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Preface

The algebraic L-theory of quadratic forms relates the topology of manifolds
to their homotopy types. This tract provides a reasonably self-contained ac-
count of this relationship in dimensions > 5, which was established over 20
years ago by the Browder—Novikov—Sullivan—Wall surgery theory for com-
pact differentiable and PL manifolds, and extended to topological manifolds
by Kirby and Siebenmann.

The term ‘algebraic L-theory’ was coined by Wall, to mean the algebraic
K-theory of quadratic forms, alias hermitian K-theory. In the classical
theory of quadratic forms the ground ring is a field, or a ring of integers in an
algebraic number field, and quadratic forms are classified up to isomorphism.
In algebraic L-theory it is necessary to consider quadratic forms over more
general rings, but only up to stable isomorphism. In the applications to
topology the ground ring is the group ring Z[n| of the fundamental group
7 of a manifold.

The structure theory of high-dimensional compact differentiable and PL
manifolds can be expressed in terms of the combinatorial topology of finite
simplicial complexes. By contrast, the structure theory of high-dimensional
compact topological manifolds involves deep geometric properties of Eu-
clidean spaces and demands more prerequisites. For example, compare
Thom’s proof of the combinatorial invariance of the rational Pontrjagin
classes with Novikov’s proof of topological invariance. The current devel-
opment of the controlled and bounded surgery theory of non-compact man-
ifolds promises a better combinatorial understanding of these foundations,
using the algebraic methods of this book and its companion on lower K-
and L-theory, Ranicki [146]. The material in Appendix C is an indication
of the techniques this will entail.

The book is divided into two parts, called Algebra and Topology. In
principle, it is possible to start with the Introduction, and go on to the
topology in Part II, referring back to Part I for novel algebraic concepts. The
reader does not have to be familiar with the previous texts on surgery theory:
Browder [16], Wall [178], Ranicki [145], let alone the research literature*.
This book is not a replacement for any of these. Books and papers need not
be read in the order in which they were written.

The text was typeset in TEX, and the diagrams in FAAS-TRX.

* ‘The literature on this subject is voluminous but mostly makes difficult
reading’. This was Watson on integral quadratic forms, but it applies also
to surgery theory.
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Introduction

An n-dimensional manifold M is a paracompact Hausdorff topological space
such that each point x € M has a neighbourhood homeomorphic to the
Euclidean n-space R™. The homology and cohomology of a compact n-
dimensional manifold M are related by the Poincaré duality isomorphisms

H"™*(M) = H.(M),

using twisted coeflicients in the nonorientable case.

An n-dimensional Poincaré space X is a topological space such that
H"*(X) = H,(X) with arbitrary coefficients. A Poincaré space is finite if
it has the homotopy type of a finite CW complex. A compact n-dimensional
manifold M is a finite n-dimensional Poincaré space, as is any space homo-
topy equivalent to M. However, a finite Poincaré space need not be homo-
topy equivalent to a compact manifold. The manifold structure existence
problem is to decide if a finite Poincaré space is homotopy equivalent to a
compact manifold.

A homotopy equivalence of compact manifolds need not be homotopic
to a homeomorphism. The manifold structure uniqueness problem is to
decide if a homotopy equivalence of compact manifolds is homotopic to a
homeomorphism, or at least h-cobordant to one. The mapping cylinder of a
homotopy equivalence of compact manifolds is a finite Poincaré h-cobordism
with manifold boundary, which is homotopy equivalent rel  to a compact
manifold h-cobordism if and only if the homotopy equivalence is h-cobordant
to a homeomorphism. The uniqueness problem is thus a relative version of
the existence problem.

The Browder—Novikov—Sullivan—Wall surgery theory provides computable
obstructions for deciding the manifold structure existence and uniqueness
problems in dimensions > 5. The obstructions use a mixture of the topo-
logical K-theory of vector bundles and the algebraic L-theory of quadratic
forms. A finite Poincaré space is homotopy equivalent to a compact mani-
fold if and only if the Spivak normal fibration admits a topological bundle
reduction such that a corresponding normal map from a manifold to the
Poincaré space has zero surgery obstruction. A homotopy equivalence of
compact manifolds is h-cobordant to a homeomorphism if and only if it is
normal bordant to the identity by a normal bordism with zero rel 9 surgery
obstruction. The theory applies in general only in dimensions > 5 because
it relies on the Whitney trick for removing singularities, just like the h- and
s-cobordism theorems.

The algebraic theory of surgery of Ranicki [143]-[149] is extended here to a
combinatorial treatment of the manifold structure existence and uniqueness
problems, providing an intrinsic characterization of the manifold structures
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in a homotopy type in terms of algebraic transversality properties on the
chain level. The Poincaré duality theorem is shown to have a converse: a
homotopy type contains a compact topological manifold if and only if it
has sufficient local Poincaré duality. A homotopy equivalence of compact
manifolds is homotopic to a homeomorphism if and only if the point inverses
are algebraic Poincaré null-cobordant. The bundles and normal maps in the
traditional approach are relegated from the statements of the results to the
proofs.

An n-dimensional algebraic Poincaré compler is a chain complex C' with
a Poincaré duality chain equivalence C"™* ~ (. Algebraic Poincaré com-
plexes are used here to define the structure groups S.(X) of a space X. The
structure groups are the value groups for the obstructions to the existence
and uniqueness problems. The total surgery obstruction s(X) € S,(X)
of an n-dimensional Poincaré space X is a homotopy invariant such that
s(X) = 0 if (and for n > 5 only if) X is homotopy equivalent to a com-
pact n-dimensional manifold. The structure invariant s(f) € S,4+1(M) of
a homotopy equivalence f: N—— M of compact n-dimensional manifolds is
a homotopy invariant such that s(f) = 0 if (and for n > 5 only if) f is
h-cobordant to a homeomorphism.

Chain homotopy theory can be used to decide if a map of spaces is
a homotopy equivalence: by Whitehead’s theorem a map of connected
CW complexes f: X—Y is a homotopy equivalence if and only if f in-
duces an isomorphism of the fundamental groups f.:m(X)—m(Y) and a
chain equivalence f: C(X)—=C(Y) of the cellular Z[mr; (X)]-module chain
complexes of the universal covers X ,lN/ of X,Y. It will be shown here
that the cobordism theory of algebraic Poincaré complexes can be simi-
larly used to decide the existence and uniqueness problems in dimensions
> 5. A finite Poincaré space X is homotopy equivalent to a compact mani-
fold if and only if the Poincaré duality Z[mi(X)]-module chain equivalence
[X] N —C(X)"*—C(X) of the universal cover X is induced up to al-
gebraic Poincaré cobordism by a Poincaré duality of a local system of Z-
module chain complexes. A homotopy equivalence of compact manifolds f
is h-cobordant to a homeomorphism if and only if the chain equivalence f
is induced up to algebraic Poincaré cobordism by an equivalence of local
systems of Z-module chain complexes. Such results are direct descendants
of the h- and s-cobordism theorems, which provided necessary and suffi-
cient cobordism-theoretic and Whitehead torsion conditions for compact
manifolds of dimension > 5 to be homeomorphic.

Generically, assembly is the passage from a local input to a global output.
The input is usually topologically invariant and the output is homotopy
invariant. This is the case in the original geometric assembly map of Quinn,
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and the algebraic L-theory assembly map defined here.

The passage from the topology of compact manifolds to the homotopy
theory of finite Poincaré spaces is the assembly of particular interest here.
In general, it is not possible to reverse the assembly process without some
extra geometric hypotheses. Manifolds of a certain type are said to be rigid
if every homotopy equivalence is homotopic to a homeomorphism, that is
if the uniqueness problem has a unique affirmative solution. The classifi-
cation of surfaces and their homotopy equivalences shows that compact 2-
dimensional manifolds are rigid. Haken 3-dimensional manifolds are rigid,
by the result of Waldhausen. The Mostow rigidity theorem for symmetric
spaces and related results in hyperbolic geometry give the classic instances
of higher dimensional manifolds with rigidity. The Borel conjecture is that
every aspherical Poincaré space Bm is homotopy equivalent to a compact
aspherical topological manifold, and that any homotopy equivalence of such
manifolds is homotopic to a homeomorphism. Surgery theory has provided
many examples of groups 7 with sufficient geometry to verify both this
conjecture and the closely related Nowvikov conjecture on the homotopy in-
variance of the higher signatures. The rigidity of aspherical manifolds with
fundamental group 7 is equivalent to the algebraic L-theory assembly map
for the classifying space B being an isomorphism. The more complicated
homotopy theory of manifolds with non-trivial higher homotopy groups is
reflected in non-rigidity, with a corresponding deviation from isomorphism
in the algebraic L-theory assembly map.

The Leray homology spectral sequence for a map f: Y —— X can be viewed
as an assembly process, with input the E2-terms

Epq = Hp(X; {Hy(f ' (2)})
and output the E°°-terms associated to H,.(Y). The spectral sequence
can be used to prove the Vietoris—Begle mapping theorem: if f is a map
between reasonable spaces (such as paracompact polyhedra) with acyclic
point inverses f~!(z) (x € X) then f is a homology equivalence. The
topologically invariant local condition of f inducing isomorphisms

(fD)s : Ho(f @) — Ho({z}) (z€X)
assembles to the homotopy invariant global condition of f inducing isomor-
phisms
fo: HoY) — H.(X) .
There is also a cohomology version, with input
EY? = HP(X;{H(f'(2))})

and output H*(Y). The dihomology spectral sequences of Zeeman [192] can
be similarly viewed as assembly processes, piecing together the homology
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(resp. cohomology) of a space X from the cohomology (resp. homology)
with coefficients in the local homology (resp. cohomology). The homology
version has input

EY? = HP(X;{Hn—q(X, X\{z})})

and output H,,_.(X), for any n € Z. The cohomology version has input
Epq = Hy(X; {H"(X, X\{z})})

and output H"*(X).

An n-dimensional homology manifold X is a topological space such that
the local homology groups at each point z € X are the local homology
groups of R"

7 ifx=n

H.(X, X\{z}) = H.(R",R"\{0}) = {0 ifx£n .

For compact X the local fundamental classes [X], € H, (X, X\{z}) assem-
ble to a global fundamental class [X] € H,,(X), using twisted coefficients in
the nonorientable case. The dihomology spectral sequences collapse for a
compact homology manifold X, assembling the local Poincaré duality iso-
morphisms

[X]e N —: H""({z}) = H(X, X\{z}) (z € X)
to the global Poincaré duality isomorphisms
(X]N—: H""(X) — H.(X).
The topologically invariant property of the local homology at each point
being that of R™ is assembled to the homotopy invariant property of n-
dimensional Poincaré duality.

The quadratic L-groups L,(R) (n > 0) of Wall [180] were expressed in
Ranicki [144] as the cobordism groups of quadratic Poincaré complexes
(C, ) over a ring with involution R, with C' a f.g. free R-module chain com-
plex and v a quadratic structure inducing Poincaré duality isomorphisms
(1+T)po: H**(C) =2 H,(C).

The algebraic L-theory assembly map

A: H (X;L.) — L.(Z[m(X))])

is a central feature of the combinatorial theory of surgery, with H,(X;L.)
the generalized homology groups of X with coefficients in the 1-connective
quadratic L-theory spectrum LL. of Z . By construction, the structure groups
S«(X) of a space X are the relative homotopy groups of A, designed to fit
into the algebraic surgery exact sequence

e Hy (XL o Lo(Zmn (X)]) — Sa(X)
— H, 1(X;L) — ... .
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The structure groups S.(X) measure the extent to which the surgery ob-
struction groups L, (Z[m(X)]) fail to be a generalized homology theory, or
equivalently the extent to which the algebraic L-theory assembly maps A
fail to be isomorphisms. The algebraic surgery exact sequence for a com-
pact manifold M is identified in §18 with the Sullivan—Wall surgery exact
sequence for the manifold structure set of M.

The total surgery obstruction s(X) € S,,(X) of an n-dimensional Poincaré
space X is expressed in §17 in terms of a combinatorial formula measuring
the failure on the chain level of the local homology groups H.(X, X\{z})
(z € X) to be isomorphic to H"~*({z}) = H.(R",R™"\{0}). The condition
s(X) = 0 is equivalent to the cellular Z[m; (X )]-module chain complex C'(X)
of the universal cover X being algebraic Poincaré cobordant to the assem-
bly of a local system over X of Z-module chain complexes with Poincaré
duality. The structure invariant s(f) € S,41(M) of a homotopy equiva-
lence f: N—— M of compact n-dimensional manifolds is expressed in §18 in
terms of a combinatorial formula measuring the failure on the chain level
of the local homology groups H.(f (x)) (z € M) to be isomorphic to
H,({z}). The condition s(f) = 0 is equivalent to the algebraic mapping
cone C(f:C(N )—>C’(M ))«+1 being algebraic Poincaré cobordant to the
assembly of a local system over M of contractible Z-module chain com-
plexes.

The algebraic L-theory assembly map is constructed in §9 as a forgetful
map between two algebraic Poincaré bordism theories, in which the underly-
ing chain complexes are the same, but which differ in the duality conditions
required. There is a strong ‘local’ condition and a weak ‘global’ condition,
corresponding to the difference between a manifold and a Poincaré space,
and between a homeomorphism and a homotopy equivalence. The assembly
of a local algebraic Poincaré complex is a global algebraic Poincaré complex,
by analogy with the passage from integral to rational quadratic forms in al-
gebra, and from manifolds to Poincaré spaces in topology. The algebraic
L-theory assembly maps have the advantage over the analogous topologi-
cal assembly maps in that their fibres can be expressed in terms of local
algebraic Poincaré complexes such that the underlying chain complexes are
globally contractible.

The generalized homology groups of a simplicial complex K with L-theory
coeflicients are identified in §13 with the cobordism groups of local algebraic
Poincaré complexes, where local means that there is a simply connected
Poincaré duality condition at each simplex in K. The cobordism groups
of global algebraic Poincaré complexes are the surgery obstruction groups
or some symmetric analogues, where global means that there is a single
non-simply connected Poincaré duality condition over the universal cover
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K. Surgery theory identifies the fibre of the assembly map from compact
manifolds to finite Poincaré spaces in dimensions > 5 with the fibre of
the algebraic L-theory assembly map. Picture this identification as a fibre
square

{ topological manifolds} ———— {local algebraic Poincaré complexes}

assembly assembly

{ Poincaré spaces} ——— { global algebraic Poincaré complexes}

allowing the homotopy types of compact manifolds to be created out of the
homotopy types of finite Poincaré spaces and some extra chain level Poincaré
duality. The assembly maps forget the local structure, and the fibres of
the assembly maps measure the difference between the local and global
structures. The fibre square substantiates the suggestion of Siebenmann
[160, §14] that ‘topological manifolds bear the simplest possible relation to
their underlying homotopy types’.

The surgery obstruction of a normal map (f,b): M— X from a compact
n-dimensional manifold M to a finite n-dimensional Poincaré space X

0+(f,b) € Ln(Z[m (X)])
is such that o.(f,b) = 0 if (and for n > 5 only if) (f,b) is normal bor-
dant to a homotopy equivalence. In the original construction of Wall [180)]
o.(f,b) was defined after preliminary geometric surgeries to make (f,b)
[n/2]-connected. In Ranicki [145] the surgery obstruction was interpreted

as the cobordism class of an n-dimensional quadratic Poincaré complex
(C(f"), %) over Z[m (X)] associated directly to (f,b), with
N N 7 N
flrO0X) ~ o(X)"r — C(M)"* ~ C(M)

the Umkehr chain map.

The algebraic Poincaré cobordism approach to the quadratic L-groups
L.(R) extends to n-ads, and hence to the definition of a quadratic L-
spectrum L. (R) with homotopy groups

7.(L.(R)) = L.(R) .

In Ranicki [148] the quadratic L-groups L,(A) (n > 0) of n-dimensional
quadratic Poincaré complexes were defined for any additive category with
involution A, with

L.(R) = L.(A(R)) , A(R) = {fg. free R-modules} .
In §1 the quadratic L-groups L,(A) are defined still more generally, for any
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additive category A with a chain duality, that is a duality involution on the
chain homotopy category.

The chain complex assembly of Ranicki and Weiss [150] provides a con-
venient framework for dealing with the algebraic L-theory assembly over a
simplicial complex K. The method can be extended to arbitrary topological
spaces using nerves of open covers.

An (R, K)-module M is a f.g. free R-module with a direct sum decompo-
sition

M = ) M(o)
ceK
with R a commutative ring. An (R, K)-module morphism f: M—N is an
R-module morphism such that
f(M(a)) > N(7) (0€K).
T>O0
An (R, K)-module chain complex C'is locally contractible if it is contractible
in the (R, K)-module category, or equivalently if each C(0) (¢ € K) is a

contractible f.g. R-module chain complex. The assembly of an (R, K)-
module M is the f.g. free R[m;(K)]-module

M(K) = Y M(p(5))
GeK

with p: K ——K the universal covering projection. An (R, K)-module chain
complex C' is globally contractible if the assembly C’(IN( ) is a contractible
R[m (K)]-module chain complex. A locally contractible complex is glob-
ally contractible, but a globally contractible complex need not be locally
contractible.

