F (K ′, w′) .

For a homotopy invariant functor

F : { simplicial complexes with a double cover}
−−→ {Ω-spectra with involution} ; (K,w) −−→ F (K,w)
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the forgetful map from local w-twisted {F }-coefficient homology to constant
w-twisted F ({∗})-coefficient homology is a homotopy equivalence

H .(K,w; {F }) '−−→ H .(K,w; {F ({∗})}) .
Definition A15 The constant w-twisted F ({∗})-coefficient assembly for a
homotopy invariant functor F and a pair (K,w)

A : H .(K,w;F ({∗})) −−→ F (K,w)

is given by the local w-twisted {F }-coefficient assembly A of A14, using the

homotopy equivalences

H .(K,w; {F }) ' H .(K,w; {F ({∗})}) , F (K ′, w′) ' F (K,w) .

Example A16 Let ΩSO. (K,w) = {ΩSO. (K,w)n |n ∈ Z} be the Ω-spectrum
consisting of the Kan ∆-sets ΩSO. (K,w)n with k-simplexes

ΩSO. (K,w)(k)
n =

{ (n+ k)-dimensional smooth oriented manifold k-ads

(M ; ∂0M,∂1M, . . . , ∂kM) such that ∂0M ∩ ∂1M ∩ . . . ∩ ∂kM = ∅ ,

with an orientation-reversing free involution M
'−−→M

and a Z2-equivariant map f :M−−→|Kw| }
and base simplex the empty manifold k-ad ∅. Let

T : ΩSO. (K,w) −−→ ΩSO. (K,w)

be the orientation-reversing involution. The homotopy groups

πn(ΩSO. (K,w)) = ΩSOn (K,w) (n ≥ 0)

are the bordism groups of Z2-equivariant maps M−−→|Kw| from closed ori-
ented n-dimensional manifolds with an orientation-reversing free involution.
The functor

ΩSO. : {simplicial complexes with double cover} −−→
{Ω-spectra with involution} ; (K,w) −−→ ΩSO. (K,w)

is homotopy invariant, and the assembly map of A15 is a homotopy equiv-

alence

A : H .(K,w; ΩSO. ({∗})) '−−→ ΩSO. (K,w) ,

being a combinatorial version of the Pontrjagin–Thom isomorphism. (In
fact, ΩSO. (K,w) is just a combinatorial version of the Thom spectrum
|Kw|+ ∧Z2

MSO.) The assembly of an n-dimensional ΩSO. ({∗})-coefficient

cycle in (K,w)

x = {M(σ̃)n−|σ̃| | σ̃ ∈ Kw}



318 Algebraic L-theory and topological manifolds

is a Z2-equivariant map

A(x) : Mn =
⋃

σ̃∈Kw

M(σ̃) −−→ |Kw| = |(Kw)′|

from a closed smooth oriented n-manifold with an orientation-reversing free
involution, such that

A(x)−1D(σ̃,Kw) = M(σ̃) (σ̃ ∈ Kw) .

In the untwisted case of the trivial double cover

Kw = K tK , ΩSO. (K,w) = ΩSO. (K)

the spectrum is the oriented smooth bordism Ω-spectrum of 12.21.

The results of §13 concerning the algebraic L-spectra also have twisted
versions. Only the following special case of the twisted version of 13.7 is
spelled out:

Proposition A17 The quadratic L-spectrum of the twisted algebraic bor-

dism category Λ(R)∗(K,w) of A3 is the twisted generalized homology spec-
trum of (K,w) of A10

L.(Λ(R)∗(K,w)) = H .(K,w;L.(R)) ,

so that on the level of homotopy groups

Ln(Λ(R)∗(K,w)) = Hn(K,w;L.(R)) (n ∈ Z) .

The algebraic surgery exact sequence of §14 also has a twisted version,
with K replaced by (K,w). Define an assembly map

A : H .(K,w;L.(R)) −−→ L.(R[π1(K)]w)

by composing the forgetful map H .(K,w;L.(R))−−→L.(R,K,w) with the
homotopy equivalence L.(R,K,w) ' L.(R[π1(K)]w) given by 10.6. Only

the twisted version of 14.6 is spelled out:

Definition A18 (i) The twisted quadratic structure groups of (R,K,w) are
the cobordism groups

Sn(R,K,w) = Ln−1(A (R,K,w),C (R,K,w),C (R)∗(K,w)) (n ∈ Z)

of (n−1)-dimensional quadratic complexes in A (R,K,w) which are globally
contractible and locally Poincaré.

(ii) The twisted quadratic structure spectrum of (R,K,w) is the Ω-spectrum

S.(R,K,w) = ΣL.(A (R,K,w),C (R,K,w),C (R)∗(K,w))

with homotopy groups

π∗(S.(R,K,w)) = S∗(R,K,w) .
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(iii) The twisted algebraic surgery exact sequence is the exact sequence of
homotopy groups

. . . −−→ Hn(K,w;L.(R))
A
−−→ Ln(R[π1(K)]w)

∂
−−→

Sn(R,K,w) −−→ Hn−1(K,w;L.(R)) −−→ . . .

induced by the fibration sequence of spectra

H .(K,w;L.(R)) −−→ L.(R[π1(K)]w) −−→ S.(R,K,w) .

The results of §§15–26 extend to the nonorientable case in a straightfor-

ward manner.
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Appendix B. Assembly via products

The quadratic L-theory assembly map of §14

A : H∗(K;L.(Z)) −−→ L ∗(Z[π1(K)])

will now be reconciled with the construction of A proposed in Ranicki [143]
by means of a ‘preassembly’ map A:K+−−→L0(Z[π1(K)]) and a pairing of
spectra

⊗ : L.
(Z[π1(K)]) ∧ L.(Z) −−→ L.(Z[π1(K)]) .

Although only the quadratic case is considered, there is an entirely analo-
gous treatment for the symmetric L-theory assembly map.

B1. The cartesian product of ∆-sets X, Y is the ∆-set X × Y with

(X × Y )(n) = X(n) × Y (n) , ∂i(x, y) = (∂i(x), ∂i(y)) .

The ∆-map

X × Y −−→ X ⊗ Y ; (∆n−→X,∆n−→Y ) −−→ (∆n−→∆n ⊗∆n−→X ⊗ Y )

is a homotopy equivalence for Kan ∆-sets X, Y (Rourke and Sanderson
[155]), inducing a homotopy equivalence of the realizations

|X × Y | ' |X ⊗ Y | = |X| × |Y | .
It follows that the cartesian smash product of pointed Kan ∆-sets X, Y

X ∧ Y = (X × Y )/(X × ∅Y ∪ ∅X × Y )

is homotopy equivalent to the geometric smash product, with |X ∧ Y | '
|X| ∧ |Y |.
B2. Let ∆n have vertices 0, 1, . . . , n. Define a cell structure on the realiza-

tion |∆n| with one (p + q)-cell for each sequence (j0, j1, . . . , jp, k0, . . . , kq)
of integers such that

0 ≤ j0 < j1 < . . . < jp ≤ k0 < k1 < . . . < kq ≤ n ,
the convex hull of the vertices ̂jp′kq′ (0 ≤ p′ ≤ p , 0 ≤ q′ ≤ q) in the barycen-
tric subdivision (∆n)′. This is the combinatorial diagonal approximation.

B3. Write a geometric or chain complex n-ad as C = {C(σ) |σ ∈ ∆n}, with
C(σ) ⊂ C(τ) for σ < τ ∈ ∆n. Use the combinatorial diagonal approxi-
mation of B2 to define the product of n-ads C, D to be the n-ad C ⊗ D
with

(C ⊗D)(01 . . . n) =
⋃

0≤j0<...<jp≤k0<...<kq≤n
C(j0 . . . jp)⊗D(k0 . . . kq)

=

n⋃

i=0

C(0 . . . i)⊗D(i . . . n) .

There is one piece of the product for each cell in |∆n|.
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B4. For any rings with involution R, S use the chain complex n-ad product
of B3 to define spectrum-level products

⊗ : Li(R) ∧ Lj(S) −−→ Li+j(R⊗ S) ,

⊗ : Li(R) ∧ Lj(S) −−→ Li+j(R⊗ S)

inducing the products of Ranicki [144, §8] on the level of homotopy groups

⊗ : Li(R)⊗ Lj(S) −−→ Li+j(R⊗ S) ,

⊗ : Li(R)⊗ Lj(S) −−→ Li+j(R⊗ S) .

(These products can also be defined using bisimplicial sets.) In particular,
L0(Z) is a ring spectrum, and L0(Z) is an L0(Z)-module spectrum. For

commutative rings R, S with the identity involution and a subcomplex
K ⊆ ∂∆m+1 the n-ad products can also be used to define spectrum-level
products

⊗ : Li(R∗K) ∧ Lj(S) −−→ Li+j((R⊗ S)∗K) ,

⊗ : Li(R,K) ∧ Lj(S) −−→ Li+j(R⊗ S,K) .

B5. For any subcomplex K ⊆ ∂∆m+1 define the framed (smooth or topo-
logical) framed Ω-spectrum

Ωfr. (K) = {Ωfr. (K)i = Ωfr. ({∗})(Σm,K)
i−m | i ∈ Z }

by analogy with

L.
(Z∗K) = {Li(Z∗K) = Li−m(Z)(Σm,K) | i ∈ Z } .

Use the construction of the symmetric signature to define a map

σ∗ : Ωfr. (K) −−→ L.(Z∗K) ; M −−→ (∆(M), φ(M)) .

The framed bordism spectrum Ωfr. ({∗}) of a point is an Ω-spectrum homo-
topy equivalent to the Ω-spectrum of the sphere spectrum S0, and

Ωfr. (K) ' K+ ∧ Ωfr. ({∗}) ,
Ωfr. (K)i ' lim−→

j
Ωi+jΣjK+ ('s Σ−iK+ for i ≤ 0)

where 's denotes stable homotopy equivalence. Use the products of B4 to
define a product of Kan ∆-sets

⊗ : Ωfr. ({∗})i ∧ Lj(Z) −−→ Li+j(Z) ,

and define also products

⊗ : Ωfr. (K)i ∧ Lj(Z)
σ∗∧1
−−→ Li(Z∗K) ∧ Lj(Z)

⊗
−−→ Li+j(Z∗K) .