An n-dimensional quadratic complex (C, %) in A (R, K) is locally Poincaré
if the algebraic mapping cone of the (R, K)-module chain map (1 + 7T")vy:
C"~*——( is locally contractible, with each

(1+T)tho(0) : C0)" 717" — C(0)/8C(0) (0 € K)
an R-module chain equivalence. (See §5 for the construction of the chain du-
ality on A (R, K).) An n-dimensional quadratic complex (C,v) in A (R, K)
is globally Poincaré if the algebraic mapping cone of (1 + T")ig: C"*—C
is globally contractible, with

(1+T)ho : C"*(K) =~ C(K)"™* — CO(K)
an R[m (K)]-module chain equivalence. Chain complexes with local (resp.
global) Poincaré duality correspond to manifolds (resp. Poincaré spaces).

The generalized homology groups H,.(K;ILL.(R)) are the cobordism groups
of quadratic locally Poincaré complexes in A (R, K). The algebraic L-theory
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assembly map
A Hy(K;L.(R)) — Ly(R[mi(K))) ; (C, ) — (C(K),¥(K))

is defined by forgetting the locally Poincaré structure. The geometric assem-
bly map of Quinn [130], [131], [137] pieces together the non-simply connected
surgery obstruction of a normal map of closed manifolds from the simply
connected pieces. Similarly, the algebraic L-theory assembly map A pieces
together a globally Poincaré complex over R[m;(K)] from a locally Poincaré
complex in A (R, K).

The main algebraic construction of the text is the algebraic surgery exact
sequence of §14

C s Hy(KLo(R)) — Lo(Rm (K))) — Su(R, K)
— H,,_1(KGL.(R) — ... .

The quadratic structure groups S, (R, K) are the cobordism groups of quad-
ratic complexes in A (R, K) which are locally Poincaré and globally con-
tractible.

The algebraic surgery exact sequence is a generalization of the quadratic
L-theory localization exact sequence of Ranicki [146, §3]

. — Lp(R) — L,(S™'R) — L,(R,S) — L, 1(R) — ...,

for the localization R— S~ 'R of a ring with involution R inverting a mul-
tiplicative subset S C R of central non-zero divisors invariant under the
involution. The relative L-groups L.(R,S) are the cobordism groups of
quadratic Poincaré complexes (C, 1) over R such that C' is an R-module
chain complex with localization S~'C = ST'!R®pr C a contractible S~!R-
module chain complex. In the classic case

R=27Z, S =172\{0}, S'TR=0Q

the relative L-groups Lg;(R,S) are the Witt groups of Q/Z-valued (—)*-
quadratic forms on finite abelian groups, and Ly;11(R,S) = 0.

The quadratic structure groups S, (K) are defined in §15 as the 1-connective
versions of S, (Z, K), to fit into the algebraic surgery exact sequence

S HA(KGL) - L2 (K)]) — Su(K)
— Hn_l(K;L.) —_— ...

with L. the 1-connective cover of L.(Z). The Oth space Ly of L. is ho-
motopy equivalent to the homotopy fibre G/TOP of the forgetful map
BTOP— BG from the classifying space for stable topological bundles to
the classifying space for stable spherical fibrations. The homotopy groups
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of L. are the simply connected surgery obstruction groups

Z 0
(L) = 1.(G/TOP) = L.(Z) = % if n = ; (mod 4) .
2
0 3

The dual cells of a simplicial complex K are the subcomplexes of the

barycentric subdivision K’ defined by
D(o,K) = {6¢01...0, € K'|c <op<01<...<0.},
with boundary
0D(0,K) = | J D(1,K) .
T>0
Transversality is functorial in the PL category: Cohen [38] proved that for
a simplicial map f: M—— K’ from a compact n-dimensional PL manifold
M the inverse images of the dual cells
(M(0),0M(0)) = f~1(D(0,K),0D(0,K)) (0 € K)

are (n — |o|)-dimensional PL manifolds with boundary. An abstract version
of this transversality is used in §12 to express the groups h.(K) for any
generalized homology theory h as the cobordism groups of ‘h-cycles in K,
which are compatible assignations at each simplex o € K of a piece of the
coefficient group h.({pt.}). This is the combinatorial analogue of the result
that every generalized homology theory is the cobordism of compact man-
ifolds with singularities of a prescribed type (Sullivan [170], Buoncristiano,
Rourke and Sanderson [22]).

A finite n-dimensional geometric Poincaré complexr X is a finite simplicial
complex such that the polyhedron is an n-dimensional Poincaré space. The
total surgery obstruction of X is defined in §17 to be the cobordism class

s(X) = (') € Sn(X)
of an (n — 1)-dimensional quadratic locally Poincaré globally contractible
complex (I',¢) in A (Z, X) with
H.(I'(0))

= Ho1(¢(0): C(D(o, X))" 7117 —C(D(0, X),D(0, X)))

= Heiqpop1([X]a N = C({a})" " —C(X, X\{2}))
measuring the failure of local Poincaré duality at the barycentre x = 6 € X
of each simplex o € X. The assembly (n—1)-dimensional quadratic Poincaré
complex (I'(X), ¥ (X)) over Z[m (X)] is contractible, with
NX) = C(X]Nn—CX)" *—C(X))sy1 ~ 0.
The structure invariant s(f) € S,,+1(M) of a homotopy equivalence f: N
— M of closed n-dimensional manifolds is defined in §18, measuring the ex-
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tent up to algebraic Poincaré cobordism to which the point inverses f~1(z)
are contractible. The invariant is such that s(f) = 0 if (and for n > 5 only
if) f is h-cobordant to a homeomorphism. The total surgery obstruction has
the following interpretation: for n > 5 a finite n-dimensional Poincaré space
X is homotopy equivalent to a compact topological manifold if and only if
the Poincaré duality chain equivalence has ‘contractible point-inverses’ up
to an appropriate cobordism relation.

The structure set STOY(X) of an n-dimensional Poincaré space X is the
set (possibly empty) of h-cobordism classes of pairs

(compact n-dimensional topological manifold M |

homotopy equivalence f: M—X) .
The structure set of a compact manifold M is non-empty, with base point
(M, 1) € STOP(M).
The structure invariant s(f) € S,4+1(M) of a homotopy equivalence of
compact n-dimensional manifolds f: N——M is defined in §18 to be the
cobordism class

s(f) = (I'¢) € Sppa (M)

of an n-dimensional quadratic locally Poincaré complex (I', %) in A (Z, M)
with contractible assembly

T'(M) = C(f: C(N)—C(M)) ~ 0.

The Z-module chain complexes I'(c) (o € M) are the quadratic Poincaré
kernels of the normal maps of (n—|o|)-dimensional manifolds with boundary
fl'+ (9f)"'D(0, M) — g~'D(0, M) (0 € M) .

(For the sake of convenience it is assumed here that M is the polyhedron

of a finite simplicial complex, but this assumption is avoided in §18). The
structure invariant can also be viewed as the rel 0 total surgery obstruction

s(f) = se(W,NU—-M) €S, 1(W) = Sp41(M)
with (W, NU—M) the finite (n+1)-dimensional Poincaré pair with manifold
boundary defined by the mapping cylinder W = N x I Uy M.

The Sullivan—Wall geometric surgery exact sequence of pointed sets for a
compact n-dimensional manifold M with n > 5

. — L1 (Zr (M) — STOP (M)

— [M,G/TOP] — L, (Z|m1(M))])
is shown in §18 to be isomorphic to the 1-connective algebraic surgery exact
sequence of abelian groups

s Lo @M (M)]) —= Saa (M)

s H (ML) —os Lo (Z[m(M)]) -
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The function sending a homotopy equivalence of manifolds to its quadratic
structure invariant defines a bijection

s: STOP(M) — Spy1 (M) f — s(f)

between the manifold structure set and the quadratic structure group.

The total surgery obstruction theory also has a version involving White-
head torsion. A Poincaré space X is simple if it has a finite simplicial
complex structure in its homotopy type with respect to which

7([X]N = C(X)" *—C(X)) = 0€ Wh(rn) (r=m(X)).

Compact manifolds are simple Poincaré spaces, with respect to the finite
structure given by the handle decomposition. The simple structure groups
S#(X) are defined to fit into the exact sequence

S HL(XL) o L3 (Z[]) — s5(X)
— H,1(X;L) — ...

with L?(Z[r]) the simple surgery obstruction groups of Wall [180]. The
simple structure groups SI(X) are related to the finite structure groups
S« (X) by an exact sequence

L — SP(X) — Sp(X) — H™"(Zo; Wh(n)) — S5_(X) —> ...
analogous to the Rothenberg exact sequence
... — L} (Z[n])) — Ly (Z|r]) — ﬁ”(Zg sWh(n)) — L; _(Z[r]) — ... .

n—1

The total simple surgery obstruction s(X) € S¢ (X) of a simple n-dimensional
Poincaré space X is such that s(X) = 0 if (and for n > 5 only if) X is simple
homotopy equivalent to a compact n-dimensional topological manifold. The
simple structure invariant s(f) € S;,_ (M) of a simple homotopy equiva-
lence f: N——M of n-dimensional manifolds is such that s(f) = 0 if (and
for n > 5 only if) f is s-cobordant to a homeomorphism. For n > 5 ‘s-
cobordant’ can be replaced by ‘homotopic to’, by virtue of the s-cobordism
theorem.

The quadratic structure group S, (K) of a simplicial complex K is iden-
tified in §19 with the bordism group of finite n-dimensional Poincaré pairs
(X, 0X) with a reference map (f,0f): (X,0X)—— K such that 0f: 0X — K
is Poincaré transverse across the dual cell decomposition of the barycentric
subdivision K’ of K. From this point of view, the total surgery obstruction
of an n-dimensional Poincaré space X is the bordism class

s(X) = (X,0) € Sp(X)
with the identity reference map X——X. The quadratic structure group

S, (X) can also be identified with the bordism group of homotopy equiva-
lences f: N— M of compact (n—1)-dimensional manifolds, with a reference
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map M —X. The mapping cylinder W of f defines a finite n-dimensional
Poincaré h-cobordism (W, NU—M ) with NU—M—X Poincaré transverse
by manifold transversality.

The symmetric L-groups L™(R) (n > 0) of Mishchenko [115] and Ran-
icki [144] are the cobordism groups of n-dimensional symmetric Poincaré
complexes (C, ¢) over R, with duality isomorphisms ¢o: H**(C) = H,(C).
The quadratic L-groups are 4-periodic L.(R) = L.y4(R). The symmet-
ric L-groups are not 4-periodic in general, with symmetrization maps 1 +
T:L.(R)—L*(R) which are isomorphisms modulo 8-torsion.

An n-dimensional Poincaré space X has a symmetric signature

o*(X) = (C(X),¢) € L"(Zm (X)])
which is homotopy invariant, with
¢ = [X]N—: C(X)"" — C(X)
the Poincaré duality chain equivalence (Mishchenko [115], Ranicki [145]).

The surgery obstruction o, (f,b) of a normal map (f,b): M—X has sym-
metrization the difference of the symmetric signatures

(L+T)ou(f,0) = 0" (M) — 0" (X) € L"(Z[m (X)]) .
The symmetric L-groups are the homotopy groups of an Q-spectrum L'(R)
of symmetric Poincaré n-ads over R

7 (L'(R)) = L*(R) .

The 0-connective simply connected symmetric L-spectrum L° = L'(0)(Z) is
a ring spectrum with homotopy groups

Z 0
(L) = L"(Z) = OZ? if n = ; (mod 4) |
0 3

the 4-periodic symmetric L-groups of Z. The quadratic L-spectrum L. is a
module spectrum over the symmetric L-spectrum L.

The symmetrization maps 1 + T: L,(R)— L*(R) fit into an exact se-
quence

14T J ~ 0
. —— Ln(R) — L"(R) —— L"(R) — Ln_1(R) — ...

with L* (R) the exponent 8 hyperquadratic L-groups of Ranicki [146]. The 4-
periodic versions of the hyperquadratic L-groups are here called the normal
L-groups of R

NL*(R) = li?mf*Hk(R),

in accordance with the geometric theory of normal spaces of Quinn [132]
and the algebraic theory of normal complexes of Weiss [186]. The normal
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L-spectrum NL'(R) has homotopy groups
m(NL(R)) = NL*(R) .

The hyperquadratic L-groups of Z are 4-periodic, so that the normal L-
groups of Z are given by

Zs 0
- Z
NL™(Z) = L(Z) = 02 if n = ; (mod 4) .
Ly 3

The simply connected normal L-spectrum NIL'(Z) has a ‘1/2-connective’
version L' = NL'(1/2)(Z), which is 0-connective and fits into a fibration

sequence

1+T J ~
L — L — L,

with homotopy groups

Lo(Z) =7 ifn=0
(L) = { im(1+T:Li(Z)—LYZ)) =0 ifn=1
L™(Z) ifn>2.

The normal L-spectrum L isa ring spectrum, which rationally is just the
Q-coefficient homology spectrum L'® Q~ K.(Q,0).

A (k — 1)-spherical fibration v: X—BG(k) has a canonical L -orient-
ation U, € H* (T(v);L"), with T(v) the Thom space of v and H denoting
reduced cohomology with wq (v)-twisted coefficients. The fibration sequence
L.—sL'—L" induces an exact sequence of cohomology groups

ke ' 1+T ke . J ke =,
. — H*T(v);L) — H*Tw);L) —— H*T(w):L)

5.
— HYT@w) L) — ... .
A topological block bundle D:X—>BT6/P(k) has a canonical L -orient-
ation Uy € H*(T(v); L") , with v = Ji: X—BG(k). It was proved in
Levitt and Ranicki [94] that v: X — BG (k) admits a topological block bun-
dle reduction v: X — BTOP (k) if and only if there exists a L'-orientation
U; € H*(T(v); L") such that
J(U,) = U, eim(J: H*(T(v); L) —H*(T(v);L"))
= ker(6: H*(T(v); L) —H* (T (v);L.)) .

Thus 6(U,) € H*(T(v);L.) is the obstruction to the existence of a topo-
logical block bundle structure on v. If this vanishes and k > 3 the structures
are classified by the elements of the abelian group

H*T(v);L.) = HX;L.) = [X,G/TOP] = [X,G(k)/TOP(k)] .
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Rationally, the symmetric L-spectrum of Z has the homotopy type of a
wedge of Eilenberg-MacLane spectra

LeQ ~ \/ K(Q4)),
Jj=0
and the L'-orientation of an oriented topological block bundle v: X —
BSTOP(k) coincides with the inverse of the Hirzebruch £-genus

Up@Q = L7'(0) = L(-9) € HHT(v);L)®Q = Y HY(X;Q),
Jj=0

since both are determined by the signatures of submanifolds. See Taylor and
Williams [173] for a general account of the homotopy theory of the algebraic
L-spectra, and for an exposition of the work of Morgan and Sullivan [119]
and Wall [182] on surgery characteristic classes for manifolds and normal
maps in terms of the algebraic IL-spectra.

An n-dimensional Poincaré space X has a Spivak normal structure

(VX ¢ —)BG(k) , PX - Sn+k —>T(V)() )
with vx the normal (k — 1)-spherical fibration defined by a closed regular
neighbourhood (W, W) of an embedding X C S"** (k large)
S oW — W ~ X
and px the collapsing map
px @ S"TF — SR /C(STTR\W) = W/OW = T(vx) .
The total surgery obstruction s(X) € S,,(X) has image
HX) = 0(U,y) € Hya(X; L) = H*Y(T(vx);L.)

the obstruction to lifting vx: X——BG(k) to a topological block bundle
vx: X—BTOP(k). A particular choice of lift Zx corresponds to a bordism

class of normal maps (f,b): M— X with M a closed n-dimensional mani-
fold, by the Browder-Novikov transversality construction on px:S"tF—s
T(Vx) = T(ﬁx)7 with

f = ,OXl: M = (pX)_1<X>—>X, b: UM—>17X,

s(X) = Jo.(f,b) € ker(S,(X)—H,—1(X;L.))

= im(0: Ly, (Z]m (X)])—Sn(X)) .

It follows that s(X) = 0 if and only if there exists a normal map (f,b): M
—— X with surgery obstruction

o.(f,b) € ker(0: L, (Z[m1(X)])—>Sp (X))
= im(A: H,(X;L.)— L, (Z[m(X))])) .
This is just the condition for the existence of a topological reduction ryx
such that the corresponding bordism class of normal maps (f,b): M — X
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has o.(f,b) = 0 € L,(Z[m(X)]). For n > 5 this is the necessary and
sufficient condition given by the Browder—Novikov—Sullivan—Wall theory for
the existence of a topological manifold in the homotopy type of X. The
theory has been extended to the case n = 4, provided the fundamental
group 1 (X) is not too large (Freedman and Quinn [56]).

A closed n-dimensional manifold M has a topologically invariant canonical
L*-homology fundamental class [M]y, € H,(M;L") which assembles to the
symmetric signature

A(ML) = o*(M) € L"(Zlm (M)
Cap product with [M]y, defines the Poincaré duality isomorphism
[M]yN—: [M,G/TOP] = H°(M;L.) — H,(M;L.)
which is used in the identification of the algebraic and geometric surgery
sequences.

A normal map (f,b): N—M of closed n-dimensional manifolds has a
normal tnvariant

[f,blL € H,(M;L.) = H°(M;L.) = [M,G/TOP]
with assembly the surgery obstruction

A([f,blL) = o.(f,b) € Ln(Zlm(M)]) ,
and symmetrization the difference of the L'-homology fundamental classes
(L+T)[f, b = f«|NJL— [M]L € H,(M;L") .
The localization away from 2 of the L'-orientation [M]|y, € H,(M;L") of
a closed n-dimensional manifold M
ML, ® Z[1/2] € H,(M; L") ® Z[1/2] = KO,(M) ® Z[1/2]
is the KO[1/2]-orientation of Sullivan [168]. Rationally

MLeQ = [MlgnL(M) = Y ([M]gn Ly(M))
k>0

€EH,(M;L)®Q = Y Hp a(M;Q)
k>0

is the Poincaré dual of the £L-genus L(M) = L(7ar) € H**(M; Q) of the sta-
ble tangent bundle 7py = —vp: M——BSTOP, with [M]g € H,(M;Q) the
rational fundamental class. Let (f,b): N—— M be a normal map of closed n-
dimensional topological manifolds, as classified by a map ¢: M —G/TOP
such that

(fYvy —va: M — G/TOP — BTOP .
The rational surgery obstruction of (f,b) is the assembly

o.(f,0) ®Q = A([f, b ® Q) € L, (Z[m (M)]) ® Q
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of the element

fLL®Q = filNLeQ—-[MLeQ
= [M]o N (L(M)U(L(c) - 1))

€EH,(M;L)®Q = ZHn—ZLk(M;Q) )
k>0

with 0 component in H, (M;Q).
The symmetric structure groups S*(X) are defined to fit into an exact
sequence of abelian groups

s H (XL — IMZIm (X)) — S™(X)
— H, 1(X;L) — ... .

The symmetrization of the total surgery obstruction s(X) € S, (X) of an
n-dimensional Poincaré space X is the image of the symmetric signature
0" (X) € L"(Z[m (X))

(1+T)s(X) = do*(X) € S"(X) .

Thus (14 T)s(X) =0 € S*(X) if and only if there exists an L'-homology
fundamental class [X]., € H, (X;L") with assembly the symmetric signature
of X

A([XL) = o"(X) € L"(Z[m(X)]) -

The visible symmetric L-groups V L*(R[r]) of Weiss [187] are defined for
any commutative ring R and group 7, with similar properties to L*(R[r]).
The visible analogues of the normal L-groups can be expressed as general-
ized homology groups of the group m with coefficients in NLL'(R), so that
there is defined an exact sequence

s Lo(R]) -5 VI™(Rlx]) —> H,(Bm:NL'(R))

O L (RlA]) —> ...

The 1/2-connective visible symmetric L-groups VL*(X) = VL*(1/2)(Z, X)
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are defined in §15 to fit into a commutative braid of exact sequences

Sn-i—l(X) Hn(X7]L) Hn(X7]L)
\ . V x /
H,(X;L.) VLX)
N TN
Hya(X;L) Lo (Z[my(X)]) Sn(X)

0

The visible symmetric L-groups V L*(B7) of a classifying space B are
the versions of VL*(Z[r]) in which the chain complexes are required to be
0O-connective (= positive) and the Poincaré duality chain equivalences are
required to be locally 1-connected.

An n-dimensional Poincaré space X has a 1/2-connective visible symmet-
ric signature

o"(X) = (C,¢) e VL*(X)

with assembly the symmetric signature

o*(X) = (C(X),6(X)) € L"(Z[m (X)) -

The main geometric result of the text is the expression in §17 of the total
surgery obstruction of X in terms of the 1/2-connective visible symmetric
signature

s(X) = 90*(X) € Sp(X) .

Thus s(X) = 0 € S,(X) if and only if there exists an L'-homology fun-
damental class [ X, € H,(X;L") with assembly the 1/2-connective visible
symmetric signature

A(XL) = o*(X) € VI™(X) .

The simply connected symmetric signature of an oriented 4k-dimensional
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Poincaré space X is just the signature (alias index)
0"(X) = signature (X)
= signature (H**(X;Q), ¢) € L*(2) = 7,
with ¢ the nonsingular symmetric form
¢ H*(X;Q) x H*¥(X;Q) — Q; (z,y) — (zUy, [X]o) -

The Hirzebruch formula expresses the signature of an oriented 4k-dimen-
sional manifold M as

signature (M) = (Lx(M),[M]g) €ZCQ,

with Li(M) € H*(M;Q) the 4k-dimensional component of the £-genus
L(M) = L(1y) € H¥(M;Q), and [M]g € Har(M;Q) the rational funda-
mental class. This is a special case of o* (M) = A([M],), since the signature
of M in L*(Z) = Z is the clockwise image of the fundamental L"-homology
class [M]1, € Hy(M;L") in the commutative square

Hap(M; L) —A—s L% (2], (M)

Hu({h L) —A—— L#(2)
and the anticlockwise image is the evaluation (L (M), [M]g)-

Let X be a simply connected 4k-dimensional Poincaré space. If the Spivak
normal fibration vx: X—— BSG admits a topological reduction vx: X —
BSTOP there exists a normal map (f,b): (M, vy )— (X, 0x) from a 4k-
dimensional manifold M, with surgery obstruction the difference between
the evaluation of the £-genus of Ix on [X]g € Hyx(X;Q) and the signature
of X

o.(f,0) = (6" (M) —0"(X))/8
= ((Lrx(—Dx), [X]g) — signature (X))/8 € Lyx(Z) = Z .
There exists a manifold M** with a normal homotopy equivalence (f,b):
(M, vy )— (X, vx) if and only if there exists a topological reduction x
such that X satisfies the Hirzebruch signature formula with respect to vx.
The simply-connected assembly map A: Hy(X;1L.)—> Lyx(Z) is onto, so
that
S4k(X) — H4k_1(X;]L.) 5 S(X) — t(X)

is one-one. The total surgery obstruction of X is such that s(X) =
Sar(X) if and only if the topological reducibility obstruction is ¢(X) =
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Hy—1(X;L.). Thus X is homotopy equivalent to a manifold if and only
if vx admits a topological reduction (Browder [16] for & > 2, Freedman
and Quinn [56] for k¥ = 1). Moreover, it follows from the computation
Lyx+1(Z) = 0 that if X is homotopy equivalent to a manifold M** the
structure set of M is in one-one correspondence with the set of topological
reductions vx satisfying the formula, namely

STOP(M) = Suypp1(X) = ker(A: Hyp(X; L) — Lyk(Z))
C Hy(X;L.) = HYX:;L.) = [X,G/TOP].

The symmetric L-theory assembly map for any connected space M factors
through the generalized homology of the fundamental group 7 (M) = 7

f Ax
A: H(M;L) — H.(Bm;L) — L"(Zr])

with f: M — B7 the map classifying the universal cover, and A, the assem-
bly map for the classifying space Bmw. (There is a corresponding factorization
of the quadratic L-theory assembly map). The L'-homology fundamental
class of an n-dimensional manifold M assembles to the symmetric signature

A(M]L) = Ax(f«[M]L) = o*(M) € im(Ar) © L"™(Z[r]) .
The evaluation map

H,_4.(Bm;Q) — Homg(H" **(Bm;Q),Q)

(which is an isomorphism if H,(Bm;Q) is finitely generated) sends

ML ®Q = ) fu([M]g N Li(M))

k>0
€ Hy(BmL)©Q = Y H,_4(Bm;Q)
k>0
to the higher signatures of M, which are the Q-linear morphisms defined by
H"*(Bm;Q) — Q; x — (L(M) U f*z,[M]g) = (z, f.[M]L®Q) .
The assembly of f.[M], ® Q is the rational symmetric signature of M
€im(A;, ® Q: H,(Bm; L) @ Q—L"(Z[7]) @ Q) .
For finite 7 and n = 0(mod 2) this is just the special case of the Atiyah—
Singer index theorem which states that the m-signature of the free action
of m on the universal cover M of a closed manifold M with m (M) = 7 is
a multiple of the regular representation of m. See §22 for the connection
between the symmetric signature and the m-signature.
The Novikov conjecture on the homotopy invariance of the higher signa-

tures of manifolds M with m (M) = 7 is equivalent to the injectivity of the
rational assembly map A, ® Q: H,(Bm; L") ® Q— L*(Z[7]) ® Q.
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For a finitely presented group m and n > 5 every element of the L.-
homology group H, (Bm;L.) of the classifying space Bw is the image of
the normal invariant [f,b], € H,(M;L.) of a normal map (f,b): N— M
of closed n-dimensional manifolds with m (M) = 7. Every element of
Sn41(Bm) is the image of the structure invariant s(f) € S,41(M) of a
homotopy equivalence f: N——M of closed n-dimensional manifolds with
m1(M) = 7. The kernel of the quadratic L-theory assembly map A,

ker(Ay: Ho(Bm;L.)— L. (Z[r])) = im(Ssy1(B7)—H,(Bm;L.))

consists of the images of the structure invariants s(f) of homotopy equiva-
lences f: N——M of closed manifolds with fundamental group m (M) = .
The image of the assembly map

im(A,: Hy(Bm;L.)—L.(Z[r])) = ker(L.(Z[r])—S.(Bm))
consists of the surgery obstructions of normal maps of closed manifolds
with fundamental group 7. The image of A, for finite m was determined by
Hambleton, Milgram, Taylor and Williams [69] and Milgram [109].

The ultimate version of the algebraic L-theory assembly should be topo-
logically invariant, using the language of sheaf theory to dispense with the
combinatorial constructions, i.e. replacing the simplicial chain complex by
the singular chain complex. From this point of view the total surgery ob-
struction s(X) € S,,(X) of an n-dimensional Poincaré space X would mea-
sure the failure of a morphism of chain complexes of sheaves inducing the
maps

X]N—: H*({a}) — H.(X,X\{z}) (€ X)

to be a quasi-isomorphism, up to the appropriate sheaf cobordism relation.
Although the text is primarily concerned with the applications of algebraic
Poincaré complexes to the topology of manifolds and Poincaré spaces, there
are also applications to the topology of singular and stratified spaces, as well
as to group actions on manifolds — see Zeeman [192], Sullivan [170], McCrory
[106], Goresky and MacPherson [62], [63], Siegel [162], Goresky and Siegel
[64], Pardon [125], Cappell and Shaneson [28], Cappell and Weinberger [31]
and Weinberger [185]. Indeed, the first version of the intersection homology
theory of Goresky and MacPherson [62] used the combinatorial methods
of PL topology, while the second version [63] used topologically invariant
chain complexes of sheaves.
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Summary

61 develops the L-theory of algebraic Poincaré complexes in an additive
category with chain duality. §2 deals with the algebraic analogue of the
Spivak normal fibration. An ‘algebraic bordism category’ (A,B,C) is an
additive category with chain duality A, together with a pair (B,C C B) of
subcategories of the chain homotopy category of A. In §3 the quadratic
L-groups L,(A,B,C) (n € Z) are defined to be the cobordism groups of
finite chain complexes in B with an n-dimensional quadratic C-Poincaré
duality. The quadratic L-groups L.(R) of a ring with involution R are the
quadratic L-groups L.(A(R)) of the algebraic bordism category A(R) =
(A(R),B(R),C(R)) with B (R) the category of finite chain complexes in
A (R), and C(R) the category of contractible chain complexes in A (R).
The additive category A ,(X) is defined in §4, for any additive category A
and simplicial complex X. In §5 a chain duality on A is extended to a chain
duality on A ,(X). The simply connected assembly functor A ,(X)—A
is defined in §6. The chain duality on A,(X) has a dualizing complex
with respect to a derived Hom, which is obtained in §7. The chain duality
on A, (X) is used in §8 to extend an algebraic bordism category (A,B,C)
to an algebraic bordism category (A .(X),B«(X),C,(X)) depending co-
variantly on X, as a kind of ‘(A,B, C)-coefficient algebraic bordism cat-
egory of X’. The algebraic bordism category obtained in this way from
(A(R),B(R),C(R)) is denoted by (A (R, X),B(R,X),C(R)«(X)). The as-
sembly functor A (R, X)—A(R[m(X)]) is defined in §9. In §10 this is used
to define an algebraic bordism category (A(R, X),B (R, X),C(R, X)), with
C(R, X)) the chain homotopy category of finite chain complexes in A(R, X)
which assemble to a contractible chain complex in A(R[m(X)]). An alge-
braic analogue of the -7 theorem of Wall [180] is used in §10 to identify the
‘geometric’ L-groups L.(A (R, X),B (R, X),C(R, X)) with the ‘algebraic’
L-groups L.(R[m1(X)]). The theory of A-sets is recalled in §11, and ap-
plied to generalized homology theory in §12. The quadratic L-spectrum
L.(A,B,C) of an algebraic bordism category (A,B,C) is defined in §13 to
be an Q-spectrum of Kan A-sets with homotopy groups 7. (LL.(A,B,C)) =
L.(A,B,C). The quadratic L-groups L.(A(R,X),B (R, X),C(R).(X)) are
identified in §13 with the generalized homology groups H,(X;L.(R)). The
braid relating the visible L-groups, the quadratic L-groups and the gen-
eralized homology with L-theory coefficients is constructed in §14, with a
connective version in §15. The symmetric L-theory orientations of topolog-
ical bundles and manifolds are constructed in §16. The theory developed
in §1-§16 is applied in §17 to obtain the total surgery obstruction s(X) and
in §18 to give an algebraic description of the structure set STOF(M). In
§19 the total surgery obstruction is identified with the obstruction to geo-
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metric Poincaré transversality. §20 deals with the simply connected case.
The transfer properties of the total surgery obstruction are described in
§21. The rational part of the total surgery obstruction in the case when
the fundamental group is finite is computed in §22 in terms of the mul-
tisignature invariant, and this is used to construct the simplest examples
of Poincaré spaces with non-zero total surgery obstruction. §23 relates the
total surgery obstruction to splitting obstructions along submanifolds. §24
expresses the total surgery obstruction s(X) € S,,(X) of an aspherical n-
dimensional Poincaré space X = B satisfying the Novikov conjectures in
terms of codimension n signatures. §25 deals with the 4-periodic version
of the total surgery obstruction, which applies to the surgery classification
of compact AN R homology manifolds. §26 considers the version of the
theory appropriate to surgery with coefficients. Appendix A develops the
nonorientable case of the theory. Appendix B deals with an alternative
construction of assembly in L-theory, using products. Appendix C relates
assembly to bounded surgery theory.



Part 1

Algebra
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§1. Algebraic Poincaré complexes

A chain duality (1.1) on an additive category A is a generalization of an
involution on A, in which the dual of an object in A is a chain complex
in A. A chain duality determines an involution on the derived category
of chain complexes in A and chain homotopy classes of chain maps, al-
lowing the definition of an n-dimensional algebraic Poincaré complex in
A as a finite chain complex which is chain equivalent to its n-dual. The

symmetric I L*(A)
{ quadratic sToups { L.(A)
{ symmetric

are defined to be the cobordism groups of

. Poincaré complexes in A. As already noted in the Introduc-
quadratic

tion, geometric Poincaré complexes have a symmetric signature in L*(A)
and normal maps have a quadratic signature (= surgery obstruction) in
L.(A) for A = {f.g. free Z[r]-modules} with the standard duality involu-
tion, with 7 the fundamental group.

Let then A be an additive category. A chain complex in A

d d
c: ... —>CT+1 — C, — Cr_q — ... (TGZ)

is finite if C,, = 0 for all but a finite number of r € Z. C' is n-dimensional
if C, =0unless 0 <r <n.