By 13.7 there is an identification

Li(Z∗K) = H i(K,L.(Z)) ,

and for each i ∈ Z the products

⊗ : Ωfr. (K)i ∧ L−j(Z) −−→ Li−j(Z∗K) (j ∈ Z)
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induce a homotopy equivalence

lim−→
j

Ωj(Ωfr. (K)i ∧ L−j(Z))
'−−→

H i(K,L.(Z)) = lim−→
j

ΩjLi−j(Z∗K) = Li(Z∗K) .

The inclusion K+−−→Ωfr. (K)0 is a stable homotopy equivalence, and the
ith space of the homology spectrum H .(K;L.(Z)) is such that

H i(K;L.(Z)) ' lim−→
j

Ωj(Ωfr. (K)i ∧ L−j(Z)) 's K+ ∧ Li(Z) .

B6. Given an algebraic bordism category Λ let

NL.(Λ) = {NLi(Λ) | i ∈ Z }
be the normal symmetric L-spectrum of 13.5. Let

NL.(Λ) = {NLi(Λ) | i ∈ Z }
be the normal quadratic L-spectrum defined using quadratic n-ads which are
not required to be Poincaré. NL.(Λ) is contractible, since every quadratic
complex (C,ψ) bounds the quadratic pair (C−−→0, (0, ψ)). The normal L-
spaces fit into fibration sequences

Li(Z∗K) −−→ NLi(Z∗K)
∂
−−→ Li−1(Z∗K) ,

Li(Z,K) −−→ NLi(Z∗K)
∂
−−→ Li−1(Z,K) ,

Li(Z∗K) −−→ NLi(Z∗K)
∂
−−→ Li−1(Z∗K) ,

Li(Z,K) −−→ NLi(Z∗K)
∂
−−→ Li−1(Z,K) .

B7. The normal symmetric L-spectrum NL.(Z) is a ring spectrum with
products

⊗ : NLi(Z) ∧ NLj(Z) −−→ NLi+j(Z) ,

acting on the normal quadratic L-spectrum NL.(Z) by products

⊗ : NLi(Z) ∧ NLj(Z) −−→ NLi+j(Z) .

The products

⊗ : NLi(Z∗K) ∧ NLj(Z) −−→ NLi+j(Z∗K)

restrict to products

⊗ : Li(Z,K) ∧ Lj(Z) −−→ Li+j(Z,K) ,
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and there is defined a commutative diagram
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and there is defined a commutative diagram

Ωfr. (K)i ∧ Lj(Z) w
⊗

u

Li+j(Z∗K)

u
=

Li(Z∗K) ∧ Lj(Z) w
⊗

u

Li+j(Z∗K)

u
A

Li(Z,K) ∧ Lj(Z) w
⊗

u

Li+j(Z,K)

u
≃

Li(Z[π1(K)]) ∧ Lj(Z) w
⊗ Li+j(Z[π1(K)]) .

By B5 the products ⊗ : Ωfr. (K)i ∧ Lj(Z)−−→Li+j(Z∗K) induce homotopy

equivalences

lim−→
j

Ωj(Ωfr. (K)i ∧ L−j(Z))

≃ H i(K,L.(Z)) = lim−→
j

ΩjLi−j(Z∗K) = Li(Z∗K) .

B8. The symmetric signature is a map of Ω-spectra

σ∗ = 1 ∧ U : Ωfr. (K) ≃s K+ ∧ S0 −−→ L0(Z∗K) ≃s K+ ∧ L. ,

with

U = (Z, 1) : Ωfr. ({∗})0 ≃s S0 −−→ L0(Z)

the unit of the ring spectrum L.(Z), representing

(Z, 1) = 1 ∈ L0(Z) = Z .

Define the preassembly pointed ∆-map

A : K+ −−→ Ωfr. (K)0
σ∗

−−→ L0(Z∗K)
A∗

−−→ L0(Z[π1(K)]) ;

(∆n−−→K) −−→ (C(∆̃n), ϕ(∆̃n))

by sending the characteristic map of an n-simplex ∆n−−→K to the n-

dimensional symmetric Poincaré n-ad over Z[π1(K)] of the pullback ∆̃n−−→K̃
from the universal cover K̃ of K, with A∗ the symmetric L-theory assembly.
The preassembly A is the composite

A : K+ = K+ ∧ S0
1∧U
−−→ K+ ∧ L0(Z) ≃s L0(Z∗K)

A∗

−−→ L0(Z[π1(K)]) .

By B5 the products ⊗ : Ωfr. (K)i ∧ Lj(Z)−−→Li+j(Z∗K) induce homotopy

equivalences

lim−→
j

Ωj(Ωfr. (K)i ∧ L−j(Z))

' H i(K,L.(Z)) = lim−→
j

ΩjLi−j(Z∗K) = Li(Z∗K) .

B8. The symmetric signature is a map of Ω-spectra

σ∗ = 1 ∧ U : Ωfr. (K) 's K+ ∧ S0 −−→ L0(Z∗K) 's K+ ∧ L. ,

with

U = (Z, 1) : Ωfr. ({∗})0 's S0 −−→ L0(Z)

the unit of the ring spectrum L.
(Z), representing

(Z, 1) = 1 ∈ L0(Z) = Z .

Define the preassembly pointed ∆-map

A : K+ −−→ Ωfr. (K)0

σ∗

−−→ L0(Z∗K)
A∗

−−→ L0(Z[π1(K)]) ;

(∆n−−→K) −−→ (C(∆̃n), φ(∆̃n))

by sending the characteristic map of an n-simplex ∆n−−→K to the n-
dimensional symmetric Poincaré n-ad over Z[π1(K)] of the pullback ∆̃n−−→K̃
from the universal cover K̃ of K, with A∗ the symmetric L-theory assembly.

The preassembly A is the composite

A : K+ = K+ ∧ S0
1∧U
−−→ K+ ∧ L0(Z) 's L0(Z∗K)

A∗

−−→ L0(Z[π1(K)]) .
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Thus the assembly map in quadratic L-theory factorizes as the composite

A : H 0(K;L.(Z)) = L0(Z∗K) ' lim−→
j

Ωj(Ωfr. (K)0 ∧ L−j(Z))

A
−−→ Ḣ 0(L0(Z[π1(K)]);L.(Z)) ' lim−→

j
Ωj(L0(Z[π1(K)]) ∧ L−j(Z))

⊗
−−→ L0(Z[π1(K)]) = lim−→

j
ΩjL−j(Z[π1(K)]) .

On the level of homotopy groups this can be written as

A : H∗(K;L.(Z)) = Ḣ∗(Ω
fr
. (K)0;L.(Z))

A
−−→ Ḣ∗(L0(Z[π1(K)]);L.(Z))

⊗
−−→ L∗(Z[π1(K)]) .

This is the construction of assembly via products.

B9. From the multiplicative point of view the Sullivan–Wall factorization
of the surgery map for an n-dimensional topological manifold M through
bordism is given by

θ = A : [M,G/TOP ] = H0(M ;L.) = Hn(M ;L.) = Hn(M ;L. ∧ S0)

1∧U
−−→ Hn(M ;L. ∧MSTOP ) = Ḣn(M+ ∧ L0;MSTOP )

= ΩTOPn (M ×G/TOP,M × {∗})
−−→ ΩTOPn (Bπ ×G/TOP,Bπ × {∗}) −−→ Ln(Z[π]) (π = π1(M)) ,

with

U : S0 −−→ MSTOP = ΩTOP. ({∗})
the unit in the oriented topological bordism spectrum of a point. The map
induced by 1 ∧ U is an injection, which is split by the map induced by the
composite

L. ∧MSTOP
1∧σ∗
−−→ L. ∧ L. ⊗

−−→ L.

with σ∗:MSTOP−−→L. the symmetric signature map. MSTOP is a ring

spectrum, and L.(R) is an MSTOP -module spectrum for any ring with
involution R: see Taylor and Williams [173] for the homotopy theoretic
consequences, such as the decomposition at 2 as a generalized Eilenberg–
MacLane spectrum

L.(R)⊗ Z(2) '
∨

i

K.(Li(R)(2), i) .

B10. An automorphism f : (M, θ)−−→(M, θ) of a nonsingular symmetric

form (M, θ) over a ring with involution R determines a 1-dimensional sym-
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metric Poincaré complex A(f) = (C, φ) by

d = 1− f∗ : C1 = M∗ −−→ C1 = M∗ ,

φ0 =

{
f∗θ : C1 = M −−→ C0 = M∗

θ : C0 = M −−→ C1 = M∗ ,

φ1 = θ : C1 = M −−→ C1 = M∗ ,

corresponding to the nonsingular symmetric formation over R

(M ⊕M, θ ⊕−θ; ∆, (f ⊕ 1)∆) ,

with ∆ = {(x, x) ∈ M ⊕M |x ∈ M} the diagonal lagrangian in the non-
singular symmetric form (M ⊕M, θ⊕−θ). For example, the 1-dimensional
symmetric Poincaré complex of the circle S1 is

σ∗(S1) = A(z: (Z[Z], 1)−−→(Z[Z], 1)) ,

with the involution z̄ = z−1 on Z[Z] = Z[z, z−1], and

d = 1− z−1 : C1 = Z[Z] −−→ C0 = Z[Z] .

The preassembly map A:Bπ+−−→L0(Z[π]) sends the 1-simplex

g ∈ (Bπ+)(1) = π t {∅}
determined by an element g ∈ π to the 1-dimensional symmetric Poincaré

complex over Z[π]

g∗σ
∗(S1) = A(g: (Z[π], 1)−−→(Z[π], 1)) = (C, φ)

with

d = 1− g−1 : C1 = Z[π] −−→ C0 = Z[π] .

Loday [97] constructed the assembly map Aπ:H∗(Bπ;L.)−−→L∗(Z[π]) away
from 2, using products and the action of π on hermitian K-theory induced

by the inclusion

π −−→ Aut(Z[π], 1) = GL1(Z[π]) ; g −−→ g .