The algebraic mapping cone of a chain map f:C'——D in A is the chain
complex C(f) in A defined by

- (—)T‘lf),
cn=\o a )°

C(f)r = Dr®Crqy — C(f)ro1 = D1 ®Crs .
Inclusion and projection define chain maps
D— C(f) , C(f) — SC
with SC the suspension chain complex defined by
dsc = dc: SC, = Crq — SC,1 = Cr_o.
The total complex of a double complex C, , in A with differentials
d:Cpg—Cp1q , d':Cpy—Cpye-1 (p,qEZ)

such that d'd’ = 0, d”"d” = 0, d'd’ = d"d" is the chain complex C in A
defined by
de = Y (d"+(=)d): Cp = Y Cpqg—Crr.
pt+q=r pt+q=r

Given chain complexes C, D in A let Homy (C, D). . be the double complex
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of abelian groups with

Homy (C, D), = Homy(C_p, D,) ,

d(f) = fde: C_py1 — Dy , d'(f) = dpf: C_p —> Dy_1 .
The total complex is the chain complex Homy (C, D) defined by

dHom, (0.p) : Homy (C, D), = Z Homy (C_p, Dy)
ptq=r
— Homu (C, D)y—1 5 f —> dpf + (=) fdc .
Define X"C' to be the chain complex in A with
dZ"C = (_)TdC : (EnC)r = Cr—n — (Enc)r—l = Cr—l—n .

The nth homology group H,(Homu(C, D)) (n € Z) is the abelian group of

chain homotopy classes of chain maps f:¥"C'——D. The isomorphisms of
chain objects

~

(Z"C)r = Cropy — (S"C)y = Cry s @ — (=)D 2
define an isomorphism of chain complexes X"C = S™C.

Let B (A) be the additive category of finite chain complexes in A and chain
maps. The embedding
A ifr=0
0 ifr#0
is used to identify A with the subcategory of B (A) consisting of 0-dimensional
chain complexes.

Given a contravariant additive functor

T: A—BA); A—T(A)
define an extension of 7' to a contravariant additive functor
T:B(A) —B(A); C— T(O)
by sending a finite chain complex C' in A to the total complex T'(C') of the
double complex T'(C), . in A defined by
T(Cpg = T(Cp)g » d = T(dc) , d' = dr(c_,) »

1:A—BA); A— A, A, :{

that is
drcy = Z (drc_,) + (=)' (dc)) :
prq=r
7(C), = Z T(C—p)q — T(C)p-1 -

ptg=r
For any morphism f:C——D in B (A) it is possible to identify
C(T(f): T(D)—T(C)) = STC(f:C—D)

up to natural isomorphism in B (A).
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DEFINITION 1.1 A chain duality (T,e) on an additive category A is a con-
travariant additive functor T: A——B (A) together with a natural transfor-
mation

e: T? — 1: A — B(A)
such that for each object A in A
(i) e(T(A4)).T(e(4)) = 1: T(A) —T3(A) — T(A),
(i) e(A):T?(A)— A is a chain equivalence.
The dual of a chain complex C' is the chain complex T'(C), and X"T'(C) is

the n-dual of C.
O

Note that the n-dual ¥"T'(C') of an n-dimensional chain complex C' need
not be n-dimensional.

DEFINITION 1.2 A chain duality on A is O-dimensional if for each object A
in A the dual chain complex T'(A) is O-dimensional. A 0-dimensional chain
duality is an involution on A .

i

In the 0-dimensional case e(A): T?(A)— A is an isomorphism of 0-dimen-
sional chain complexes for each object A in A, and the n-dual X"7T(C) of
an n-dimensional chain complex C' is n-dimensional, with

"T(C) = T(C)peyy = T(Cr—y) .
An involution is a contravariant additive functor T: A——A together with a
natural equivalence ¢/ = e~':1—=T2: A——A such that for each object A
in A
¢ (T(A)~ = T((A)) : T(A) — T(4) ,

i.e. an involution on A in the sense of Ranicki [148].
Fix an additive category A with a chain duality (T e).
For any objects M, N in A define the abelian group chain complex

M ®4 N = Homy(T(M),N) .

The construction is covariant in both variables, with morphisms g: M —
M', h: N—— N’ in A inducing abelian group morphisms

gRah: M@y N — M @y N ;
(f:T(M)—N) — (hfT(g9): T(M")—N'") .

The duality isomorphism of abelian group chain complexes

Tun: Moy N — Noy M
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is defined by
TM,N : (M XA N)n = HomA(T(M)_n,N)

~

— (N ®y M), = Homy(T(N)_p, M) ;
(f:T(M)—p—N) — (Tu,n(f): T(N)—pn—>M)
with
Tun(f) = e(M)T(f) :
T(N)_p — T(T(M)_p)_pn CT*(M)y — My = M .
The inverse of T n is

(TM,N)_l = Tnm: Ny M =, M @4 N,
since for any f € M ®4 N
TwaTan(f) = e(N)T(e(M)T(f)) = e(N)T(f) T(e(M))
= fe(T(M))T(e(M)) = feMayN .

ExAMPLE 1.3 Given a ring R with an involution R— R;r——7 let AP(R)
be the additive category of f.g. projective (left) R-modules. Define a 0-
dimensional chain duality

T : AP(R) —s AP(R) ; P — T(P) = P* = Homg(P,R)
by
Rx P* — P*; (r,f) — (x — f(x).F) ,

e(P)"': P— P 2 — (f — f(x)).
The tensor product of f.g. projective R-modules P, is the abelian group
PRrQ = PzQ/[{rt@y—xzrylre PLyeQ,re€ R},
such that the slant map defines a natural isomorphism

P®rQ — Homg(P*,Q) = P®ur)Q; 0y — (f — fl(z).y) .
The duality isomorphism Tp g: P ®@4p(r) @—CQ @ar(r) P corresponds to
the transposition isomorphism

TP’Q : P®RQ — Q@RP; rTRQY —YyYRx .

Similarly for the full subcategory A"(R) C AP(R) of f.g. free R-modules.
m

EXAMPLE 1.4 Given a commutative ring R, a group 7w and a group mor-
phism w: 7—{%1} let R[n]* denote the group ring R[r| with the w-twisted
involution

~: R[r]Y — R[#]"; a = ngg —a = ngw(g)g_1 (rg €R) .

gem gem
O
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This is the example occurring most frequently in topological applications,
with w an orientation character. In the orientable case w = +1 write R[m|"
as R[r]. The additive category of f.g. free R-modules is written

A"(R) = A(R).
There is also a version of the theory for based f.g. free R-modules, with

Whitehead torsion considerations.
Given a finite chain complex C in A write

cr =T, , X"T(C) = C"*.
For a chain map f: C——C’ the components in each degree of the dual chain
map T(f): T(C")—T(C) are written
fF=1T(f):C" =TI —C" =T(C)_, .
Given also a finite chain complex D in A define the abelian group chain
complex
CopnD = HomA(T(C),D) .

The duality isomorphism

TQD : C@AD — D®AC
is defined by
Tep = X(—)"Te, . p, :

(O X4 D)n = § (Cp XA Dq)r ? (D XA C)n )
pt+q+r=n
with inverse

(TC’D)_l = TD’CZ Dy C — CeaD.

H, (C ®4 D) is the abelian group of chain homotopy classes of chain maps
¢: C"*——D in A. The duality isomorphism for C' = D

T = Toe: ConC — C@,C

is an involution (T2 = 1), so that C ®, C'is a Z[Zz]-module chain complex.
symmetric
quadratic
category with involution of Ranicki [144], [148] can now be developed for an
additive category A with chain duality.

Use the standard free Z[Zs]-module resolution of Z

The algebraic theory of surgery on complexes in an additive

W s D] s TTs] — [Zs] — Z|Zs)]
to define for any finite chain complex C in A the Z-module chain complexes
W”*C = Homg, (W,C ®4 C) = Homggz, (W, Homu (TC,C))
{W%C = W ®z(z,) (C @4 C) = W ®gz, Homy (TC,C) .
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The boundary of the n-chain
¢ = {¢s € Homy(C",Cp_rys)|r € Z,s >0} € (W*C),
{LD = {Ys € Homy (C",Chr_r_s) |7 € Z,s > 0} € (Wy,C),,
is the (n — 1)-chain with
{ (8¢)s = dC’@AC(¢S) + (_)n+s—1(¢s_1 + (_)ST¢S—1)
0¥)s = deg,c(s) + (=)' ({Wopr + (=) Ts11)
for s > 0, with ¢_1 = 0.

DEFINITION 1.5 (i) The Symmet.mc
quadratic

in A are defined for n € Z by
{ Qn<c) = Hn(W%C)
Qn(c) = Hn(W%C) :
(ii) A chain map f: C——D of finite chain complexes in A induces a Z[Z,]-
module chain map

Q-groups of a finite chain complex C

ff: CoyC — D®pD
and hence Z-module chain maps
f%: WAC — W7D
{f%: Wo,C' — Wy D .
|
The morphisms of Q-groups induced by a chain map f:C——D depend
only on the chain homotopy class of f, and are isomorphisms for a chain
equivalence.

symmetric

quadratic (Poincaré) complex

DEFINITION 1.6 (i) An n-dimensional {

in A {(g’ f;)) is a finite chain complex C in A together with an n-cycle

(C,

b € (WACO), - ¢o: C"*—C . .
{ b€ (WoyC)n (such that the chain map (14 T)o: O —C is a chain

equivalence in A).
symmetric
quadratic

{fi (C,0) — (C",¢')
[ (Cy) — (C,Y)
is a chain map f: C——C" such that
{f%(¢) = ¢ € Q"(C)
fa(h) = " € Qn(C) .

The map is a homotopy equivalence if f: C——C" is a chain equivalence.

(ii) A map of n-dimensional { complexes in A
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Note that the chain complex C' in 1.6 is only required to be finite, and
not n-dimensional as in Ranicki [144].
Let f:C——D be a chain map of finite chain complexes in A. An (n+1)-
cycle
{( ¢, ¢) € C(fH:W*C—=W"D), 41
(60, 9) € C(fo: W C—Wer D)1
e (W”C)
e (WyC)n
{ = {6¢s € (D ®a D)pt14s|s >0}
0 = {0s € (D®a D)py1-s|s >0}

is an n-cycle { " together with a collection

such that
dpg,p(0¢s) + ()" (0¢s—1 + (=) Td¢s—1)
+ ()" (f @4 f)(¢s) = 0€(D®a D),
dpe,p(0%s) + (=)""*(0¢ss1 + (=) T T0s11)
+ (=)"(f ®a f)(¥s) = 0€(D®a D), _,
The (n + 1)-cycle
{ (00, 00) € C(f @4 f:C @4 C—D @4 D)py1
(L +T)d%0, (1 +T)pg) € C(f ®a f:C @4 C—D R4 D)yt
determines a chain map
{(5%7%) . Dl ()
(1+T)(d%0,%0) : D" — C(f)
with

(560, ) — (5%) DT 5 O(f) = D, @Gy

dof*
(L +T)d%o, (1 +T)tho) = (ffi%%)

DL — C(f)r =D, ®C,_1.

symmetric

DEFINITION 1.7 (i) An (n + 1)-dimensional {quadratic

in A

(Poincaré) pair

{(f:C—>D, (09, ¢))
(f:C—D, (56,1))
is a chain map f:C —(7>D of finite chain complexes together with an (n+1)-
(66, ¢) € C(f*)n+1
cvele { (53, ) € Clf)asr
{(6gb07¢0) . D= —— O(f)
(1 +T)(0%0,10) : D% — C(f)

such that the chain map
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is a chain equivalence).

(ii) A cobordism of n-dimensional symmet?m Poincaré complexes
quadratic
C, C’, ¢ .
{ EC z)), { E c Z,)) is an (n + 1)-dimensional {Z{E&?ZEEC Poincaré pair

{ ((ff):Ce®C"—D, (60,0 —¢'))
((ff):Col—D, (64, & —y')) .
O

symmetric I L™(A)
quadratic I L, (A)
an additive category with chain duality A is the cobordism group of n-

dimensional symmetpc
quadratic

DEFINITION 1.8 The n-dimensional (ne€Z)

Poincaré complexes in A .

O

DEFINITION 1.9 Given a finite chain complex C' in A define the double
skew-suspension isomorphism of Z-module chain complexes

{32; SUWRC) — WH(S2C) 5 ¢ —> 526, (520)s = o4
52 S4(WyC) — Wy (S20) 5 o —s 520, (S20), = o .

symmetric
quadratic
with the double skew-suspension maps defining isomorphisms

PROPOSITION 1.10 The n-dimensional { L-groups are 4-periodic,

§25 Lr(h) = LMI(A) 5 (C.¢) — (S°C.5%)
S? 1 Lu(A) = Lusa(8) ; (Cv) — (5°C,5%)
forn € Z.
PROOF The functor S%: B (A)—B (A) is an isomorphism of additive cat-

egories.
]

ExAMPLE 1.11 Let R be a ring with involution, so that the additive cat-
egories with duality involution

A"(R) = {f.g. free R-modules} , AP(R) = {f.g. projective R-modules}
are defined as in 1.3.

(i) The quadratic L-groups of AY(R) for ¢ = h (resp. p) are the free (resp.
projective) versions of the 4-periodic quadratic L-groups of Wall [180]

L.(A%(R)) = L4(R) (n€Z).
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(ii) The symmetric L-groups of A?(R) for ¢ = h (resp. p) are the 4-periodic
versions of the free (resp. projective) symmetric L-groups of Mishchenko
[115]

L"(AYR)) = lig L} (R) = LI (R) (n€Z).
k

See Ranicki [144], [148] for proofs of both (i) and (ii). The 4-periodicity

of the symmetric L-groups is ensured by the use of finite rather than n-

dimensional chain complexes in 1.6. See 3.18 below for a further discussion.
i

The 4-periodic L-groups of the additive category Ah(R) of a ring with
involution R are written
Ln(A"(R)) = Ln(R) = Lnsa(R),
L"(A"R)) = L"™(R) (n€Z).
C/ /
complex { EC,:Z/)) in A

symmetric

DEFINITION 1.12 The n-dimensional .
quadratic

: : : tri C, ,
obtained from an n-dimensional { > L O complex (C,9) by algebraic
quadratic (C, )
. . symmetric .
surgery on an (n + 1)-dimensional quadratic pair

is given in the symmetric case by

{ (f:C—D,(6¢,9))
(f:C—D,(6¢,7))
dc 0 (=)o f*
der = | (=)"f dp (=) g0
0 0 (-)dp
Cl = C.®Dpyy @D 1
—C' | = C,1®D, DT

bo 0 0
oy = | (5" Ter (—)"Té¢r  (—)r(me
0 1 0

Cln—r — Cvn—r D Dn—r—i—l D (TQ‘D)TJFl
—Cl = C,®D,. ;D"

Ps 0 0
¢ = | ()"TfTos ()" ToGs1 O
0 0 0

Cln—r—i—s — Cn—T+S D Dn—r+s+1 D (TQD)T—S—l—l
—Cl. = C,®D, ;@D " (s>1)
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and in the quadratic case by
de 0 (=)"TN 1+ T)thof*
der = | (=)"f dp (=) (L+T)othof*
0 0 (=),
Cl = C.®Dpyy @D "M
— C’f‘—l =Cr10D,® Dn—r+2 ’

Yo 0 0
v, =10 0 0
0 10

om-r — onr e Dn—r—|—1 D (TQD)H_1
—C. = C.®D, D"
¢s (_)r—i_sT@Z}sflf* 0
vy = | 0 (=) 0
0 0 0
C/n—r—s — Cn—r—s D Dn—r—s+1 D (T2D>r+s+1

— 0 = C,®Dp @DV (5>1).
O

symmetric
quadratic
plexes in A is the equivalence relation generated by homotopy equivalence
and algebraic surgery.

PROOF As for Ranicki [144, 5.1], the special case A = AP(R) = {f.g. project-
ive R-modules}.

PROPOSITION 1.13 Cobordism of n-dimensional Poincaré com-

]
symmetric

quadratic complex

DEFINITION 1.14 The boundary of an n-dimensional {

{le

symmetric
quadratic

{5(0,@ = (0C,99)
A(C,¢p) = (0C,0¢)

in A is the (n — 1)-dimensional { complex

symmetric

obtained from (0,0) by surgery on the n-dimensional { quadratic air

{ (0:0—C, (9,0))

(0:0—C, (1, 0))) . In the symmetric case
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w- (5 52)

9C, = Cpi1 ®C™" —39Cry = Cr®C" "1
B (_)n—rT¢1 (_)r(n—r—l)e ‘
oo = (1T ey
ocmrl = 0" g (T*C)ppy — 0C, = Crp1 GC™T
ps = <(_)M+ST¢S+1 0) :
0 0

8cn—r+s—1 — Cn—r—i—s D (Tzc)r—s—f—l
— 5 0C, = Crp1 ®C™T (s>1)

and in the quadratic case

doo — (dc (—)’”(1+T)¢0) :

0 (=)"de
9C, = Crpy ®C"" — IC,_y = Cr®CM

0 0
oC" Tl = C"TT @ (T?C)pyy — 0C, = Crpy ®C™7
(T T 0y
gon—r—s—1 — ¢gn-r—s b (TQC)rJrerl

— 0C, = Crp1®C™7 (s>1).

It is immediate from the identity
90 — {S‘lC(¢0:C”_*—>C’)
LSO+ T)epo: CF—C)

. . symmetric (C,0) . . .
that an n-dimensional { quadratic complex { (C. ) is Poincaré if and only

if the boundary { gEg z)) is contractible.
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PROPOSITION 1.15 The homotopy equivalence classes of n-dimensional
{ symmetric

. complexes in A are in one—one correspondence with the homo-
quadratic

. . . symmetric . .
topy equivalence classes of n-dimensional {quadmtic Poincaré pairs in
A.

PROOF As for Ranicki [144, 3.4], the special case A = AP(R).
. C7
Given an n-dimensional symmetrlc complex { (C9) in A define the
‘ quadratic (C, )
n-dimensional {symmetrlc Poincaré pair
quadratic
00(C, 0,0
{ (C,9) = (pc = projection : 0C' — C"™* | {( 2 ) .
50(C, 1) (0,0)
Conversely, given an n-dimensional { symmetrlc Poincaré pair in A
quadratic
b= (1, (049
C (69, e)

apply the algebraic Thom construction to obtain an n-dimensional
symmetric

quadratic complex

BB {(D,ézvc = (C(£),00/9)

0)/C = (C(f),6¢/9)

Y

with

5bs 0 :
(5¢/¢)8 - ( (_)n—r—lgbsf* (_)"_T+ST¢S—1 ) .

C(f)yr—"+s+1 = prr+stl g on=r+s L O(f), = D, @ Cy_
(s>0,0-1=0),
35 0
L (L
C(fyn—r=s+1 = prr=stlgon=r=s __, O(f), = Dy ®Cy_,
(s>0),
which is homotopy equivalent to 60(B/0B).
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symmetric

quadratic
C,p)=0¢e L"(A C

{ (C¢) in A is such that { (C¢) € L™(A) if and only if { (C¢) is

(Ca 1/}) (Ca 1/}) =0¢ LH(A) (Ca 1/})
homotopy equivalent to the boundary 9(D,0) of an (n + 1)-dimensional

symmetric .
{quadratic complex (D, 0) in A.

It follows from 1.15 that an n-dimensional Poincaré complex
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§2. Algebraic normal complexes

An algebraic normal complex is a chain complex with the normal structure
of a Poincaré complex, but not necessarily the Poincaré duality. Algebraic
normal complexes are analogues of the normal spaces of Quinn [132], which
have the normal structure of Poincaré spaces, but not necessarily the duality.
Indeed, a normal space determines an algebraic normal complex.

The algebraic theory of normal complexes of Ranicki [145] and Weiss
[186] is now generalized to an additive category A with a chain duality
(T:A—B (A),e: T?——1). Algebraic normal complexes will be used in §3
to describe the difference between symmetric and quadratic L-groups of A .

Use the standard complete (Tate) free Z[Zz]-module resolution of Z

Wi s ZT] —— ZiTs] = ZiZs] — ZiZs] —> ...

to define for any finite chain complex C' in A the Z-module chain complex

wW%c = HomZ[ZQ](W, CepC) = HomZ[ZQ](W,HomA(TC, Q) .
A chain 6 € (/W%C’)n is a collection of morphisms

0 = {0, € Homy(C""* C,)|r,s € Z} ,

with the boundary d(6) € (W%C),._; given by

d(0)s = dfs+ (=) 0sd" + ()" (051 + (=)°T0s-1) :

crrtstl 5 0. (rs€eZ) .
DEFINITION 2.1 (i) The hyperquadratic Q-groups of a finite chain complex
C in A are defined by
Q"(C) = H,(W*C) (nez).

(ii) A chain map f:C——D of finite chain complexes in A induces a Z-
module chain map

f% . WO — W%D
via the Z[Zs]-module chain map f ® f:C @y C—D @4 D .

The short exact sequence of Z-module chain complexes
0 — WHC — WHC — S(Wg,C) — 0

induces the long exact sequence of Q-groups of Ranicki [144,1.1]

C QulC) 5 QMC) - 7€) 5 Qua(C)

=L omie) —
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with

_ J¢s fors=>0 [+ T)pe fors=0
(J9)s = {0 fors<0 ’ (+T)e)s = {O fors >1

(HO)s = O_5_1 for s >0.
DEFINITION 2.2 (i) é\cham bundle (C,~) is a chain complex C in A together
with a 0-cycle v € (W%TC)q.
(ii) A map of chain bundles in A
(f,0) = (C7) — (C',7")
is a chain map f: C——C" together with a 1-chain b € (W%TC’)l such that
FA0) = v = d(b) € WFTC),
m
For any chain complex C' in A there is defined a suspension isomorphism
S WHC — §~HW*SC) ; § — S8
sending an n-chain 6 € (W%C), to the (n + 1)-chain S8 € (W%SC),4
with
(S0); = 6,1 : (SC)—"H+l = gttt (SCO), = Cr_y .
Hence for any n € Z there is defined an n-fold suspension isomorphism
S": WHTC —> S vTen )
sending a 0-cycle v € (W%TC')O to the n-cycle S™~ € (/W%C’"_*)n with
(S")s = Ynts: Cr —> C7"777° (1,5 €Z).
DEFINITION 2.3 Given a chain bundle (C,~) let Q,(C,v) (n € Z) be the

twisted quadratic Q-groups of Weiss [186], designed to fit into a long exact

sequence
14T

5 Qu(C) T QY(O) T GME) o QualC)
— Q"N C) — ...
with
Ty QUC) — QMC) 5 ¢ — J(¢) — B (S™) -
An element of @, (C,~) is an equivalence class of pairs
(¢ € (WHC)n, x € (WHC)ni1)
such that
d(¢) = 0€ (W C)no1, J(¢) = (¢0)"(S™y) = d(x) € (W*C), ,
with
L+T: Qu(C,y) — Q"(C) 5 (6,x) — ¢,
H: Q" C) — Qu(C,7) 5 x — (0,%) -
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The addition in @, (C,~) is by

(@) + (¢, X)) = (p+ ¢, x+xX +¢),
with
és = ¢0(75—n+1)¢6 : C" — Cn_r+5+1 (T,S € Z) .
O

J is induced by a morphism of the simplicial abelian groups K (W%C')
—K (W%C’ ) associated to the abelian group chain complexes W”C, w%c
by the Kan—-Dold theorem, rather than by a chain map W0 —sW%C.
For v = 0 J, = J is induced by the chain map J: W%C—W%C and

Q+(C,0) = Q.(C).
A map of chain bundles (f,b): (C,~v)—(C",~’) induces morphisms of the
twisted quadratic Q-groups

(£,0)% = Qu(C,y) — Qu(C", ) 5 (8, x) — (f%6, Fx+ (Fo)”(S™D)) .

DEFINITION 2.4 (i) An (algebraic) n-dimensional normal complez (C, ) in
A is a finite chain complex C in A together with a triple

b = (o€ (W"C)u,y € W*TC)o,x € (W*C)ni1)
such that

d(¢) = 0€ (W"C)y1, d(y) = 0€ (WHTC) 4,

J(9) = (60)*(S™) = d(x) € (W*C), .
(C, 0) is an n~-dimensional symmetric complex (C, ¢) with a normal structure

(7, X)-

(ii) An (n+1)-dimensional normal pair (f: C—D, (66, 0)) in A is an (n+1)-
dimensional symmetric pair (f:C—D, (d¢, ¢)) in A together with a map
of chain bundles (f,b): (C,y)—(D, ) and chains x € (W#C)41, 6y €
(/W%D)n+2 such that

J(#) = (¢0)*(S™) = d(x) € (W*C), ,

T(66) = 8y (5"57) + P (x — (Go)(5"8)) = d(6x) € (WD)r
with (60,0) short for ((6¢,dv,dx), (4,7, x))-
(iii) A map of n-dimensional normal complexes in A
(f;0) : (Cr 0,7, x) — (', 9,7, X))
is a bundle map (f,b): (C,v)—(C",~’) such that
(f:b)%(e,x) = (¢',X)) € Qn(C",7) .

The map is a homotopy equivalence if f: C——C" is a chain equivalence.
(iv) The normal L-groups NL™(A) (n € Z) are the cobordism groups of
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n-dimensional normal complexes in A .
]

REMARK 2.5 Geometric normal (resp. Poincaré) complexes and pairs de-
termine algebraic normal (resp. Poincaré) complexes and pairs. The meth-
ods of Ranicki [145] and Weiss [186] can be combined to associate to any
(k — 1)-spherical fibration v: X — BG(k) over a finite CW complex X a
chain bundle in A (Z[r]*) (cf. 1.4)

o*(v) = (C(X),7)
with X any regular covering of X such that the pullback 7: X — BG/(k)
is oriented, 7 the group of covering translations, C'(X) the cellular Z[n]-

module chain complex of X, and w: m——{£1} a factorization of the orien-
tation character

wy(v) : m(X) — 7 — {1} .
The hyperquadratic structure 7 is unique up to equivalence (i.e. only the
homology class v € Q°(C(X)™*) is determined), and depends only on the
stable spherical fibration v: X—BG. Let T'(v) be the Thom space of v,
and let U, € H*(T(v),w) be the w-twisted Thom class, with H* denot-

ing reduced cohomology. The Alexander—Whitney—Steenrod diagonal chain
approximation

Az CO(X) — Homgz, (W, C(X) @7 C(X))
induces the ‘symmetric construction’ of Ranicki [145, §1]
dx = 1©Az: Hy(X,w) = Ho(Z" @gpmw C(X))

— Q(C(X)) = H,(Homgy,(W,C(X) @gmpe C(X))) .

The composite of the Thom isomorphism and the symmetric construction

Hook(T(0)) =5 Ha(X,w) 25 QM O(X))

extends to a natural transformation of exact sequences of abelian groups

- = a1 (T(W) — Tk (T(V) = Hygo(T(v) — Trgn(T(v)) — ...

R

= QUHO(R) — Qu(C(X),7) — QU(C(X)) 5 QUC(X)) — ..

—

from the certain exact sequence of Whitehead [190], with h the Hurewicz
mabp.

An n-dimensional geometric normal complex (X,vx,px) in the sense of
Quinn [132] is a finite CW complex X together with a (k — 1)-spherical
fibration vx: X —BG(k) and a map px:S"T*——T(vx). The algebraic
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normal complex of (X, vx, px) with respect to a covering X of X is defined
by

6*(X7VX7PX) = (C(X),¢,7,X)
with (C(X),~) = 6*(vx) and (¢,x) € Qn(C(X),7) the image of px €
Tn+k(T(vx)). The Z[m1(X)]-module duality chain map of o*(X) is given
by the cap product

g0 = ox((X]o = [X]N—: CX)" — C(X),
with the fundamental class defined by
[X] = h(px)NU,y € Hpy(X,w) .

A (finite) n-dimensional geometric Poincaré complex X is a (finite) CW
complex together with an orientation map w: 1 (X)—Z2 and a fundamen-
tal class [X] € H, (X, w) such that cap product defines a Z[m (X)]-module
chain equivalence

X]N—: CX)"* — C(X) .

An embedding X C S™t* (k large) determines the normal structure (vx, px)
of Spivak [164], so that X is an n-dimensional geometric normal complex.
The n-dimensional symmetric Poincaré complex in A (Z[r]")

0" (X) = (C(X),9)

is such that Jo*(X) =o*(X,vx, px)-
m

The following result deals with the analogue for algebraic Poincaré com-
plexes in any additive category with chain duality A of the Spivak normal
structure of a geometric Poincaré complex:

PROPOSITION 2.6 (i) An n-dimensional symmetric complex (C, ¢) in A has
a normal structure (,x) if and only if the boundary (n — 1)-dimensional
symmetric Poincaré complex O(C, ¢) admits a quadratic refinement.

(ii) There is a natural one—one correspondence between the homotopy equiv-
alence classes of n-dimensional symmetric Poincaré complexes (C,¢) in A
and those of n-dimensional normal complezes (C, ¢,y, x) with ¢pg: C"™*—
C' a chain equivalence.

(iii) There is a natural one—one correspondence between the homotopy equiv-
alence classes of n-dimensional quadratic complexes (C,v) in A and those
of n-dimensional normal complezxes (C, ¢,~,x) with v = 0.

PROOF (i) Write

a(o7¢) = (8Caa¢) ) oC = 5—10(%),

and let e: C——S90C = C(¢g) be the inclusion. Consider the exact sequences
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of Q-groups
14T

Qua(0C) = @(0C) — Q" H(AC)

~ YN &%

QC™) — QM(C) — Q"(59C) .
The obstruction J(d¢) € Q" 1(dC) to a quadratic refinement of 8(C, ¢)
corresponds under the suspension isomorphism @"‘1(80)—>@”(560) to
the obstruction ¢%.J(¢) € Qm(SOC) to a normal refinement of (C, ¢).
(ii) An n-dimensional symmetric Poincaré complex (C,¢) determines an
n-dimensional normal complex

J(C,9) = (C,9,7,X)
with (7, x) unique up to equivalence. The class v € @0 (T'C) is the image
of ¢ € Q"(C) under the composite
J A @) ST
Q"(C) — Q™(C) —— Q"(C"™") — QY(T0).
(iii) An n-dimensional quadratic complex (C, ) determines an n-dimensional
normal complex with v = 0 and

(1+T)(C, ) = (C,(1+T)9,0,x)

such that
(14T ifs>0 0 if 5 >0
1 T s — s = .

(1+1D)9) {0 ifs<0, ~ b_s1 ifs<0.
Conversely, an n-dimensional normal complex (C, ¢,~, x) with v = 0 deter-
mines an n-dimensional quadratic complex (C, ), by virtue of @, (C,0) =
Qn(C).

i
DEFINITION 2.7 (i) An n-dimensional (symmetric, quadratic) pair (f: C—
D, (6¢,1)) in A is an n-dimensional symmetric pair with a quadratic struc-
ture on the boundary, i.e. a chain map f:C——D of finite chain com-
plexes in A together with an (n — 1)-cycle ¢ € (Wy(C'),,—1 and an n-chain
6¢ € (W”D), such that

FAA+T) = dd¢) € (W' D)oy .
(ii) The pair (f:C——D, (d¢,1))) is Poincaré if the chain map
(09, (L+T)p)o : D" — C(f)

is a chain equivalence.

i

PROPOSITION 2.8 (i) The homotopy equivalence classes of n-dimensional
(symmetric, quadratic) Poincaré pairs in A are in natural one—one corre-
spondence with the homotopy equivalence classes of n-dimensional normal
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complexes in A .

(ii) The cobordism classes of n-dimensional (normal, symmetric Poincaré)
pairs in A are in natural one—one correspondence with the cobordism classes
of (n — 1)-dimensional quadratic Poincaré complexes in A .

PROOF (i) An n-dimensional normal complex (C,¢,7,x) in A determines
the n-dimensional (symmetric, quadratic) Poincaré pair in A

(ic: 0C—C" ™, (60, 1))

defined by
ic = (01): OC, = Crpy@®C™" —s O™
dBC = (dc (_)T¢O> .
0 (-ydy
aCT‘ = r+1 eC"" — aCr—l = Cr S Cn—r+1 )

X 0
Z/)o = ( ’ * * ) :
L+9-n@s Yin-1

o = CMeC,, —0C,_ 1 = Cp,®C" |

X—s 0
1/)5 = ( * * ) :
'anfs(rbo ’}/—n—s—l

oC" = CT+1 ) Cn—r — ac’n—r—s—l = Cn—r—s D CT+S+1 (S > 1) )
§ps = Yonys: Cp —> C"77T5 (5 >0) .
Conversely, an n-dimensional (symmetric, quadratic) Poincaré pair (f: C'—

D, (d¢,%)) in A determines an n-dimensional normal complex (C(f), ¢, 7, )
in A with the symmetric structure

( ) 0
( & ) ifs=0
1+T)¢0f* 0
¢s = ( > if s =1
0 (A+T)
(5% ) if s >2
0
C(f = DT@CT ! — C(f)n—r+s = Dn—r+s@0n—r+s—1 .

The normal structure (7, x) is determined up to equivalence by the Poincaré
duality, with v € Q°(D~*) the image of (§¢/(1 + T)v) € Q™(C(f)) under
the composite

((8¢0,(1+T)9o0)™) " T P I TP
Q"(C(/)) » QD) — QMDY — QD7)
(ii) Given an n-dimensional (normal, symmetric) pair in A (f:C—D,
((6¢p,07,0%),®)) let (C',¢") be the (n — 1)-dimensional symmetric complex
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obtained from (C,¢) by surgery on (f:C——D, (d¢,¢)). The trace of the
surgery is an n-dimensional symmetric pair ((g ¢'):C & C'—D’, (6¢', ¢ ®
—¢')) with
g = inclusion : C — D' = C(¢of*: D" '7*—0C),
g = projection : C' = S7'C((6¢,¢)o: D" *—=C(f)) — D’ .
The natural isomorphism
@n+1(Dn+1—*) — Q\n—Fl(D/n—*_)C/n—*)
sends the chain bundle S™"*145y EA@”H(D”“_*) to a normal structure on
the trace which restricts to 0 € Q™(C'™~*), corresponding to a quadratic
refinement ¢’ € Q,,_1(C") of ¢’ € Q"1(C"). The symmetric complex (C, ¢)
is Poincaré if and only if the quadratic complex (C’, ") is Poincaré.
Conversely, given an (n — 1)-dimensional quadratic Poincaré complex
(C",4)") define an n-dimensional (normal, symmetric Poincaré) pair (C—0,

(0, (1 +T)e)).