The methods of this appendix show that this construction does indeed agree
with the surgery assembly map, as conjectured in [97].
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Appendix C. Assembly via bounded topology

The applications of algebraic L-theory to compact topological manifolds
depend on the torus trick of Kirby and Siebenmann [87]. The controlled
and bounded topology of non-compact manifolds subsequently developed by

Chapman, Ferry and Quinn has led to an interesting hybrid of algebra and
topology involving the lower K-groups of Bass [9] and the lower L-groups
of Ranicki [140], [149], in which the algebraic operations are required to be
small when measured in some metric space. The controlled surgery theories

of Quinn [133]-[136], Yamasaki [191] and the bounded surgery theory of
Ferry and Pedersen [53] have found wide applications to the structure theory
of ANR homology manifolds, group actions, fibrations and rigidity. See

Ferry, Hambleton and Pedersen [52] and Weinberger [185] for surveys of the
applications.

Controlled and bounded topology offer an alternative construction of the

4-periodic algebraic L-theory assembly maps

A : H∗(X;L.(Z)) −−→ L∗(Z[π1(X)]) ,

using the lower L-groups and the Bass–Heller–Swan computation K−i(Z) =
0 (i ≥ 1) to express the L.(Z)-coefficient generalized homology groups as the

Ri-bounded surgery obstruction groups for large i ≥ 1. The 4-periodic alge-
braic L-theory assembly map will now be obtained using bounded topology,
and some of the consequences of this approach will be explored. The gen-
eralized homology groups with L-theory coefficients arise as the cobordism

groups of bounded algebraic Poincaré complexes, and the assembly maps
are the forgetful maps to the unbounded cobordism groups. See Ranicki
and Yamasaki [151] for a chain complex approach to assembly in controlled

K-theory, which also applies to controlled L-theory.

C1. The projective L-groups Lp∗(R) of Novikov [124] and Ranicki [139], [140]
are defined for any ring with involution R, using quadratic structures on f.g.
projective R-modules. The projective L-groups are related to the free L-

groups Lh∗(R) = L∗(R) by splittings

Ln(R[z, z−1]) = Ln(R)⊕ Lpn−1(R) (z̄ = z−1)

and a Rothenberg-type exact sequence

. . . −−→ Ln(R) −−→ Lpn(R) −−→ Ĥn(Z2 ; K̃0(R)) −−→ Ln−1(R) −−→ . . . .

The projective surgery theory of Pedersen and Ranicki [126] involves the
projective S-groups Sp∗(X) which are defined to fit into an exact sequence

. . . −−→Hn(X;L.)
A
−−→ Lpn(Z[π1(X)])−−→ Spn(X)−−→Hn−1(X;L.)−−→ . . .

for any space X, and are such that

Sn(X × S1) = Sn(X)⊕ Spn−1(X) .



Appendix C. Assembly via bounded topology 327

The projective assembly map is the composite

A : Hn(X;L.)
A
−−→ Ln(Z[π1(X)]) −−→ Lpn(Z[π1(X)]) .

If X is a finitely dominated n-dimensional geometric Poincaré complex then

X × S1 is homotopy equivalent to a finite (n + 1)-dimensional geometric
Poincaré complex, by the Mather trick. The projective total surgery ob-
struction sp(X) ∈ Spn(X) of [126] is such that

s(X × S1) = (0, sp(X)) ∈ Sn+1(X × S1) = Sn+1(X)⊕ Spn(X) .

Thus sp(X) = 0 if (and for n ≥ 4 only if) X × S1 is homotopy equivalent
to a compact (n+ 1)-dimensional topological manifold.

The lower L-groups L
〈−i〉
∗ (R) (i ≥ 1) of Ranicki [140], [149] are the L-

theoretic analogues of the lower K-groups K−i(R) of Bass [9, XII]. The free
and projective L-groups

L∗(R) = Lh∗(R) = L
〈1〉
∗ (R) , Lp∗(R) = L

〈0〉
∗ (R)

are related to the lower L-groups L
〈−i〉
∗ (R) by splittings

L〈1−i〉n (R[z, z−1]) = L〈1−i〉n (R)⊕ L〈−i〉n−1(R) (i ≥ 0)

and exact sequences

. . . −−→L〈1−i〉n (R)−−→L〈−i〉n (R)−−→ Ĥn(Z2 ; K̃−i(R))−−→L
〈1−i〉
n−1 (R)−−→ . . .

with K̃−i(R) = K−i(R) for i ≥ 1. For any space X the free and projective
S-groups

S∗(X) = Sh∗(X) = S〈1〉∗ (X) , Sp∗(X) = S〈0〉∗ (X)

are related to the lower S-groups S〈−i〉∗ (X) by splittings

S〈1−i〉n (X × S1) = S〈1−i〉n (X)⊕ S〈−i〉n−1(X) (i ≥ 0)

and a commutative braid of exact sequences
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The projective assembly map is the composite

A : Hn(X; L.)
A
−−→ Ln(Z[π1(X)]) −−→ Lpn(Z[π1(X)]) .

If X is a finitely dominated n-dimensional geometric Poincaré complex then

X × S1 is homotopy equivalent to a finite (n + 1)-dimensional geometric
Poincaré complex, by the Mather trick. The projective total surgery ob-
struction sp(X) ∈ Spn(X) of [126] is such that

s(X × S1) = (0, sp(X)) ∈ Sn+1(X × S1) = Sn+1(X)⊕ Spn(X) .

Thus sp(X) = 0 if (and for n ≥ 4 only if) X × S1 is homotopy equivalent

to a compact (n+ 1)-dimensional topological manifold.

The lower L-groups L
⟨−i⟩
∗ (R) (i ≥ 1) of Ranicki [140], [149] are the L-

theoretic analogues of the lower K-groups K−i(R) of Bass [9, XII]. The free

and projective L-groups

L∗(R) = Lh∗(R) = L
⟨1⟩
∗ (R) , Lp∗(R) = L

⟨0⟩
∗ (R)

are related to the lower L-groups L
⟨−i⟩
∗ (R) by splittings

L⟨1−i⟩
n (R[z, z−1]) = L⟨1−i⟩

n (R)⊕ L⟨−i⟩
n−1(R) (i ≥ 0)

and exact sequences

. . . −−→L⟨1−i⟩
n (R)−−→L⟨−i⟩

n (R)−−→ Ĥn(Z2 ; K̃−i(R))−−→L
⟨1−i⟩
n−1 (R)−−→ . . .

with K̃−i(R) = K−i(R) for i ≥ 1. For any space X the free and projective
S-groups

S∗(X) = Sh∗(X) = S⟨1⟩
∗ (X) , Sp∗(X) = S⟨0⟩

∗ (X)

are related to the lower S-groups S⟨−i⟩
∗ (X) by splittings

S⟨1−i⟩
n (X × S1) = S⟨1−i⟩

n (X)⊕ S⟨−i⟩
n−1(X) (i ≥ 0)

and a commutative braid of exact sequences

N
N

N
NN

������
N

N
N
NN

������

Hn(X; L.) L
⟨−i⟩
n (Z[π]) Ĥn(Z2; K̃−i(Z[π]))

L
⟨1−i⟩
n (Z[π])

���
��

A
N
N
NNP

S⟨−i⟩
n (X)

���
��

N
N
NNP

Ĥn+1(Z2; K̃−i(Z[π]))
[
[
[[]

S⟨1−i⟩
n (X)

���
��

N
N
NNP

Hn−1(X; L.)

)'
'

''

4
4

4
44

h
h
h
hhj

4
4

4
44

h
h
h
hhj
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with π = π1(X). For i ≥ 0 the lower total surgery obstruction of a finitely
dominated n-dimensional geometric Poincaré complex X is the image of the
projective total surgery obstruction

s〈−i〉(X) = [sp(X)] ∈ S〈−i〉n (X) ,

and is such that s〈−i〉(X) = 0 if (and for n + i ≥ 4 only if) X × T i+1

is homotopy equivalent to a compact (n + i + 1)-dimensional topological

manifold.

C2. Given a metric space X and an additive category A let CX(A) be the

X-bounded additive category defined by Pedersen and Weibel [127]. The
objects of CX(A) are formal direct sums

M =
∑

x∈X
M(x)

of objects M(x) in A . The morphisms f :M−−→N in CX(A) are collections
of morphisms in A

f = {f(y, x):M(x)−−→N(y) |x, y ∈ X}
such that there exists a number b ≥ 0 with f(y, x) = 0 if d(x, y) > b . An
involution ∗ :A−−→A ;A−−→A∗ extends to an involution of CX(A) by

∗ : CX(A) −−→ CX(A) ;

M =
∑

x∈X
M(x) −−→ M∗ =

∑

x∈X
M∗(x) , M∗(x) = M(x)∗ .

The

{
symmetric
quadratic

L-groups

{
L∗(CX(A))
L∗(CX(A))

are related by symmetrization

maps

1 + T : L∗(CX(A)) −−→ L∗(CX(A))

which are isomorphisms modulo 8-torsion, since the ring L̂0(Z) = Z8 acts
on the relative groups.

C3. Given a group π and an additive category A let A [π] be the additive
category with one object M [π] for each object M in A, and

HomA [π](M [π], N [π]) = HomA(M,N)[π]

the additive group of formal linear combinations
∑
g∈π

fgg with fg : M−−→N
morphisms in A such that {g ∈ π | fg 6= 0} is finite. An involution on A is
extended to an involution on A [π] by

∗ : A [π] −−→ A [π] ;

M [π] −−→ (M [π])∗ = M∗[π] , f =
∑

g∈π
fgg −−→ f∗ =

∑

g∈π
(fg)

∗g−1 .
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For any commutative ring R there is an identification

Ah(R)[π] = Ah(R[π])

with Ah(R) the additive category of based f.g. free R-modules. Write the
category CX(Ah(R[π])) as CX(R[π]) .