O

DEFINITION 2.9 The quadratic boundary of an n-dimensional normal com-
plex (C, ¢, 7, x) is the (n — 1)-dimensional quadratic Poincaré complex

(C, 0,7 x) = (9C,9)
defined in 2.6 (i) above, with 9C = S™1C(¢g) the desuspension of the
algebraic mapping cone of the duality chain map ¢¢: C"~*——(C'. This can
also be viewed as the complex associated by 2.8 (ii) to the n-dimensional
(normal, symmetric Poincaré) pair (0—C, ((¢,7,7),0)).
o

DEFINITION 2.10 The n-dimensional hyperquadratic L-group L™(A) (n € Z)
is the cobordism group of n-dimensional (symmetric, quadratic) Poincaré
pairs in A, designed to fit into the quadratic-symmetric exact sequence
1+7T J  ~ o
. —> Ly(A) — L"(A) — L"(A) — L, 1(A) — ... .
]

For a ring with involution R and A = AP(R) the hyperquadratic L-
groups L*(A) of 2.10 are just the hyperquadratic L-groups L*(R) of Ranicki
146, p. 137].

PROPOSITION 2.11 The hyperquadratic L-groups E*(A) are isomorphic to
the cobordism groups N L*(A) of normal complezxes in A

L*(A) = NL*(A),

so that there is defined an exact sequence

1+T J o]
. Ln(A) — L"(A) — NL™A) — Lp_1(A) —> ...
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with
0: NL"(A) — Ln-1(A) 5 (C, 0,7, x) — (9C,¢)
given by the quadratic boundary (2.9) of normal complezes.
PROOF The identities L™(A) = NL™(A) (n € Z) are immediate from 2.8 (i)
and its relative version relating (symmetric, quadratic) Poincaré triads and

normal pairs. See Ranicki [146, §2.1] for algebraic Poincaré triads.
m

In the case A = A%(R) (¢ = h,p) for a ring with involution R write the
normal L-groups as
NL*(AY(R)) = NL,(R) .

EXAMPLE 2.12 The hyperquadratic L-groups EZ (R) (¢ = h,p) of Ranicki
[146, p. 137] are the cobordism groups of (symmetric, quadratic) Poincaré
pairs over a ring with involution R which fit into an exact sequence

(R) — ... .

n—1

14T J o
. — LI(R) — Lj(R) — Lyj(R) — L}

The relative terms H*(Zs; Ko(R)) in the Rothenberg exact sequences re-
lating the free and projective L-groups of R are the same for the symmetric
and quadratic L-groups

. — LY(R) — L2(R) — H™(Z3; Ko(R)) — L} Y (R) — ...,
. — L'(R) — L2(R) — H™(Zy; Ko(R)) — LI

n—1

(R) — ... .
Thus the free and projective hyperquadratic L-groups of R coincide

L*(R) = Ly(R) = Ly(R) .

Similarly, the hyperquadratic L-groups of the categories A"(R) and AP (R)
coincide, being the 4-periodic versions of the hyperquadratic L-groups L*(R)
L"(A"R)) = L"(AP(R)) = lig L™ (R) (neZ),

k
the direct limits being taken with respect to the double skew-suspension
maps. Use the isomorphisms given by 2.11

NL*(AY(R)) = L*(AY(R)) (q=h,p)
to write
NL*(R) = NLj(R) = NL:(R) = lig L""*(R) .
k

O

REMARK 2.13 The exact sequence of 2.11 for A = A (R) = A"(R) is the
algebraic analogue of the exact sequence of Levitt [92], Jones [80], Quinn
[132] and Hausmann and Vogel [75]

= QN (K) — La(Z[r]) — QF(K) — QY (K) — ...,
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with QF (K) (resp. QY (K)) the bordism group of maps X —K from n-
dimensional geometric Poincaré (resp. normal) complexes, with m = 71 (K)
the fundamental group of K and n > 5. The symmetric signature of
Mishchenko [115] and Ranicki [145,§1] defines a map from geometric to
symmetric Poincaré bordism
o QF(K) — L*(Z[x]) s X — o*(X) = (C(X),9) .

The hyperquadratic signature of Ranicki [146,p.619] defines a map from
geometric to algebraic normal bordism

5 ON(K) — L™(Z[x]) ; X — 3%(X) = (C(X), 6,7, X) -
The signature maps fit together to define a map of exact sequences

O (K) 7 Ly (Zl]) —— QF (K) —— QY (K) ——

C——L"TY(Z[A]) -2 ML pr(zfx]) —L T(Zr]) — . .. .

The normal signature is the stable hyperquadratic signature
5"« QN (K) — NL"(Z[r]) = lig L"**(Z[x]) .
k
The normal signature determines the quadratic signature
o, = 00" : QV(K) — hTH} Lyyar—1(Z[r]) = Ln_1(Z[x]) .

There is also a twisted version for a double covering K" —— K, with the

w-twisted involution on Z[r], and the bordism groups Q. (K, w) of maps

X —K such that the pullback X" —— X is the orientation double cover.
]

EXAMPLE 2.14 (i) Let R be a ring with involution, and let (B, /) be a
chain bundle over R, with B a free R-module chain complex (not necessarily
finite or finitely generated). The cobordism groups L™(B,3) (n > 0) of n-
dimensional symmetric Poincaré complexes (C, ¢, 7, x) in A (R) with a chain
bundle map (f,b): (C,v)—(B, ) fit into an exact sequence

s Lo(R) — L'(B,B) —> Qu(B,B) — Ly 1(R) —> ...
with

Ln(R) — L™(B,B) ; (C,¢) — ((C,(1+T)9,0,9),0) ,

Ln(B,ﬁ) — Qn( 75) ; ((C7¢7’7>X)7(f7b)) (f7 )%(77 ) s

9 : Qu(B,B) — Ln-1(R) ; (4,x) — 9(B,¢,5,%) ,
where (B, ¢, 3,%) the restriction of (B, ¢,[,x) to any finite subcomplex
B C B supporting (¢,%) € Qn.(B,3). As in Weiss [186] there is defined
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a universal chain bundle (B, ) over R, with § € @O(B**) such that the
algebraic Wu classes of Ranicki [146, 1.4] are isomorphisms
0"(8) : Ho(B) — H'(Z2;R); v — B_o(z)(z) (r€Z).
For the universal chain bundle (B, /) and any finite chain complex C in
A (R) there is defined an isomorphism
Ho(Homp(C, B)) — Q°(C™); f — f*(B)
so that the chain bundles (C,y € Q(C~*)) are classified up to homotopy

equivalence by the chain homotopy classes of chain maps C——B. For
universal (B, 3) the forgetful maps define isomorphisms

L*(B,B) — L™(R) ; (C,é,7,x) — (C,0) ,

Qn(B,B8) = NL™(R) ; (¢,x) — (B"77,0(B,¢,5,X)) -
(ii) Let K be a field of characteristic 2 which is perfect, i.e. such that
K—K;x——2? is an isomorphism, so that for all n € Z
H"Z2;K) = K K x H'(Zy: K) — H"Zs; K) ; (w.y) — oy

with the identity involution on K. The chain bundle over K
0 0 0

0 0
(B: ... » K » K >y K K > ..., B =1)
is universal. The quadratic Witt group Lo.(K) is detected by the Arf in-
variant, and the symmetric Witt group L?*(K) is detected by the rank
(mod 2), with isomorphisms

Q2v41(B,B) = K/{zx+2°|z € K}

—2—>L2*(K);a—>(K@K,(g 1)),

Qu(B,B) = {zeK|z+2°=0} = Zs

— NL*™(K) = L**(K); 1 — (K,1)
and Lo, 1(K) = L**T1(K) = 0. In particular, this applies to K = Fs.
m
By analogy with the observation of Quinn [132] that the mapping cylinder

of a map of geometric normal complexes defines a cobordism, we have:

PROPOSITION 2.15 The algebraic mapping cylinder of a map of n-dimen-
stonal normal complexes in A

(f:0) = (C"¢',7,x) — (C, 0,7, x)
is an (n + 1)-dimensional normal pair in A
M(f,b) =

((f 1)0,@0%07 ((5¢7776X)7(¢/@_¢77/@_77X/@_X))7 b@0)7
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which defines a cobordism between (C, ¢,v,x) and (C,d,7, x).
PROOF The chains d¢, 0y are determined by a chain level representative for
the identity

(f,0)% (¢, X") = (¢,x) € Qu(C,7) -

O

REMARK 2.16 (i) Let A be an additive category with a 0-dimensional chain
duality. An algebraic normal map in A is a normal map of n-dimensional
symmetric Poincaré complexes

(f:0) = (€', 8,9 .X') — (C.é,7,x) -
The algebraic mapping cylinder M (f,b) of 2.15 is an (n + 1)-dimensional
(normal, symmetric Poincaré) pair. The quadratic kernel of (f,b) is the
n-dimensional quadratic Poincaré complex

U*(f? b) - (C(f')ﬂﬁ)
obtained by applying the construction of 2.8 (ii) to M(f,b), with f' the
Umkehr chain map defined up to chain homotopy by the composite

—1 * ’
f! e (¢0) \ Cn—* f_) Cln—* & Cv/ )

The symmetrization of the quadratic kernel is an n-dimensional symmetric
Poincaré complex

(1+T)ou(f,0) = (C(f),1+T))
such that up to homotopy equivalence

1+ T)o.(f,0) @ (C,0) = (C,¢') .
The construction of 2.8 (ii) defines an isomorphism between the cobordism
group of (n 4 1)-dimensional (normal, symmetric Poincaré) pairs in A and

the quadratic L-group L, (A). The quadratic signature of (f,b) is the cobor-
dism class of the quadratic kernel

O‘*(f, b) = (C(f')v,lvb) S Ln(A) :

The methods of Ranicki [144], [148] show that o.(f,b) = 0 € L,,(A) if and
only if M (f,b) is algebraic normal cobordant rel 9 to a symmetric Poincaré
cobordism between (C, ¢,~, x) and (C', ¢", v, x').

(ii) The quadratic kernel o (f,b) of a geometric normal map (f,b): X'— X
of n-dimensional geometric Poincaré complexes obtained in Ranicki [145] is
the quadratic kernel o, ( 1, ZN)) of an induced algebraic normal map of n-
dimensional symmetric Poincaré complexes in A(Z[r]™)

(f:0): 0" (X') = (C",¢/,7,X) — 0" (X) = (C,,7,X) ,
with w:m——Zy the orientation map, and C' = C(X), ¢ = C’()N(’)~the
cellular chain complexes of the cover X of X and the pullback cover X’ of
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X', The quadratic signature of (f,b) is the cobordism class of (C(f"'),)
0. (f,0) = 0.(f,b) = (C(f),9) € Lu(A(Z[r]")) = Ln(Z[x]"),

with symmetrization

(1 +T)o.(f,0) = o"(X) —0"(X) € L"(Z[x]") .
For X’ = M a manifold and (f,b): M— X a geometric normal map in the
sense of Browder [16] the surgery obstruction of Wall [180] is the quadratic
signature of (f,b) with 7 = 71(X) and X the universal cover of X.
(iii) Geometric normal complexes can be constructed from geometric Poin-
caré bordisms of degree 1 normal maps of geometric Poincaré complexes,
as follows. Given a normal map (f,b): X’—— X of n-dimensional geometric
Poincaré complexes let W ~ X be the mapping cylinder of f, so that
(W;X,X’) is an (n + 1)-dimensional normal complex cobordism. Given
also a geometric Poincaré cobordism (V; X, X') there is defined an (n + 1)-
dimensional geometric normal complex

Y = VusgW.

The normal signature of Y is the stable hyperquadratic signature
5*(Y) = (C(Y),¢,7,x) € NL" N Z[m (Y)]) = ling LMz (V)

with boundary the quadratic signature of (f,b) relative to 71 (X)—m(Y)
95" (Y) = 0u(f,b) € Lu(Z[m (Y)]) -
(iv) For the mapping cylinder W of the 2-dimensional normal map
(fib): X' = St xs — X = §2
determined by the exotic framing of S* x S! with Kervaire-Arf invariant 1
and for the geometric Poincaré cobordism
(V; X, X') = (D*u S x D?; 5%, 8" x S1)
the construction of (iii) gives a simply-connected 3-dimensional geometric
normal complex Y =V Uy W such that
05" (Y) = o.(f,b) = 1€ Ly(Z) = Zs .

Thus Y is not normal bordant to a geometric Poincaré complex, and (a
fortiori) the normal fibration vy: Y —— BSG is not topologically reducible,
with vy: Y ~ §2 Vv §3— 83—+ BSG detected by the generator

1en3(BSG) = m(G/TOP) = 75 = Q7 = Ly(2) = Z .
O

From now on the normal structure (v, x) will be suppressed from the
terminology of a normal complex (C, ¢, 7, x), which will be written as (C, ¢).
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§3. Algebraic bordism categories

An algebraic bordism category A = (A, B, C) is a triple defined by an addi-
tive category with chain duality A and a pair (B,C C B) of additive cate-
gories of chain complexes in A satisfying certain conditions. The L-groups
L*(A) symmetric
L.(A) of A are defined to be the cobordism groups of {quadratic

NL*(A) normal
complexes in A which are B-contractible and C-Poincaré. The main re-

sult of §3 is the exact sequence relating quadratic, symmetric and normal
L-groups of an algebraic bordism category.

Asin §81,2 let A be an additive category with chain duality, and let B (A)
be the additive category of finite chain complexes in A and chain maps.

DEFINITION 3.1 (i) A subcategory C C B (A) is closed if it is a full additive
subcategory which is invariant under 7', such that the algebraic mapping
cone C(f) of any chain map f: C——D in C is an object in C.
(ii) A chain complex C' in A is C-contractible if it belongs to C. A chain map
f:C—D in A is a C-equivalence.18 if the algebraic mapping cone C(f) is
C-contractible.

(C, )

(iii) An n-dimensional { complex { (C. ) in A is C-contractible

symmetric
quadratic
if the chain complexes C' and C"~* are C-contractible.

(iv) An n-dimensional {Zﬁ?&?gifge complex { Eg’ Z)) in A is C-Poincaré if

the chain complex
0C = S71C0(¢p: C"*—0O)
{ 0C = S7LO((1 +T)po: C"*—=C)
is C-contractible.
|

DEFINITION 3.2 An algebraic bordism category A = (A, B, C) is an additive
category A with a chain duality 7: A——B (A), together with a pair (B, C C
B) of closed subcategories of B (A), such that for any object B in B
(i) the algebraic mapping cone C'(1: B—B) is an object in C,
(i) the chain equivalence e(B): T?(B)— B is a C-equivalence.
o

ExaMPLE 3.3 For any additive category with chain duality A there is de-
fined an algebraic bordism category

A(A) = (AB(A),C(A))
with B (A) the category of finite chain complexes in A, and C(A) C B (A)
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the subcategory of contractible complexes.

o
DEFINITION 3.4 Let A = (A, B, C) be an algebraic bordism category.
symmetric (C,9)
(i) An n-dimensional § quadratic complex ¢ (C,v) in A is an n-dimen-
normal (C,¢)

symmetric
sional { quadratic complex in A which is B-contractible and C-Poincaré.

normal
Similarly for pairs and cobordisms.
symmetric L™(A)
(ii) The { quadratic L-groups ¢ L,(A) (n € Z) are the cobordism
normal NL™(A)
symmetric
groups of n-dimensional { quadratic complexes in A.
normal

O

PROPOSITION 3.5 If A = (A,B,C) is an algebraic bordism category such
that Q*(C) = 0 for any C-contractible finite chain complex C' in A then the
forgetful maps define isomorphisms

NL"(A) — L™(A) 5 (C,é,7,X) — (C,¢) (n€Z).