C4. The bounded surgery theory of Ferry and Pedersen [53] applies to
geometric Poincaré complexes and manifolds which are ‘X-bounded’ for
some metric space X, i.e. equipped with a proper map to X such that

the diameters of cells are uniformly bounded in X . In the first instance
the theory applies to ‘allowable’ metric spaces and Poincaré complexes with
constant ‘bounded fundamental group’ π, and the same hypotheses will
be in force here. The main construction of [53] associates to a normal

map (f, b): J−−→K from an n-dimensional X-bounded manifold J to an X-
bounded geometric Poincaré complex K an X-bounded surgery obstruction

σ∗(f, b) ∈ Ln(CX(Z[π]))

such that σ∗(f, b) = 0 if (and for n ≥ 5 only if) (f, b) is normal bordant to

an X-bounded homotopy equivalence. The surgery obstruction σ∗(f, b) ∈
Ln(CX(Z[π])) is the cobordism class of an n-dimensional quadratic Poincaré
complex in CX(Z[π]) which may be obtained either by considering the
middle-dimensional form/formation remaining after surgery below the mid-

dle dimension as in [53], or else using the quadratic Poincaré kernel of
the algebraic normal map σ∗(J)−−→σ∗(K) of symmetric Poincaré com-
plexes in CX(Z[π]) given by 2.16. An n-dimensional X-bounded geomet-

ric Poincaré complex K has a Spivak normal fibration νK :K−−→BG, such
that the topological reductions ν̃K :K−−→BTOP are in one–one correspon-
dence with the bordism classes of normal maps (f, b): (J, νJ)−−→(K, ν̃K)

from n-dimensional X-bounded manifolds, as in the classical compact case
X = { pt.} . There exists a topological reduction ν̃K :K−−→BTOP such
that σ∗(f, b) = 0 ∈ Ln(CX(Z[π])) if (and for n ≥ 5 only if) K is X-
bounded homotopy equivalent to an X-bounded topological manifold. For

an X-bounded topological manifold K the X-bounded structure set Sb(K)
fits into the bounded version of the Sullivan–Wall surgery exact sequence

. . . −−→ Ln+1(CX(Z[π])) −−→ Sb(K) −−→ [K,G/TOP ] −−→ Ln(CX(Z[π])) .

The X-bounded symmetric signature of an n-dimensional geometric X-
bounded geometric Poincaré complex K is the algebraic Poincaré cobordism

class

σ∗(K) = (C(K̃), φK) ∈ Ln(CX(Z[π])) ,

with C(K̃) the cellular chain complex in CX(Z[π]) of the universal cover
K̃ and φK = ∆([K]) the evaluation of an Alexander–Whitney–Steenrod
diagonal chain approximation ∆ on the locally finite fundamental class
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[K] ∈ H lf
n (K) . The X-bounded symmetric signature is an X-bounded ho-

motopy invariant. The X-bounded surgery obstruction of an n-dimensional
X-bounded normal map (f, b): J−−→K has symmetrization

(1 + T )σ∗(f, b) = σ∗(J)− σ∗(K) ∈ Ln(CX(Z[π])) .

C5. Let K be a simplicial complex which is locally finite and finite-dimen-
sional. Given an additive category A let Alf∗ (K) be the additive category
of K-based objects in A, the category with objects formal direct sums

M =
∑

σ∈K
M(σ)

of objects M(σ) in A . A morphism f :M−−→N in Alf∗ (K) is a collection of

morphisms in A
f = {f(τ, σ):M(σ)−−→N(τ) |σ, τ ∈ K}

such that f(τ, σ) = 0:M(σ)−−→N(τ) unless τ ≥ σ . (For finite K this is
just the K-based category A ∗(K) of §4.) Given an involution ∗ :A−−→A ;
A−−→A∗ define a chain duality T :Alf∗ (K)−−→Alf∗ (K) by the method of §5.

The dual of an object M in Alf∗ (K) is a chain complex TM in Alf∗ (K) with

TMr(σ) =

{ ∑
τ≥σ

M(τ)∗ if r = −|σ|
0 otherwise .

Working as in §14 it is possible to identify the algebraic L-groups of Alf∗ (K)
with the locally finite generalized homology groups

Ln(Alf∗ (K)) = H lf
n (K;L.(A)) (n ∈ Z) .

Assume that the diameters of the simplices of K are uniformly bounded, i.e.
there exists a number b ≥ 0 such that d(x, y) ≤ b if x, y ∈ |σ| for any simplex
σ ∈ K . Regard the polyhedron of K (also denoted by K) as a metric space
using a proper embedding K ⊆ RN for a sufficiently large N ≥ 0, so that the

K-bounded additive category with involution CK(A) is defined as above.
Let K̃ be a regular covering of K with group of covering translations π .
Define an assembly functor by forgetting all but the bounded aspects of the

simplicial structure and passing to the cover

A : Alf∗ (K) −−→ CK(A [π]) ; M −−→ M̂ ,

sending an object M in Alf∗ (K) to the object M̂ in CK(A [π]) defined by

M̂(x) =

{
M(σ)[π] if x = σ̂ is the barycentre of σ ∈ K
0 otherwise .

Working as in 6.1 the chain duality on Alf∗ (K) is related to the involution

on CK(A) by a natural chain equivalence in CK(A)

Tβ : T̂M
'−−→ (M̂)∗ .
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The assembly functor of algebraic bordism categories

A : Λ(Alf∗ (K)) −−→ Λ(CK(A [π]))

(with Λ as in 3.3) induces natural assembly maps of L-groups

A : Ln(Alf∗ (K)) = H lf
n (K;L.(A)) −−→ Ln(CK(A [π])) (n ∈ Z) .

If K = J̃ is the universal cover of a finite simplicial complex J the simply
connected assembly map

A : Ln(Alf∗ (J̃)) = H lf
n (J̃ ;L.(A)) −−→ Ln(C

J̃
(A))

(with π = {1}) is related to the universal assembly map of §9
A : Hn(J ;L.(A)) −−→ Ln(A [ρ]) (ρ = π1(J))

by a commutative diagram
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The assembly functor of algebraic bordism categories

A : Λ(Alf∗ (K)) −−→ Λ(CK(A [π]))

(with Λ as in 3.3) induces natural assembly maps of L-groups

A : Ln(Alf∗ (K)) = H lf
n (K; L.(A)) −−→ Ln(CK(A [π])) (n ∈ Z) .

If K = J̃ is the universal cover of a finite simplicial complex J the simply

connected assembly map

A : Ln(Alf∗ (J̃)) = H lf
n (J̃ ; L.(A)) −−→ Ln(CJ̃ (A))

(with π = {1}) is related to the universal assembly map of §9
A : Hn(J ; L.(A)) −−→ Ln(A [ρ]) (ρ = π1(J))

by a commutative diagram

Hn(J ; L.(A))

u

trf

w
A Ln(A [ρ])

u

trf

H lf
n (J̃ ; L.(A)) w

A Ln(CJ̃ (A)) .

The infinite transfer map

trf : Ln(A ∗(J)) = Hn(J ; L.(A)) −−→ Ln(Alf∗ (J̃)) = H lf
n (J̃ ; L.(A))

is induced by the functor

A ∗(J) −−→ Alf∗ (J̃) ; M =
∑

σ∈J
M(σ) −−→ M̃ =

∑

σ̃∈J̃
M(pσ̃)

with p : J̃−−→J the covering projection. The infinite transfer map

trf : Ln(A [ρ]) = Ln(CJ̃ (A)ρ) −−→ Ln(CJ̃ (A))

is induced by the inclusion C
J̃

(A)ρ−−→C
J̃

(A) of the ρ-invariant subcate-

gory, with objects the lifts M̃ of objects M in CJ (A) and ρ-equivariant
morphisms. The forgetful functor

C
J̃

(A)ρ −−→ A [ρ] ; M̃ −−→ M̃

is an equivalence of additive categories with involution, since J is finite.

C6. Given a metric space X and an X-bounded simplicial complex K with
constant bounded fundamental group π let Sb∗(K) be the relative groups in
the bounded algebraic surgery exact sequence

. . . −−→ H lf
n (K; L.)

A
−−→ Ln(CX(Z[π])) −−→ Sbn(K)

−−→ H lf
n−1(K; L.) −−→ . . .

with L. = L.⟨1⟩(Z) as in §17, and

A : H lf
∗ (K; L.)

A
−−→ L∗(CK(Z[π])) −−→ L∗(CX(Z[π])) .

The infinite transfer map

trf : Ln(A ∗(J)) = Hn(J ;L.(A)) −−→ Ln(Alf∗ (J̃)) = H lf
n (J̃ ;L.(A))

is induced by the functor

A ∗(J) −−→ Alf∗ (J̃) ; M =
∑

σ∈J
M(σ) −−→ M̃ =

∑

σ̃∈J̃
M(pσ̃)

with p : J̃−−→J the covering projection. The infinite transfer map

trf : Ln(A [ρ]) = Ln(C
J̃

(A)ρ) −−→ Ln(C
J̃

(A))

is induced by the inclusion C
J̃

(A)ρ−−→C
J̃

(A) of the ρ-invariant subcate-

gory, with objects the lifts M̃ of objects M in CJ(A) and ρ-equivariant
morphisms. The forgetful functor

C
J̃

(A)ρ −−→ A [ρ] ; M̃ −−→ M̃

is an equivalence of additive categories with involution, since J is finite.

C6. Given a metric space X and an X-bounded simplicial complex K with
constant bounded fundamental group π let Sb∗(K) be the relative groups in

the bounded algebraic surgery exact sequence

. . . −−→ H lf
n (K;L.)

A
−−→ Ln(CX(Z[π])) −−→ Sbn(K)

−−→ H lf
n−1(K;L.) −−→ . . .
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with L. = L.〈1〉(Z) as in §17, and

A : H lf
∗ (K;L.)

A
−−→ L∗(CK(Z[π])) −−→ L∗(CX(Z[π])) .

The bordism group ΩbPn (K) of n-dimensionalX-bounded geometric Poincaré
complexes with a map to K fits into a commutative braid of exact sequences
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The bordism group ΩbPn (K) of n-dimensionalX-bounded geometric Poincaré

complexes with a map to K fits into a commutative braid of exact sequences

N
N

N
NN

������
N

N
N
NN

������

Sbn+1(K) H lf
n (K; ΩP. ) H lf

n (K; ΩN. )

H lf
n (K; L.)

���
��

[
[
[[]

ΩbPn (K)

)'
'

''
A

[
[
[[]

H lf
n+1(K; ΩN. )

N
N
NNP

Ln(CX(Z[π]))

���
��

A
N
N
NNP

Sbn(K)

���
��

∂

4
4

4
44

h
h
h
hhj

4
4

4
44

h
h
h
hhj

generalizing 19.6 (= the special case when X is compact). Define the 1/2-
connective X-bounded visible symmetric L-groups V L∗

b(K) to be the cobor-
dism groups of visible symmetric Poincaré complexes (C, ϕ) in A (Z)lf∗ (K)

which are globally 0-connective and locally 1-Poincaré at ∞, by analogy
with the 1/2-connective visible symmetric L-groups V L∗(K) of §15. As in
15.18 (i) there is defined a commutative braid of exact sequences

N
N

N
NN

������
N

N
N
NN

������

Sbn+1(K) H lf
n (K; L.) H lf

n (K; L̂.)

H lf
n (K; L.)

���
��

[
[
[[]

V Lnb (K)

)'
'

''
A

[
[
[[]

H lf
n+1(K; L̂.)

[
[
[[]

Ln(CX(Z[π]))

)'
'

''
A

N
N
NNP

Sbn(K) .

���
��

∂

4
4

4
44

h
h
h
hhj

4
4

4
44

h
h
h
hhj

The 1/2-connective X-bounded visible symmetric signature of an n-dimen-
sional X-bounded geometric Poincaré complex K is

σ∗(K) = (C(K),∆[K]) ∈ V Lnb (K) .

The X-bounded total surgery obstruction of K

sb(K) = ∂σ∗(K) ∈ Sbn(K)

generalizing 19.6 (= the special case when X is compact). Define the 1/2-
connective X-bounded visible symmetric L-groups V L∗b(K) to be the cobor-

dism groups of visible symmetric Poincaré complexes (C, φ) in A (Z)lf∗ (K)
which are globally 0-connective and locally 1-Poincaré at ∞, by analogy
with the 1/2-connective visible symmetric L-groups V L∗(K) of §15. As in
15.18 (i) there is defined a commutative braid of exact sequences
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generalizing 19.6 (= the special case when X is compact). Define the 1/2-
connective X-bounded visible symmetric L-groups V L∗

b(K) to be the cobor-
dism groups of visible symmetric Poincaré complexes (C, ϕ) in A (Z)lf∗ (K)

which are globally 0-connective and locally 1-Poincaré at ∞, by analogy
with the 1/2-connective visible symmetric L-groups V L∗(K) of §15. As in
15.18 (i) there is defined a commutative braid of exact sequences
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The 1/2-connective X-bounded visible symmetric signature of an n-dimen-
sional X-bounded geometric Poincaré complex K is

σ∗(K) = (C(K),∆[K]) ∈ V Lnb (K) .

The X-bounded total surgery obstruction of K

sb(K) = ∂σ∗(K) ∈ Sbn(K)

The 1/2-connective X-bounded visible symmetric signature of an n-dimen-
sional X-bounded geometric Poincaré complex K is

σ∗(K) = (C(K),∆[K]) ∈ V Lnb (K) .
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The X-bounded total surgery obstruction of K

sb(K) = ∂σ∗(K) ∈ Sbn(K)

is such that sb(K) = 0 if (and for n ≥ 5 only if) K is X-bounded ho-
motopy equivalent to an n-dimensional X-bounded topological manifold.
The algebraic surgery exact sequence is related to the geometric surgery

exact sequence of Ferry and Pedersen [53] for an n-dimensional X-bounded
manifold K by an isomorphism
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is such that sb(K) = 0 if (and for n ≥ 5 only if) K is X-bounded ho-

motopy equivalent to an n-dimensional X-bounded topological manifold.
The algebraic surgery exact sequence is related to the geometric surgery
exact sequence of Ferry and Pedersen [53] for an n-dimensional X-bounded

manifold K by an isomorphism

. . . w Ln+1(CX(Z[π])) w Sb(K) w

u
sb ≃

[K,G/TOP ] w

u
t ≃

Ln(CX(Z[π]))

. . . w Ln+1(CX(Z[π])) w Sbn+1(K) w H lf
n (K; L.) w Ln(CX(Z[π]))

with

sb : Sb(K)
≃−−→ Sbn+1(K) ; (f :J−−→K) −−→ sb(f) = sb∂(W,J ⊔ −K)

given by the X-bounded rel ∂ total surgery obstruction of the mapping
cylinderW = J×I∪fK of theX-bounded homotopy equivalence f : J−−→K,
and

t = [K] ∩ − : [K,G/TOP ] = H0(K; L.)
≃−−→ H lf

n (K; L.)

the Poincaré duality isomorphism defined by cap product with the locally
finite L.-coefficient orientation [K] ∈ H lf

n (K; L.) (L. = L.⟨0⟩(Z)) .

C7. Let PX(A) denote the idempotent completion of CX(A), the additive
category in which an object is a pair

(M = object of CX(A) , p = p2:M−−→M )

and a morphism f : (M,p)−−→(N, q) is a morphism f :M−−→N in CX(A)

such that

qfp = f : M −−→ N .

The algebraic K-theoretic methods of Pedersen and Weibel [127], Carlsson

[32] and Ranicki [149] give an exact sequence for the algebraic K-groups of
CX1∪X2(A)

. . . −−→ lim−→
b
K1(CNb(X1,X2)(A)) −−→ K1(CX1(A))⊕K1(CX2(A))

−−→ K1(CX1∪X2(A)) −−→ lim−→
b
K0(PNb(X1,X2)(A)) −−→ . . .

with

Nb(X1, X2) = {x ∈ X1 ∪X2 | d(x, yi) ≤ b for some yi ∈ Xi , i = 1, 2} .
An involution ∗ : A−−→A ;A−−→A∗ is extended to an involution of PX(A)

by

∗ : PX(A) −−→ PX(A) ; (M,p) −−→ (M,p)∗ = (M∗, p∗) .

with

sb : Sb(K)
'−−→ Sbn+1(K) ; (f : J−−→K) −−→ sb(f) = sb∂(W,J t −K)

given by the X-bounded rel ∂ total surgery obstruction of the mapping
cylinderW = J×I∪fK of theX-bounded homotopy equivalence f : J−−→K,
and

t = [K] ∩ − : [K,G/TOP ] = H0(K;L.)
'−−→ H lf

n (K;L.)

the Poincaré duality isomorphism defined by cap product with the locally
finite L.-coefficient orientation [K] ∈ H lf

n (K;L.) (L. = L.〈0〉(Z)) .

C7. Let PX(A) denote the idempotent completion of CX(A), the additive
category in which an object is a pair

(M = object of CX(A) , p = p2:M−−→M )

and a morphism f : (M,p)−−→(N, q) is a morphism f :M−−→N in CX(A)

such that

qfp = f : M −−→ N .

The algebraic K-theoretic methods of Pedersen and Weibel [127], Carlsson
[32] and Ranicki [149] give an exact sequence for the algebraic K-groups of

CX1∪X2(A)

. . . −−→ lim−→
b
K1(CNb(X1,X2)(A)) −−→ K1(CX1

(A))⊕K1(CX2
(A))

−−→ K1(CX1∪X2
(A)) −−→ lim−→

b
K0(PNb(X1,X2)(A)) −−→ . . .

with

Nb(X1, X2) = {x ∈ X1 ∪X2 | d(x, yi) ≤ b for some yi ∈ Xi , i = 1, 2} .
An involution ∗ :A−−→A ;A−−→A∗ is extended to an involution of PX(A)
by

∗ : PX(A) −−→ PX(A) ; (M,p) −−→ (M,p)∗ = (M∗, p∗) .
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The quadratic L-groups of CX(A) and PX(A) are related by an exact se-
quence

. . . −−→ Ln(CX(A)) −−→ Ln(PX(A)) −−→ Ĥn(Z2 ; K̃0(PX(A)))

−−→ Ln−1(CX(A)) −−→ . . .

involving the Tate Z2-cohomology groups of the duality involution on the
reduced projective class group

K̃0(PX(A)) = coker(K0(CX(A))−−→K0(PX(A))) .

The quadratic L-groups of CX1∪X2(A) fit into the Mayer–Vietoris exact
sequence of [149, 14.4]

. . . −−→ lim−→
b
Ln(CNb(X1,X2)(A)) −−→ Ln(CX1

(A))⊕ Ln(CX2
(A))

−−→ LYn (CX1∪X2
(A)) −−→ lim−→

b
Ln−1(CNb(X1,X2)(A)) −−→ . . .

with

Y = im(K1(CX1
(A))⊕K1(CX2

(A))−−→K1(CX1∪X2
(A))) .

Similarly for the symmetric L-groups L∗ .

C8. Let X be a metric space with a K-dissection (4.14)

X =
⋃

σ∈K
X[σ]

for a finite simplicial complexK with fundamental group π = π1(K) . Work-

ing as in 13.7 the generalized homology group Hn(K; {L.(CX[σ](A))}) can
be identified with the cobordism group of n-dimensional quadratic Poincaré
cycles

(C,ψ) = {(C(σ), ψ(σ)) |σ ∈ K}
such that (C(σ), ψ(σ)) is defined in CX[σ](A), and there is defined an as-

sembly map for any regular covering p : K̃−−→K with group of covering
translations π

A : Hn(K; {L.(CX[σ](A))}) −−→ Ln(CX(A [π])) ;

(C,ψ) −−→ (C(K̃), ψ(K̃)) =
⋃

σ̃∈K̃

(C(pσ̃), ψ(pσ̃)) .