PROOF An n-dimensional symmetric complex (C,¢) in A has a normal
structure if and only if

J(¢) € im(¢py: Q" (C" ) —Q"™(C)) .
The hyperquadratic Q-groups of C,C"~* and 0C = S~1C(¢g: C"*—C)
are related by an exact sequence

%
5 OMAC) — On(Cm ) 2L Gr(C) — G HOC) —s

If (C, ¢) is C-Poincaré then dC is C-contractible, Q*(9C) = 0 and there is
defined an isomorphism
a5+ QUECmT) = QU (C)
so that (C, ¢) has a normal structure. Similarly for pairs.
m

EXAMPLE 3.6 The algebraic bordism category A(A) = (A,B(A),C(A)) of
3.3 is such that Q*(C) = 0 for C (A)-contractible (= contractible) B (A)-
contractible (= any) finite chain complexes in A, so that

NL*(A(A)) = L*(A(A)) = L*(A) .
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DEFINITION 3.7 A functor of algebraic bordism categories
F:A = (ABC)— A = (A,B,C)
is a (covariant) functor F: A—A’ of the additive categories, such that
(i) F(B) is an object in B’ for any object B in B,
(ii) F(C) is an object in C’ for every object C' in C,
(iii) for every object A in A there is given a natural C’-equivalence
G(A) : T'"F(A) — FT(A)

with a commutative diagram

TN TN

2(A,C,D) NL"(A,B,D) NL"(A,B,B)
2(A, B, D) NL"(A,B,C)
NL"*1(A,B,B) 2(A,B,C) Ln_1(A,C,D) .

\/v

PROPOSITION 3.8 A functor of algebraic bordism categories
F: A= (ABC) — A = (A,B,C)

induces morphisms of L-groups

F: L*(A) — L*( "
F i Li(A) — L.(\)
F: NL*(A) — NL*(N)
L*(F)
and there are defined relative L-groups ) to fit into a long exact

L.(F
NL*(F)

sequence
F
. — L"(A) — L"(A) — L™(F) — L™ 1(A) — ...
F
. —> L,(A) — L,(A') — L,(F) — L,—1(A) — ...

F
. —> NL"(A) — NL"(AN') — NL"(F) — NL" Y(A) — ... .
PrRoOOF For any objects M, N in A define a chain map of abelian group
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chain complexes
F(M,N): M@y N — F(M)®y F(N) ;

(0:T(M)—N) — (F(¢)GM): T'"F(M)—FT(M)—F(N))
which is compatible with the duality equivalences. An n-dimensional sym-
metric complex (C,¢) in A induces an n-dimensional symmetric complex
(F(C),F(¢)) in A’. Similarly for quadratic and normal complexes, and also
for pairs. Working as in Ranicki [146, §2] define the relative L-group L™(F)
to be the cobordism group of pairs

((n — 1)-dimensional symmetric complex (C,¢) in A |
n-dimensional symmetric pair (F(C)—D, (§¢, F(4))) in A’) .
Similarly for the quadratic and normal cases.
m

PROPOSITION 3.9 Let A be an additive category with chain duality, and let
(BCB(A),CCB,DCC) be a triple of closed subcategories of B (A). The
relative L-groups of the functor of algebraic bordism categories

F: N = (AB,D)— A = (A,B,C)
defined by inclusion are given up to isomorphism by the absolute L-groups
of the algebraic bordism category A" = (A, C,D)
(i) L™(F) = L"7'(A")
(ii) Lp(F) = Lp_1(A")
(iii) NL™(F) = Lp_1(A")
and there are defined exact sequences
o
i) ... — L"(A") — L"(A) — L"(A) — L H(A") — ...
o
(i) ... — Ly(A") — L,(A') — L,(A) — Lp—1(A") — ...
0
(i) ... — Ly(A") — NL"(A') — NL™"(A) — L, 1(A") — ...
with & given by the boundary of 1.14 for (i) and (ii), and by 2.10 for (iii).
PROOF (i) The relative symmetric L-group L™ (F') is the cobordism group of
n-dimensional symmetric pairs (f: C——D, (d¢, ¢)) in (A, B, C) with (C, ¢)
defined in (A,B,D) (i.e. the pair is B-contractible, C-Poincaré and the
boundary is D-Poincaré). Define inverse isomorphisms

L"YA,C,D) — LM(F) ; (C,6) — ((C, ), (C—0,(0,6))) ,

L"(F) = L' Y(A,C,D) ; (f:C—D, (56,)) — (C',¢)
with (C’,¢') the (n — 1)-dimensional symmetric complex in (A, C,D) ob-
tained from (C,¢) by algebraic surgery on the n-dimensional symmetric
pair (f:C—D, (6¢,¢)) in (A,B,C).
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(ii) As for (i), with symmetric replaced by quadratic.
(iii) As for (i), with symmetric replaced by normal, and using 2.9 (ii) to
obtain a quadratic structure on the effect of surgery on a normal pair.

o

The exact sequences of 3.9 are generalizations of the localization exact
sequence of Ranicki [146] (cf. 3.13 below), and of the relative L-theory
exact sequences of Vogel [174].

ExaMPLE 3.10 For any algebraic bordism category A = (A, B, C) the exact
sequence of 3.9 (iii) for the triple (B, B, C) can be written as

1+T J ~ 0
. —— Ln(A) — NL"(A) — NL"A) — Lo 1(A) —> ...

with A = (A, B, B). If A satisfies the hypothesis of 3.5 then NL*(A) can be
replaced by L*(A). In particular, this can be done for the algebraic bordism
category A = A(A) of 3.3 (cf. 3.6), recovering the exact sequence of 2.12

14T J o
. — Ln(A) — L™(A) — NL"(A) — Lp_1(A) —> ... .

O

ExAMPLE 3.11 Given a ring with involution R and ¢ = p (resp. h,s) define
the algebraic bordism category

AY(R) = (A1(R),BY(R),C'(R))

with A?(R) the additive category of f.g. projective (resp. f.g. free, based
f.g. free) R-modules with the duality involution of 1.11, BY(R) = B (A)%(R)
the category of finite chain complexes in A?(R), and CY(R) C BY(R) the
subcategory of contractible complexes C, such that 7(C)) = 0 € K;(R) for
q = s. The quadratic L-groups of AY(R) are the type g quadratic L-groups

of R
L.(A(R)) = LY(R) .
Let
{ Ro(R) — Ko(R) 3 [P) — [P"]
x: Ki(R) — Ki(R); 7(f: R"—R") — 7(f*: R"—>R")

projective class

torsion
intermediate quadratic L-groups LX(R) for a *-invariant subgroup X C

be the induced involution of the reduced { group of R. The

{ goggi can be expressed as the L-groups of an algebraic bordism category
1

oo Lu(AP(R),BX(R),C"(R))
Loth) = {L*<AS<R>,BS<R>,@X<R>>
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. J BT (R) CBP(R)

wit { Ex(7) € 1
p . . i

C in the category {AS (R) with {prOJ'ectlve class [C] € X C Ko(R)
A*(R) torsion 7(C) € X C K1(R) .

projective, free and simple quadratic L-groups of R are the special cases

L) = LUR) , LYE(R) = Li(R)

the subcategory of { chain complexes

contractible

The

Lio}gf(-o(R)(R) _ L§1(R)(R) _ Lh(R).
f:(o(R)

the exact sequence of
Ki(R)

(B(R), B (R),BY (R))
(C¥(R),CY(R),C*(R))
is isomorphic to the Rothenberg exact sequence of Ranicki [144, §9]

. — LY(R) — LX(R) — H"(Zy; X)Y) — LY_(R) —> ...,
corresponding to the isomorphisms
L (A7(R), BX (R), BY (R)) — H"(Z2:X/Y) ; (C,4) — [C]
Lu1(A%(R),CX(R),CY (R)) — H"(Z2;X/Y) ;
(C, ) — 7((1 +T)pg: C*1=*—=C) = 7(C)+ (=)"7(C)* .

Similar considerations apply to the symmetric and normal L-groups.

Given x-invariant subgroups ¥ C X C {

quadratic L-groups given by 3.9 (ii) for the triple {

O

REMARK 3.12 In dealing with the free L-theory of a ring with involution R
the terminology is abbreviated, writing

A"R) = A(R) = (A(R),B(R),C(R)),
L"(A(R)) = Lyt (R) = L™ (R),
A(R) = (A(R),B(R),B(R)), NL"(A(R)) = NL"(R).
O

ExXAMPLE 3.13 Let R be a ring with involution, and let S C R be a mul-
tiplicative subset of central non-zero divisors which is invariant under the
involution. The localization of R inverting S is the ring with involution

ST'R = {r/s|reR,s€ S}
with
r/s = rt/st, (r/s) = 7/5 (r€R,s,teS).
Define algebraic bordism categories
I'(R,S) = (A(R),B(R),C(R,S5)),
AR,S) = (A(R),C(R,S),C(R))
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with C(R, S) C B (R) the closed subcategory of the finite f.g. free R-module
chain complexes C such that the localization

S7'C = ST'ReRC
is in C(S™'R), i.e. a contractible finite chain complex in A(S™'R). The
localization maps of quadratic L-groups are isomorphisms

Lo(T(R,S)) — Ln(A(S7'R)) = L.(S7'R);
(C, ) — (S‘lC, S‘lz/)) (n€Z)
because

(i) for every finite chain complex C in A (R) localization defines isomor-
phisms of abelian groups

lim, Q,(D) — lim, Q,(S7'D) = Qu(S7'C) (n€Z)
C— C—
with the direct limits taken over all the finite chain complexes D in
A (R) with a C (R, S)-equivalence C — D,
(i) every finite chain complex in A(S™1R)is C (S™!R)-equivalent to S~1C
for a finite chain complex C in A (R).
Let L, (R,S) = L,—1(A(R, S)), the cobordism group of (n — 1)-dimensional
quadratic Poincaré complexes (C,1) in A (R) with C' in C(R, S). The lo-
calization exact sequence of Ranicki [146, §4]

. — Ly(R) — L,(S7'R) N L,(R,S) — L, 1(R) — ...
is isomorphic to the exact sequence of 3.9 (ii)
. — Ly(A(R)) — L,(I'(R,S)) — L,—1(A(R,S))
— Ly 1(A(R)) — ... .
The quadratic L-group L,(R,S) is isomorphic to the cobordism group of
n-dimensional quadratic Poincaré complexes in the category of S-torsion

R-modules of homological dimension 1. In particular, the boundary map
forn=20

d: Lo(S7'R) = Lo(T(R,S)) — Lo(R,S) = L_1(A(R,S))
sends the Witt class of a nonsingular quadratic form S™1(M,\, 1) over

S~1R induced from a quadratic form (M, \, u) over R to the Witt class of
a nonsingular S~! R/R-valued quadratic linking form

IS~ Y (M, \, 1) = (OM,0\,0u) ,
with
OM = coker(\: M—M™) |
O\ : OM x OM — S™'R/R; x — (y — x(2)/s)
(x,yeM*,zeM,se S, \Nz)=sye M) .
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Similarly for the symmetric L-groups.
|
PROPOSITION 3.14 Given an additive category with chain duality A and

closed subcategories D C C C B C B(A) there is defined a commutative
braid of exact sequences

Nl T

L,(A,C,D) NL"(A,B,D) NL"(A,B,B)
L, (A,B,D) NL"(A,B,C)
NL"1(A,B,B) L,(A,B,C) Ln_1(A,C,D) .

PROOF The exact sequences through L, (A, C,D) are given by 3.9 (ii), and
those through NL*(A,B,B) by 3.9 (iii).
]
For any object C' in a closed subcategory C C B (A) the suspension SC' =
C(0: C—0) is also an object in C.

DEFINITION 3.15 (i) A closed subcategory C C B (A) is stable if
(a) C contains the finite chain complexes C' in A such that SC is an object
in C,
(b) C contains the n-duals C"~* (n € Z) of objects C' in C.
(ii) An algebraic bordism category A = (A, B, C) is stable if B and C are
stable closed subcategories of B (A).
m

PROPOSITION 3.16 (i) The double skew-suspension maps of L-groups

S LMA) — LA 5 (Co9) — (S2C,0)
S La(A) — Luta(A) 5 (C4) — (S2C.4)
5" NLM(A) — NL™H(A) 3 (Co6,7,%) — (52C,6,7,X)
are defined for any algebraic bordism category A = (A,B,C) and all n € Z,
using the double skew-suspension isomorphisms of QQ-groups given by 1.9.
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(ii) The double skew-suspension maps of L-groups are isomorphisms for a
stable algebraic bordism category A.

Proor (i) Trivial.

(ii) For stable A the double skew-suspension functor defines an isomorphism

of categories

=2 . . . .
S™ ¢ {n-dimensional symmetric complexes in A}

— {(n + 4)-dimensional symmetric complexes in A}

for all n € Z by virtue of the stability of B and C. (Actually only 3.15 (i)
(a) is being used here.) Similarly for quadratic and normal complexes, and
also for pairs.

m

EXAMPLE 3.17 (i) The algebraic bordism category A(A) = (A, B (A),C(A))

) tri tri
of 3.3 is stable. The { >V HCVHC symmetric
quadratic quadratic

L-groups of the additive category with chain duality A

{L*(A(A)) = L*(A)

L.(A(A)) = L.(A).

Also, by 3.5 the normal L-groups of A(A) are the symmetric L-groups of A

NL*(A(A)) = L*(A),
since Q*(C) = 0 for any C (A)-contractible (= contractible) finite chain
complex in A .
(ii) The normal L-groups of A(A) = (A,B(A),B(A)) are the normal L-
groups of A

L-groups of A(A) are the {

NL*(A(A)) = NL*(A) .
O

ExXAMPLE 3.18 Given a ring with involution R define the algebraic bordism
category

AL (R) = (A(R),By(R),Ci(R))
with A (R) the additive category of f.g. free R-modules, B, (R) the additive
category of finite chain complexes C' in A (R) which are positive (i.e. C, =0
for r < 0), and C4(R) C B (R) the subcategory of the contractible positive
complexes. The inclusion A4 (R) C A(R) in the algebraic bordism category

A(R) of 3.12 induces the natural maps to the 4-periodic {symmetrlc
quadratic
groups of R
{L”(M(R)) — L"(A(R)) = L"(A(R)) = L""(R) (nez) .
Ln(A4(R)) — Ln(A(R)) = Ln(A(R)) = Lntas(R)
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The symmetric L-groups of Ay (R) are the symmetric L-groups of R as
originally defined by Mishchenko [115]

L*(A4(R)) = L*(R) .

It was shown in Ranicki [144] that for * > 0 the maps
{ L*(A4+(R)) — L*(A(R)) {are not

Lo(A+(R)) = Lo(A(R)) are isomorphisms in general, and also that

L (A+(R)) = Lu(R)

with L.(R) the original 4-periodic quadratic L-groups of Wall [180].
m

Call L™(R) the connective symmetric L-groups of R, to distinguish them
from the 4-periodic symmetric L-groups L™t4*(R). See §15 for the general
L-theory of algebraic Poincaré complexes with connectivity conditions.

The algebraic surgery below the middle dimension used in Ranicki [144]
to prove the 4-periodicity of the quadratic L-groups of rings with involution
admits the following generalization for algebraic bordism categories, which
is needed for §6 below.

DEFINITION 3.19 (i) An n-dimensional chain complex C' in A is highly con-
nected if there exist morphisms I': C,.—C,. 11 (2r > n) such that

AL +Td = 1: C, — C, (2r >n) .

(ii) An n-dimensional chain complex C' in A is highly B-connected if it is
B-equivalent to a highly connected complex.
|

ExAaMPLE 3.20 Let (A, B, C) = (A?(R),B?(R),C%(R)) (¢ = p, h, s) for some
ring with involution R. The following conditions on an n-dimensional chain
complex C' in A are equivalent:

(i) C is highly connected,

(ii) C is highly B-connected,

(iii) H"(C) = H.(C) =0 for 2r > n,

(iv) C'is C-equivalent to an n-dimensional chain complex D in A such that

D, =0 for 2r > n.
o

DEFINITION 3.21 (i) An n-dimensional quadratic complex (C, ) (resp. pair
(f:C—=D, (6¢,%))) in A is highly B-connected if the chain complexes C
(resp. C and D) are highly B-connected.
(ii) Let L,(A)" (n € Z) be the cobordism group of highly B-connected
n-dimensional quadratic complexes in A = (A, B, C).

m
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DEFINITION 3.22 The algebraic bordism category A = (A, B, C) is connected
if
(i) for each object A in A the dual chain complex T'A is such that (T'A), =
0 for r > 0,
(ii) for every B-contractible chain complex B and k € Z the subcomplex
B[k] C B defined by

Bk, = {Br if r >k
0 otherwise

is B-contractible.
O

In particular, A = (A, B, C) is connected if 7: A—B (A) is 0O-dimensional
(1.2) and B =B (A).

If C' is a finite chain complex in A which is positive (i.e. C,. = 0 for r < 0)
and A = (A, B, C) is connected then C' ®4 C = Homy (T'C,C) is a positive
Z[Zs)-module chain complex.