For any bound b ≥ 0 and any n-simplex σ = (v0v1 . . . vn) ∈ K let

Nb(X[σ]) = {x ∈ X | d(x, yi) ≤ b for some yi ∈ X[vi] , 1 ≤ i ≤ n} .
The algebraic transversality of [149, §14] shows that every n-dimensional
quadratic complex in CX(A) is homotopy equivalent to the assembly

A(C,ψ) = (C(K), ψ(K))

of an n-dimensional quadratic cycle (C,ψ) (although not necessarily one

which is Poincaré) such that (C(σ), ψ(σ)) is defined in CNb(X[σ])(A) for



Appendix C. Assembly via bounded topology 335

some bound b ≥ 0 . Working as in §13 the relative group Sn(K,X,A) in the
bounded algebraic surgery exact sequence

. . . −−→ lim−→
b
Hn(K; {L.(CNb(X[σ])(A))})

A
−−→ Ln(CX(A))

∂
−−→ Sn(K,X,A) −−→ lim−→

b
Hn−1(K; {L.(CNb(X[σ])(A))}) −−→ . . .

can be identified with the cobordism group of (n−1)-dimensional quadratic

Poincaré cycles (C,ψ) such that (C(σ), ψ(σ)) is defined in CNb(X[σ])(A)
for some bound b ≥ 0, and the assembly C(K) is contractible in CX(A) .
It follows from the Mayer–Vietoris exact sequences of [149, §14] that the
groups S∗(K,X,A) are 2-primary torsion, and can be expressed in terms

of the duality Z2-action on algebraic K-theory. In particular, for the case
K = ∆1 = {0, 1, 01} of a space X which is expressed as a union of two
subspaces

X = X[0] ∪X[1] , X[0] ∩X[1] = X[01] ,

Hn(K; {L.(CNb(X[σ])(A))})
= Ln(CNb(X[01])(A)−−→CNb(X[0])(A)× CNb(X[1])(A)) ,

Sn(∆1, X,A) = lim−→
b
Ĥn(Z2 ; Ib)

with

Ib = ker(K̃0(PNb(X[01])(A))−−→ K̃0(PNb(X[0])(A))⊕ K̃0(PNb(X[1])(A))) .

C9. The open cone of a subspace K ⊆ SN is the metric space

O(K) = { tx ∈ RN+1 | t ∈ [0,∞) , x ∈ K } ⊆ RN+1 .

For a compact polyhedron K ⊂ SN define a K-dissection of O(K+) by

O(K+)[σ] = O(D(σ,K)+) (σ ∈ K) ,

with K+ = K t {pt.} . The assembly maps given by C5 and C8

A : H lf
∗ (O(K+);L.(A)) −−→ L∗(CO(K+)(A)) ,

A : H∗(K; {L.(CO(K+)[σ](A))}) −−→ L∗(CO(K+)(A))

are related as follows. Projections define homotopy equivalences of spectra,

L.(CO(K+)[σ](A))
'−−→ L.(CR(A)) (σ ∈ K) ,

and product with the generator

σ∗(R) = 1 ∈ L1(CR(Z)) = L0(Z) = Z
defines a homotopy equivalence

σ∗(R)⊗− : ΣL.(P0(A))
'−−→ L.(CR(A))
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with P0(A) the idempotent completion of A . The assembly map of C8
factors through the assembly map of C5

A : H lf
∗ (O(K+);L.(A)) = H∗−1(K;L.(A)) −−→

H∗(K; {L.(CO(K+)[σ](A))}) = H∗(K;L.(CR(A))) = H∗−1(K;L.(P0(A)))

A
−−→ L∗(CO(K+)(A)) ,

with both assembly maps isomorphisms modulo 2-primary torsion.

C10. Pedersen and Weibel [127] identified the torsion group of the R-
bounded category CR(A) of an additive category A with the class group

of the idempotent completion P0(A)

K1(CR(A)) = K0(P0(A)) ,

and expressed the lower K-groups of A as

K−i(A) = K1(CRi+1(A)) = K0(PR i(A)) (i ≥ 1) .

The lower quadratic L-groups L
〈−i〉
∗ (A) of an additive category with invo-

lution A are defined in Ranicki [149], and shown to be such that

L
〈−i〉
∗ (A) = L∗+i+1(CRi+1(A)) = L∗+i(PR i(A)) ,

L
〈1−i〉
∗ (A [z, z−1]) = L

〈1−i〉
∗ (A)⊕ L〈−i〉∗−1 (A) (i ≥ 0)

with

A [z, z−1] = A [Z] , L
〈1〉
∗ (A) = L∗(A) , L

〈0〉
∗ (A) = L∗(P0(A)) .

Also, there are defined exact sequences

. . . −−→ L〈1−i〉n (A) −−→ L〈−i〉n (A) −−→ Ĥn(Z2 ; K̃−i(P0(A)))

−−→ L
〈1−i〉
n−1 (A) −−→ . . . (i ≥ 0)

with K̃−i(P0(A)) = K−i(A) for i ≥ 1. The lower L-groups of a ring with

involution R are the special cases

L
〈−i〉
∗ (Ah(R)) = L

〈−i〉
∗ (R) .

C11. For any compact polyhedron K there is defined an isomorphism of

algebraic surgery exact sequences
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with P0(A) the idempotent completion of A . The assembly map of C8

factors through the assembly map of C5

A : H lf
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with both assembly maps isomorphisms modulo 2-primary torsion.
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bounded category C R(A) of an additive category A with the class group
of the idempotent completion P0(A)

K1(C R(A)) = K0(P0(A)) ,

and expressed the lower K-groups of A as

K−i(A) = K1(C Ri+1(A)) = K0(PR i(A)) (i ≥ 1) .

The lower quadratic L-groups L
⟨−i⟩
∗ (A) of an additive category with invo-

lution A are defined in Ranicki [149], and shown to be such that

L
⟨−i⟩
∗ (A) = L∗+i+1(C Ri+1(A)) = L∗+i(PR i(A)) ,

L
⟨1−i⟩
∗ (A [z, z−1]) = L

⟨1−i⟩
∗ (A)⊕ L⟨−i⟩

∗−1 (A) (i ≥ 0)

with

A [z, z−1] = A [Z] , L
⟨1⟩
∗ (A) = L∗(A) , L

⟨0⟩
∗ (A) = L∗(P0(A)) .

Also, there are defined exact sequences

. . . −−→ L⟨1−i⟩
n (A) −−→ L⟨−i⟩

n (A) −−→ Ĥn(Z2 ; K̃−i(P0(A)))

−−→ L
⟨1−i⟩
n−1 (A) −−→ . . . (i ≥ 0)

with K̃−i(P0(A)) = K−i(A) for i ≥ 1. The lower L-groups of a ring with
involution R are the special cases

L
⟨−i⟩
∗ (Ah(R)) = L

⟨−i⟩
∗ (R) .

C11. For any compact polyhedron K there is defined an isomorphism of
algebraic surgery exact sequences

. . . w H lf
n+i(K × Ri; L.) w

A

u
≃

Ln+i(C Ri(Z[π])) w

u
≃

Sbn+i(K × Ri) w

u
≃

. . .

. . . w Hn(K; L.) w
A L⟨1−i⟩

n (Z[π]) w S⟨1−i⟩
n (K) w . . .

with π = π1(K) . If K is an n-dimensional geometric Poincaré complexwith π = π1(K) . If K is an n-dimensional geometric Poincaré complex

then for any i ≥ 1 the lower total surgery obstruction (C1) to K×T i being
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homotopy equivalent to a compact (n + i)-dimensional manifold coincides
with the Ri-bounded total surgery obstruction (C6) to K × Ri being Ri-
bounded homotopy equivalent to an Ri-bounded open (n + i)-dimensional
manifold

s〈1−i〉(K) = sb(K × Ri) ∈ S〈1−i〉n (K) = Sbn+i(K × Ri) .

A homotopy equivalence f :M−−→K×T i from a compact (n+i)-dimensional
manifold M lifts to a Zi-equivariant Ri-bounded homotopy equivalence

f̄ :M−−→K×Ri . Conversely, if n+ i ≥ 5 an Ri-bounded homotopy equiva-
lence g:L−−→K×Ri from an Ri-bounded open (n+i)-dimensional manifold
L can be ‘wrapped up’ to a Zi-equivariant lift f̄ :L = M−−→K × Ri of a

homotopy equivalence f :M−−→K × T i from a compact (n+ i)-dimensional
manifold M . See Hughes and Ranicki [79] for an algebraic treatment of
wrapping up.

The Ri-bounded geometric Poincaré complex bordism groups ΩbP∗ (K×Ri)
(C6) fit into an exact sequence

. . . −−→ Ln+i(CRi(Z[π])) −−→ ΩbPn+i(K × Ri)

−−→ H lf
n+i(K × Ri; ΩN. ) −−→ Ln+i−1(CRi(Z[π])) −−→ . . .

with

Ln+i(CRi(Z[π])) = L〈1−i〉n (Z[π]) , H lf
n+i(K × Ri; ΩN. ) = Hn(K; ΩN. ) .

In particular, for i = 1 the R-bounded geometric Poincaré complex bordism
groups ΩbP∗+1(K×R) coincide with the finitely dominated geometric Poincaré
complex bordism groups Ωp∗(K) of Pedersen and Ranicki [126]

ΩbPn+1(K × R) = Ωpn(K) ,

and there is defined an isomorphism of exact sequences
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n+i(K × Ri; ΩN. ) −−→ Ln+i−1(C Ri(Z[π])) −−→ . . .

with

Ln+i(C Ri(Z[π])) = L⟨1−i⟩
n (Z[π]) , H lf

n+i(K × Ri; ΩN. ) = Hn(K; ΩN. ) .

In particular, for i = 1 the R-bounded geometric Poincaré complex bordism
groups ΩbP∗+1(K×R) coincide with the finitely dominated geometric Poincaré

complex bordism groups Ωp∗(K) of Pedersen and Ranicki [126]

ΩbPn+1(K × R) = Ωpn(K) ,

and there is defined an isomorphism of exact sequences

. . . w Ln+1(C R(Z[π])) w

u
≃

ΩbPn+1(K × R) w

u
≃

H lf
n+1(K × R; ΩN. ) w

u
≃

. . .

. . . w Lpn(Z[π]) w Ωpn(K) w Hn(K; ΩN. ) w . . . .

The ultimate lower quadratic L-groups and L-spectrum of an additive cat-

egory A are defined by

L
⟨−∞⟩
∗ (A) = lim−→

i
L

⟨−i⟩
∗ (A) , L⟨−∞⟩

. (A) = lim−→
i

L⟨−i⟩
. (A) ,

with

π∗(L⟨−∞⟩
. (A)) = L

⟨−∞⟩
∗ (A) .

The ultimate lower quadratic L-groups and L-spectrum of an additive cat-
egory A are defined by

L
〈−∞〉
∗ (A) = lim−→

i
L
〈−i〉
∗ (A) , L〈−∞〉. (A) = lim−→

i
L〈−i〉. (A) ,

with

π∗(L〈−∞〉. (A)) = L
〈−∞〉
∗ (A) .



338 Algebraic L-theory and topological manifolds

For any i ≥ 0 products with the generator

σ∗(Ri) = 1 ∈ Li(CRi(Z)) = L0(Z) = Z

define homotopy equivalences of the non-connective quadratic L-spectra

σ∗(Ri)⊗− : L.(Z) = { L−i(Z) | i ≥ 0 }
'−−→ L 〈−∞〉. (Z) = { L0(CRi(Z)) | i ≥ 0 } ,

since they induce isomorphisms in the homotopy groups

σ∗(R∞)⊗− : π∗(L.(Z)) = L∗(Z)

'−−→ π∗(L
〈−∞〉
. (Z)) = L∗+∞(CR∞(Z))

(using K−i(Z) = 0 for i ≥ 1). Thus the deloopings by lower L-theory
correspond to the deloopings by dimension shift.

C13. Pedersen and Weibel [127] identify the algebraic K-theory of PO(K)(A)
for a compact polyhedron K ⊆ SN with the reduced generalized homology
groups of K with coefficients in the algebraic K-theory spectrum K(P0(A))
of the idempotent completion P0(A)

K∗(PO(K)(A)) = Ḣ∗−1(K;K(P0(A))) .

The Mayer–Vietoris exact sequences of Ranicki [149, §14] show that the

assembly maps in the ultimate lower quadratic L-groups are isomorphisms

A : H lf
∗ (O(K);L〈−∞〉. (A)) = Ḣ∗−1(K;L〈−∞〉. (A))

'−−→ L
〈−∞〉
∗ (CO(K)(A)) .

The simply connected assembly maps are isomorphisms

A : H lf
∗ (O(K);L.(Z)) = Ḣ∗−1(K;L.(Z))

'−−→ L
〈−∞〉
∗ (CO(K)(Z)) = L∗(CO(K)(Z))

since K−i(Z) = 0 for i ≥ 1 .

C14. For any pair of metric spaces (X,Y ⊆ X) and any additive category

A let CX,Y (A) be the additive category with the objects M of CX(A) and
morphisms [f ]:M−−→N the equivalence classes of morphisms f :M−−→N
in CX(A) which agree more than a bounded distance away from Y . A

morphism in CX,Y (A) is thus a ‘germ’ of morphisms in CX(A) which agree
far away from CY (A), by analogy with the germs at Y of functions defined
on X. The germ category CX,Y (A) was introduced by Munkholm in the

special case (X,Y ) = (Rk, {0}) (Anderson and Munkholm [3, VII.3]). See
Ferry, Hambleton and Pedersen [52] for a survey of the applications of the
germ categories. The X-bounded topology away from Y is measured by
the algebraic K- and L-groups of CX,Y (A). See Ranicki [149, 4.1, 14.2] for



Appendix C. Assembly via bounded topology 339

the exact sequences

. . . −−→ K1(CY (A)) −−→ K1(CX(A)) −−→ K1(CX,Y (A))

−−→ K0(PY (A)) −−→ K0(PX(A)) −−→ . . .

. . . −−→ LJn(PY (A)) −−→ Ln(CX(A)) −−→ Ln(CX,Y (A))

−−→ LJn−1(PY (A)) −−→ Ln−1(CX(A)) −−→ . . .

with J = ker(K̃0(PY (A))−−→K̃0(PX(A))) . For a compact subspace K ⊆
SN the forgetful map

CO(K+)(A) −−→ CO(K+),O(S0)(A) = CO(K),{0}(A)

induces isomorphisms in algebraic K- and L-theory

K∗(CO(K+)(A)) ∼= K∗(CO(K),{0}(A))

L∗(CO(K+)(A)) ∼= L∗(CO(K),{0}(A))

so that O(K+)-bounded surgery and (O(K), {0})-bounded surgery are es-
sentially the same, namely O(K)-bounded surgery at∞ (= away from {0}).
Ferry and Pedersen [53] use O(K)-bounded surgery at∞ and the controlled
end theory of Quinn [134], [135] as a substitute for K-controlled surgery.
Since K−i(Z) = 0 for i ≥ 1

L∗(CO(K),{0}(Z)) = L∗(CO(K+)(Z))

= H lf
∗ (O(K+);L.(Z)) = H∗−1(K;L.(Z)) .

Similarly for the bounded symmetric L-groups, and also for the bounded

visible symmetric L-groups.
For any subspace K ⊆ SN with the homotopy type of a compact n-

dimensional polyhedron the bounded L-theory braid of C6
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with L. = K.(L0(Z), 0) ∨ L. as in §25. Similarly, the bounded geometric
Poincaré bordism braid of C6
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can be written as
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can be written as
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with Ω
P
. = K.(L0(Z), 0) ∨ ΩP. . The O(K+)-bounded visible symmetric

signature of an O(K+)-bounded (n + 1)-dimensional geometric Poincaré

complex X is a cobordism class

σ∗(X) = (C(X),∆[X])

∈ V Ln+1
b (O(K+)) = Hn(K; L.) = Hn(K;L0(Z))⊕Hn(K; L.)

with components the O(K+)-bounded total surgery obstruction

sb(X) = ∂σ∗(X) ∈ Sbn+1(O(K+)) = Hn(K;L0(Z))

and the O(K+)-bounded symmetric signature

σ∗(X) = (C(X),∆[X]) ∈ Ln+1(CO(K+)(Z)) = Hn(K; L.) .

The O(K+)-bounded total surgery obstruction can be expressed as the dif-

ference of local and global codimension n signatures at ∞, by analogy with
the expression in 24.20 of the total surgery obstruction s(Bπ) ∈ Sn(Bπ) =
Hn(Bπ;L0(Z)) of the classifying space Bπ of an n-dimensional Novikov

group π as the difference of local and global codimension n signatures.

C15. A compact n-dimensional ANR homology manifold X is an X-
controlled Poincaré complex (Quinn [135]), and X × R has the O(X+)-
bounded homotopy type of an (n+1)-dimensional O(X+)-bounded Poincaré

complex via the projection map

X × R −−→ O(X+) = O(X) ∨ (−∞, 0] ; (x, t) −−→
{
tx if t ≥ 0
t if t < 0

(Ferry and Pedersen [53]). The O(X+)-bounded total surgery obstruction
sb(X × R) ∈ Sbn+1(O(X+)) is identified in [53] with the resolution obstruc-
tion i(X) ∈ L0(Z) of Quinn [136]

sb(X × R) = i(X) ∈ Sbn+1(O(X+)) = Hn(X;L0(Z)) = L0(Z) .

with Ω
P
. = K.(L0(Z), 0) ∨ ΩP. . The O(K+)-bounded visible symmetric

signature of an O(K+)-bounded (n + 1)-dimensional geometric Poincaré
complex X is a cobordism class

σ∗(X) = (C(X),∆[X])

∈ V Ln+1
b (O(K+)) = Hn(K;L.

) = Hn(K;L0(Z))⊕Hn(K;L.
)

with components the O(K+)-bounded total surgery obstruction

sb(X) = ∂σ∗(X) ∈ Sbn+1(O(K+)) = Hn(K;L0(Z))

and the O(K+)-bounded symmetric signature

σ∗(X) = (C(X),∆[X]) ∈ Ln+1(CO(K+)(Z)) = Hn(K;L.) .

The O(K+)-bounded total surgery obstruction can be expressed as the dif-
ference of local and global codimension n signatures at ∞, by analogy with
the expression in 24.20 of the total surgery obstruction s(Bπ) ∈ Sn(Bπ) =

Hn(Bπ;L0(Z)) of the classifying space Bπ of an n-dimensional Novikov
group π as the difference of local and global codimension n signatures.

C15. A compact n-dimensional ANR homology manifold X is an X-

controlled Poincaré complex (Quinn [135]), and X × R has the O(X+)-
bounded homotopy type of an (n+1)-dimensional O(X+)-bounded Poincaré
complex via the projection map

X × R −−→ O(X+) = O(X) ∨ (−∞, 0] ; (x, t) −−→
{
tx if t ≥ 0
t if t < 0

(Ferry and Pedersen [53]). The O(X+)-bounded total surgery obstruction
sb(X × R) ∈ Sbn+1(O(X+)) is identified in [53] with the resolution obstruc-
tion i(X) ∈ L0(Z) of Quinn [136]

sb(X × R) = i(X) ∈ Sbn+1(O(X+)) = Hn(X;L0(Z)) = L0(Z) .
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A resolution of X corresponds to an O(X+)-bounded homotopy equivalence
f :M−−→X × R from an O(X+)-bounded open (n + 1)-dimensional mani-
fold M . There exists a resolution of X if and only if the O(X+)-bounded
Poincaré duality chain equivalence

[X × R] ∩ − : C(X × R)n+1−∗ −−→ C(X × R)

is sufficiently close to being ‘cell-like’. Let (f, b):M−−→X be an n-dimension-

al normal map from a topological manifold M determined as in 25.8 by the
canonical topological reduction νX :X−−→BTOP of the Spivak normal fi-
bration. The canonical L.-homology fundamental class of M is

[M ]L = σ∗(M × R) ∈ Ln+1(CO(M+)(Z)) = Hn(M ;L.
)

with codimension n signature

B[M ]L = 1 ∈ Hn(M ;L0(Z)) = L0(Z) = Z .

The canonical L.
-homology fundamental class of X is the image

[X]L = f∗[M ]L = σ∗(M × R) ∈ Ln+1(CO(X+)(Z)) = Hn(X;L.) ,

with codimension n signature

B[X]L = 1 ∈ Hn(X;L0(Z)) = L0(Z) = Z .

The canonical L.-homology fundamental class of X (25.10) is given by

[X]L = (i(X), [X]L)

∈ V Ln+1
b (O(X+)) = Hn(X;L.) = Hn(X;L0(Z))⊕Hn(X;L.) ,

with codimension n signature

B[X]L = 8i(X) + 1 ∈ Hn(X;L0(Z)) = L0(Z) = Z .

The (n+ 1)-dimensional O(X+)-bounded normal map (f, b)×1:M ×R−−→
X × R has O(X+)-bounded surgery obstruction

σ∗((f, b)× 1) = (−i(X), 0)

∈ Ln+1(CO(X+)(Z)) = Hn(X;L.) = Hn(X;L0(Z))⊕Hn(X;L.) .

The O(X+)-bounded symmetric signature of X × R
σ∗(X × R) = σ∗(M × R)− (1 + T )σ∗((f, b)× 1) = [X]L + (1 + T )i(X)

∈ Ln+1(CO(X+)(Z)) = Hn(X;L.) = Hn(X;L0(Z))⊕Hn(X;L.〈1〉(Z)) .

is thus the image of [X]L ∈ Hn(X;L.) under the map(
1 + T 1 0

0 0 1

)
:

Hn(X;L.
) = Hn(X;L0(Z))⊕Hn(X;L0(Z))⊕Hn(X;L.〈1〉(Z))

−−→ Hn(X;L.) = Hn(X;L0(Z))⊕Hn(X;L.〈1〉(Z)) .

C16. If h:M ′−−→M is a homeomorphism of compact n-dimensional ANR

homology manifolds then h × 1:M ′ × R−−→M × R is an O(M+)-bounded
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homotopy equivalence of (n + 1)-dimensional O(M+)-bounded geometric
Poincaré complexes. The 1/2-connective O(M+)-bounded visible symmet-
ric signature of M × R

σ∗(M × R) = ([M ]L, i(M))

∈ V Ln+1
b (O(M+)) = Hn(M ;L.

)⊕Hn(M ;L0(Z))

is an O(M+)-bounded homotopy invariant of M ×R, and hence a topologi-
cal invariant of M . The topological invariance of the canonical L.-homology
fundamental class [M ]L ∈ Hn(M ;L.) is an integral version of the topologi-

cal invariance of the rational Pontrjagin classes due to Novikov [123].
Rationally, the L.-orientation of a compact oriented n-dimensional topo-

logical manifold M is the Poincaré dual of the L-genus L(M) = L(τM ) ∈
H4∗(M ;Q)

[M ]L ⊗ 1 = [M ]Q ∩ L(M) ∈ Hn−4∗(M ;Q) ,

with [M ]Q ∈ Hn(M ;Q) the Q-coefficient fundamental class. The usual
Hirzebruch L-polynomial relations

Lk(M) = Lk(p1, p2, . . . , pk) ∈ H4k(M ;Q) (k ≥ 0) ,

express the L-genus in terms of the rational Pontrjagin classes p∗ = p∗(τM ) ∈
H4∗(M ;Q) of the stable tangent bundle τM = −ν̃M :M−−→BSTOP . Con-
versely, the rational Pontrjagin classes are determined by the L-genus, for
example p1 = 3L1 ∈ H4(M ;Q). Originally, the expression for the L-genus

in terms of the signatures of submanifolds was obtained for differentiable
manifolds, but successive developments have shown that it also applies for
PL, topological and ANR homology manifolds (taking account of the res-
olution obstruction, as in 25.17).

For a compact oriented n-dimensional topological manifold Mn the 4k-
dimensional component Lk(M) ∈ H4k(M ;Q) of the L-genus is detected by
the signatures of compact 4k-dimensional submanifolds N4k ⊂Mn ×Rj (j

large) with trivial normal bundle

〈Lk(M), i∗[N ]Q〉 = signature(N) ∈ L4k(Z) = Z ,

since every element in H4k(M ;Q) is a rational multiple of an element of the
form

x = i∗[N ]Q = [M ]Q ∩ g∗(1)

∈ H4k(M ;Q) = H4k(M × Rj ;Q) (1 ∈ Hm
lf (Rm) = Z)

with

g : Mn × Rj −−→ Rm (m = n+ j − 4k)

a proper map transverse regular at 0 ∈ Rm and

i = inclusion : N4k = g−1(0) −−→ Mn × Rj .
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The topological invariance of the rational Pontrjagin classes is thus a direct
consequence of topological transversality for high-dimensional manifolds,
which was established subsequently by Kirby and Siebenmann [87]. How-
ever, it is instructive to interpret the original argument of Novikov [123] for

the topological invariance of the rational Pontrjagin classes of differentiable
and PL manifolds in terms of bounded topology, as follows.

Let h:M ′−−→M be a homeomorphism of compact n-dimensional oriented

PL manifolds. Let x, g,N be as above, so that

〈Lk(M), x〉 = signature(N) ∈ L4k(Z) = Z ,

and let

x′ = (h−1)∗(x) ∈ H4k(M ′;Q) .

It is required to prove that

〈Lk(M ′), x′〉 = signature(N) ∈ L4k(Z) = Z .

The inverse image of an open regular neighbourhood N4k×Rm ⊂Mn×Rj
of N in M × Rj is an open codimension 0 PL submanifold

Wn+j = (h× 1R j )
−1(N × Rm) ⊆M ′ × Rj

with a homeomorphism

H = (h× 1R j )| : W −−→ N × Rm .

Making H PL transverse regular at N ×{0} ⊂ N ×Rm there is obtained a
normal map of closed 4k-dimensional PL manifolds

(f, b) = H| : N ′4k = H−1(N × {0}) −−→ N

with simply-connected surgery obstruction

σ∗(f, b) = (signature(N ′)− signature(N))/8

= (〈Lk(M ′), x′〉 − 〈Lk(M), x〉)/8 ∈ L4k(Z) = Z .

Approximate the homeomorphism H by an Rm-bounded homotopy equiva-
lence W ' N×Rm of Rm-bounded open (4k+m)-dimensional PL manifolds
with Rm-bounded symmetric signature

σ∗(W ) = σ∗(N × Rm)

= signature(N ′) = signature(N)

∈ L4k+m(CRm(Z)) = L4k(Z) = Z .

Equivalently, identify

σ∗(H) = σ∗(f, b) = 0 ∈ L4k+m(CRm(Z)) = L4k(Z) = Z .

Equivalently, use geometric ‘wrapping up’ to identify W with the pullback
cover V = e∗(N × Rm) of a compact (4k + m)-dimensional PL manifold

V along a homeomorphism e:V−−→N × Tm with a lift to a Zm-equivariant
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homeomorphism

ē = H : V = W −−→ N × Rm ,

and

σ∗(V ) = σ∗(N × Tm)

= (signature(N ′), 0) = (signature(N), 0)

∈ L4k+m(Z[Zm]) = L4k(Z)⊕
( m∑

i=1

(
m

i

)
L4k+i(Z)

)
.

The evaluation of L(M ′) ∈ H4∗(M ′;Q) on x′ = (h−1)∗(x) ∈ H4k(M ′;Q) is
thus given by

〈Lk(M ′), x′〉 = signature(N ′) = signature(N)

= 〈Lk(M), x〉 = 〈h∗Lk(M), x′〉 ∈ Z ,

and

L(M ′) = h∗L(M) ∈ H4∗(M ′;Q) .

See Sullivan and Teleman [171] and Weinberger [184] for analytic proofs

of the topological invariance of the rational Pontrjagin classes p∗(τM ) ∈
H4∗(M ;Q) of a compact oriented topological manifold M . The most sys-
tematic way of obtaining the topological invariance of the L.-orientation

[M ]L ∈ Hn(M ;L.
) is to follow up the proposal in the Introduction of devel-

oping the sheaf-theoretic versions of the methods of this text, allowing the
construction of [M ]L directly from the local homology sheaf.



346 Algebraic L-theory and topological manifolds

Bibliography

[1] S.Akbulut and J.D.McCarthy Casson’s invariant for oriented ho-

mology 3-spheres. Mathematical Notes 36, Princeton University
Press (1990)

[2] J.Alexander, G.Hamrick and J.Vick Linking forms and maps of
odd order. Trans. Am. Math. Soc. 221, 169–185 (1976)

[3] D.R.Anderson and H. J.Munkholm Boundedly Controlled Topol-
ogy. Lecture Notes in Mathematics 1323, Springer (1988)

[4] D.W.Anderson Chain functors and homology theories. Proceed-

ings 1971 Seattle Algebraic Topology Symposium, Lecture Notes
in Mathematics 249, Springer, 1–12 (1971)

[5] M.A.Armstrong, G.E.Cooke and C.P.Rourke The Princeton
notes on the Hauptvermutung. Warwick University notes (1972)

in The Hauptvermutung Book (ed. A.Ranicki), K-Monographs in
Mathematics 1, 105–190, Kluwer (1996)

[6] M.Atiyah The signature of fibre bundles. Papers in the honour of

Kodaira, Tokyo University Press, 73–84 (1969)
[7] M.Atiyah and I.M. Singer The index of elliptic operators III. Ann.

Math. 87, 546–604 (1968)

[8] A.Bak and M.Kolster The computation of odd-dimensional projec-
tive surgery groups for finite groups. Topology 21, 35–63 (1982)

[9] H.Bass Algebraic K-theory. Benjamin (1968)
[10] A.L.Blakers and W.S.Massey The homotopy groups of a triad II.

Ann. Math. 55, 192–201 (1952)
[11] A.Borel and J.Moore Homology theory for locally compact spaces.

Michigan Math. J. 7, 137–159 (1960)

[12] R.Bott and L.Tu Differential forms in algebraic topology. Springer
(1982)

[13] A.K.Bousfield and D.M.Kan Homotopy limits, completions and
localizations. Lecture Notes in Mathematics 304, Springer (1972)

[14] W.Browder Torsion in H-spaces. Ann. Math. 74, 24–51 (1961)
[15] W.Browder Homotopy type of differentiable manifolds. Proceedings

Arhus Colloquium, 42–46 (1962)

[16] W.Browder Surgery on simply connected manifolds. Springer (1972)
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[97] J.–L. Loday K-théorie algébrique et représentations de groupes. Ann.
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