PROPOSITION 3.23 For a connected algebraic bordism category A = (A, B, C)
the forgetful maps are isomorphisms

Ln(A)" == Lo(A) 5 (Co9) — (C,9) (n€Z).
PROOF As in Ranicki [144] define inverses
Ln(A) = La(A)" 5 (Co0) — (C"9)
by sending an n-dimensional quadratic complex (C, %) in A to the highly
B-connected quadratic complex (C’,7’) in A obtained by surgery on the
quadratic pair (C——Ck], (0,%)), with k the least integer such that 2k >

n.
O

Theorem A of Quillen [129] is an algebraic K-theory analogue of the Vi-
etoris mapping theorem, stating that a functor F: A——A’ of exact cat-
egories with contractible fibres is a homotopy equivalence of categories, and
so induces isomorphisms F: K,(A) — K,(A’) in the algebraic K-groups.
There is an evident algebraic L-theory analogue: a functor of algebraic
bordism categories F: A = (A,B,C)—A’ = (A, B/, C’) such that

(*) for every n € Z and every B-connected n-dimensional symmetric com-

plex (C, ¢) in A and every B’-connected (n+ 1)-dimensional symmetric
pair B = (f": F(C)— D', (0¢', F(¢))) in A’ there exists an (n + 1)-
dimensional symmetric pair E = (f:C—D, (d¢, ¢)) in A with F(E)
B’-equivalent to B’
induces isomorphisms F: L*(A) — L*(A’) in the symmetric L-groups, and
L*(F: A——A’) = 0. Similarly for quadratic L-theory. The following highly-
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connected quadratic version is required for the proof of the algebraic w7
theorem in §10 below.

PROPOSITION 3.24 A functor of connected algebraic bordism categories
F: A= (ABC) — AN = (A,B,C)
such that

(x) for everyn € Z and every highly B-connected n-dimensional quadratic
complex (C, 1)) in A and every highly B’-connected (n+ 1)-dimensional
quadratic pair E' = (f': F(C)—D', (8¢, F(v))) in A’ there exists an
(n+1)-dimensional quadratic pair E = (f: C——D, (0¢,1)) in A with
F(E) B -equivalent to E’

induces isomorphisms F: L.(A) — L.(A") in the quadratic L-groups, and
Lo (F:A—sA) =0
PROOF The induced map F": L,,(A)— L, (A’) is one-one because by 3.23 an
element in the kernel is represented by a highly B-connected n-dimensional
quadratic complex (C,1) in A for which there exists a highly B’-connected
(n + 1)-dimensional quadratic pair in A’

E" = (f:F(C)—D", (0¢', F(¥))) .
The corresponding (n + 1)-dimensional quadratic B-Poincaré pair £ =
(f:C—D, (0¢,%)) in A with F(E) B'-equivalent to E’ gives (C,v) =
0€ Ly(A).
The induced map F: L, +1(A)—L,,+1(A’) is onto because by 3.23 every ele-
ment in L, 11 (A’) is represented by a highly B’-connected (n+1)-dimensional
quadratic complex (D', dv") in A’ defining a highly B’-connected (n + 1)-
dimensional quadratic pair £/ = (0—D’, (§¢,0)) in A’. The algebraic
Thom construction (Ranicki [144, 3.4]) applied to the corresponding (n+1)-
dimensional quadratic pair F = (f:C—D, (§%,%)) in A with F(E) B'-
equivalent to £’ is an (n + 1)-dimensional quadratic complex (C(f), v /1)
in A such that

F(C(f),80/%) = (D',6¢') € im(F: Lysy(A)—Lngr (A)) -
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§4. Categories over complexes

An additive category A and a simplicial complex K are combined to de-

fine an additive category { ﬁ ((II?) of K-based objects in A which depends

{ contravariantly n K. In §5 a chain duality on A is extended to a chain

covariantly

duality on { A (( K))’ allowing the extension of an algebraic bordism cate-
A*(K)

gory A = (A, B, C) to an algebraic bordism category {A (K)

DEFINITION 4.1 (i) An object M in an additive category A is K-based if it
is expressed as a direct sum
= 2 M)

ceK
of objects M(c) in A, such that {oc € K| M (o) # 0} is finite. A morphism
f: M—— N of K-based objects is a collection of morphisms in A

= {f(r,0): M(0)—N(71)|o,7 € K} .

. A*(K) . . . .
(ii) Let AL (K) be the additive category of K-based objects M in A, with
morphisms f: M—— N such that f(7,0): M (c)—>N(7) is 0 unless {: E g,
so that B

f(M(c)) € > N(7)

<o

f(M(o)) € > N(7) .

T>0
(iii) Forgetting the K-based structure defines the covariant assembly functor
A*(K) — A; M — M*(K) = ) M(o)
oceK
AK)— A; M — M(K) = > M(o)

ceK
O

ExaMPLE 4.2 The simplicial { chain. complex A(K)_* of K is a finite
cochain A(K)
(2)"(K

)
A(Z), (k) W

) =

(

chain complex in {

= Slolz

(
A(K)(o
{ato) = stz <50
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Regard the simplicial complex K as a category with one object for each
simplex ¢ € K and one morphism o — 7 for each face inclusion o < 7.

A K . . .
DEFINITION 4.3 Let {A [[K]] be the additive category with objects the
covariant
{ ) functors
contravariant

M: K— A; 0 — Mo]

such that {o € K|M][o] # 0} is finite. The morphisms are the natural
transformations of such functors.
m

Assume that the simplicial complex K is locally finite and ordered, so
that for each simplex o € K the set

{K*(U) ={reK|r>o0,|r|=|o|+1}
K.o) = {reK|r<o,|r|=]o] -1}

is finite and ordered, and its elements are written

{K*(U) = {dp0,610,000,...}
K.(o) = {0v0,010,020,...} .

DEFINITION 4.4 Define the covariant assembly functor for a simplicial com-
plex K

B(A)*[K] = B(A*[K]) — B(A,(K)) ; C — C*[K]
{]B%(A*[K]) — B(A*(K)) ; C — C,[K]

by sending a finite chain complex C' in { A to the finite chain complex

AL [K]
C* K] . AJ(K) .
{C’*[[K]] in {A*((K)) with

C*[K), = 3 Clolyol » C7[Kl(0) = S7IC[0]

ceK

CLK], = > Clolijo , Cu[K](0) = §C[o]
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The assembly is the total complex of the double complex in A defined by

.
C*[Klpq = Z Clolq
O’GK,|0’|:—p
CilKlpq = Y. Clolg,
L c€K,|o|=p

p

d': C*[Klpq — C*[K]p-1,4 ; clo] — Z(—)i&c[a]

d': CulKlpq — CulK]p-1,4 ; c[o] — Z(—)iaic[a] ,
{d" D O [Kpg — CF[K]pg-1 5 clo] — der(clo])
d": CilKlpg — CulKlpg-1; clo] — depo)(clo]) ,

dio € K*(o)

ith
Bio € K. (o) "

the sum in d’ being taken over all the elements {

d;: Clo]—C[0;0]
{ 0;: Clo]—C|[0;0]

o——0;0

the chain map induced by the inclusion
0;0—0.

O

EXAMPLE 4.5 The assembly of the 0-dimensional chain complex Z in

A(Z)" K]
{A(Z)*[K] defined by

Z: K— AZ)CB(A(Z)); 0 — Zlo] = Z

cochain

with the identity structure chain maps Z[o] = Z[7] is the simplicial { hai
chain

complex of K

{Z*[K] = A(K)™
Z,[K] = A(K)

already considered in 4.2 above as a chain complex in {

REMARK 4.6 If A is embedded in an abelian category the double complex
{cﬂm

C.[K] of 4.4 determines a spectral sequence E(C) with E?-terms

. [H(K {Hy(Clo)))
@”__{HAK%HAﬂd)%
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(C*[K])
(CL[K])
FpC*[K]q = €K|Z|>_ C1[U]q+|0| gC*[K]q
F,CuK], = > C[O]q—ltﬂ C Cu[K]q -

c€K,|o|<p

which converges to { Z* with respect to the filtration defined by

Define the covariant functors

AT(K) — AT[K]; M — [M], [M][o] = > M(7)

AL (K) — ALK] s M — [M], [M][o] = Y M(r).
For any object M in {ii(é{{)) and any object N in {ii[[KK]]

Homy- 1 ([M], N) = > Homy(M(c), N[o])
Hom, (x]([M],N) = > Homg(M(c),N[o]) .

A direct application of the contravariant duality functor T: A—B (A)
T:A*(K)—B (A).(K)
T:A,(K)—DB(A)*(K)
not define a chain duality on A ,(K). In §5 below the chain duality T: A—

B (A) will be extended to a chain duality { T A (K)—B (A(K))

only gives a contravariant functor { and so does

T: A, (K)—B (A (K)) T8
. o dATE) ATIK]
the following embedding of { AL(K) in the functor category { ALK] .

PROPOSITION 4.7 (i) A finite chain complex C' in {i ((I[({)) is contractible

if and only if each of the chain complexes C(o) (o € K) in A is contractible.

(ii)) A chain map f: C——D of finite chain complexes in {‘i (é?) s a chain

equivalence if and only if each of the diagonal components
flo,0): C(c) — D(o) (0 € K)

is a chain equivalence in A .

PROOF Proposition 2.7 of Ranicki and Weiss [150].
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REMARK 4.8 Given an additive category A let D (A) be the homotopy cat-

egory of finite chain complexes in A and chain homotopy classes of chain

D' (A*[K]) L .
maps. Let {ID '(AL[K]) be the localization of the triangulated category

DAK) | o AK]
{]D (A.[K]) inverting the chain complexes C' in AL[K] such that each

of the chain complexes Clo] (0 € K) in A is contractible. Using the
methods of Ranicki and Weiss [150, §3] it can be shown that the functor
{ A*(K)—A*[K]

AL (K)—A K]
the homotopy categories

is a full embedding which determines an equivalence of

D (A*(K))

D'(A*[K]) ; C — [C],
D (A, (K)) D

=,
— D(AL[K]) ; C — [C].

O

PROPOSITION 4.9 For any finite chain complex C' in A (K) the assembly
[C«[K] of the finite chain complex [C] in A [K] is naturally chain equivalent
to the finite chain complex C\(K) in A obtained by forgetting the K -based
structure.

PROOF Define a natural chain equivalence in A

Be : [CLIK] — C.(K)

by
Bt [ClK]n = ) (A(AF) &5 C(0))n
ceK
— Cu(K)p = Y C(o)n; a®b— e(a)h,

ceK

using the chain equivalences e: A(Al°l)—7Z in A (Z) defined by augmen-
tation.
m

REMARK 4.10 (i) The open star of a simplex o € K is
stg(o) = {re K|t >0}.

Note that K\stx (o) is a subcomplex of K: if A € K does not have o as a
face, and p € K is a face of A\, then pu does not have o as a face. For any
finite chain complex C' in A,[K] and o0 € K projection defines a chain map
in A

0y : CLlK] — CL[K, K\stg(o)]
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with C,[K, K\stk(0)] the quotient complex of C,[K] defined by
CulK, K\stg (o)l = > Clrlrr -
T>0

(ii) The star and link of a simplex o € K in a simplicial complex K are the
subcomplexes defined by

starg (o) = {r€ K|oT € K},
linkg(o) = {reKlote K,onT=10}.

The dual cell of o is the contractible subcomplex of the barycentric subdi-
vision K’ defined by

D(o,K) = {6¢g01...0p, € K'|c <op<o0o1<...<0p},
with boundary

0D(0,K) = | J D(r,K) = {6461...5, € K'|c <09 <01 <...<0p}.
T>0

The barycentric subdivision of the link of o € K is isomorphic to the bound-

ary of the dual cell D(o, K)

(linkg (o))" = 9D(0,K) .
The star and link in K’ of the barycentre ¢ € K’ of 0 € K are given by the
joins
(starg (0),linkg/ (0)) = 9o’ * (D(0,K),0D(0,K)) .

The local homology groups of | K| at a point « € | K| in the interior of 0 € K
are given by

H (K], [K\{z}) = Ho (K, K\stx(0)) -

Now S~I?IA(K, K\stx(0)) is the cellular chain complex of the relative CTW
pair (|D(e, K)|,|0D(c, K)|), with one g-cell

e! = |D(o, K)NT'|
= AR ek lo<n<n<...<np <7} (g=|r|—]o|)
for each 7 € stx (o). The subdivision chain equivalence

S™I7IA(K, K\stx (0)) = C(|D(0,K)]|,|0D(0, K))

— A(|D(0, K)|,|0D(0, K)|)
induces isomorphisms
H,(K,K\stg(o)) = H,_|;|(D(0,K),0D(0,K)) .

The following conditions on a locally finite simplicial complex K are equiv-
alent:
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(i) the polyhedron |K| is an n-dimensional homology manifold, i.e. the
local homology of | K| at each point x € |K]| is

HL (K| |K\{z}) = H.(R",R"\{0}) = {

(ii) K is a combinatorial homology n-manifold, i.e. for each simplex o € K
H. (K, K\stx(0)) = H.(R",R"\{0}) ,
(iii) each linkg (o) (0 € K) is an (n—|o|—1)-dimensional homology sphere

7 ifx=0,n—|o|—1
0 otherwise ,

Z ifx=mn
0 otherwise,

H. (linkge(0)) = H,(s"l1-1) = {

(iv) each dD(o, K) (0 € K) is an (n—|o|—1)-dimensional homology sphere,
(v) each (D(0,K),0D(0,K)) (o0 € K) is an (n — |o|)-dimensional geomet-
ric Z-coefficient Poincaré pair with
H*(D(0,K),0D(0,K)) = H,_|s—«(D(0,K)) .

If |K| is an oriented n-dimensional homology manifold with fundamental
class [K] € H,(K) then for each 0 € K (D(0, K),0D(0, K)) is an oriented
(n — |o|)-dimensional homology manifold with boundary, with fundamental
class

0,[K] = [D(0,K)] € Ho(K, K\stx(c)) = Hy_,(D(c,K),0D(0, K)) .
O

By contrast with 4.9, for a finite chain complex C' in A*(K) the assembly
[C]*[K] is not chain equivalent to C*(K). If K is an oriented n-dimensional
homology manifold with boundary 0K then [C]*[K] is chain equivalent to
STMC*(K)/C*(0K)).

EXAMPLE 4.11 As in 4.2 regard the simplicial cochain complex A(K)™* as
a chain complex in A (Z).(K), with
A(K) (o) = STz (s e K) .
The associated chain complex [A(K)™*] in A (Z).[K] is such that
[A(K) ™ lo] = A(K,K\stx(0))™" (0 € K).
The spectral sequence E([A(K)™*]) of 4.6 is the dihomology spectral se-
quence of Zeeman [192] converging to H ™ *(K), with
E? = Hy(K;{H YK, K\stg(0))}) -
If K is an n-dimensional homology manifold

. Z ifr=n
H (K, K\stie(0)) = {O otherwise (0 K),

and the spectral sequence collapses to the Poincaré duality isomorphisms
H" (K) = H.(K),
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using twisted coefficients in the nonorientable case. See McCrory [106] for
a geometric interpretation of the Zeeman spectral sequence.
]

EXAMPLE 4.12 The simplicial chain complex A(K) is Z-module chain equiv-
alent to the assembly B*[K] of the chain complex B in A (Z)*[K]| defined
by
Blo] = A(K,K\stg(0)) (c € K),
with a chain equivalence
A(K) — B*[K]; 0 — 7 .
For any n-cycle [K]| € A, (K) let
[K][o] € Bulo] = An(K, K\stk(0)) (0 € K)
be the image n-cycles. Evaluation on [K] defines a chain map in A (Z)*[K]
¢ = ([K],—-): S"Z — B
with
" ey K]
¢lo] = ([K]lo], =) : S"Zlo] = S"Z — A(K)
— Blo] = A(K,K\stk(0)) .
The assembly of ¢ is the cap product Z-module chain map
oK) = [K]n—1: S"ZIK] = A(K)"™* — B*[K] ~ A(K).

The following conditions on K are equivalent:

(i) K is an n-dimensional homology manifold with fundamental class

K] € H,(K), with each ¢[o] (¢ € K) a Z-module chain equivalence,

(ii) ¢: S"Z— B is a chain equivalence in A (Z)*[K].

For a homology manifold K the assembly ¢[K] is the Poincaré duality chain

equivalence.
|

EXAMPLE 4.13 The simplicial chain complex A(K") of the barycentric sub-
division K’ is the assembly C.(K) = A(K’) of the chain complex C in
A(Z).(K) defined by

C(o) = A(D(0,K),0D(0,K)) (0 € K) .
The Z-module chain equivalences given by augmentation
elo]:[Cllo] = AD(0,K)) — Z[o] = Z;7 —1 (0 <7€K)

define a chain equivalence ¢: [C]—Z in A (Z).[K], with Z as in 4.5. C is
chain equivalent in A (Z),(K) to the assembly B*[K] of the chain complex
B in A (Z)*|K] of 4.12, with Bo| = A(K, K\stx (0)).
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As in McCrory [106, §5] consider the Flexner cap product Z-module chain

map
Arp: A(K) @z A(K)™" — A(K')
defined by
>e(S)S ifr<o
AFZ AP(K)(@ZAq(K)——%Ap_q(K/); O'®7'*———> S
0 otherwise
with S running over the r-simplexes of the dual cell of 7 in o
D(o,7) = o' ND(1,K)
= {(6¢61...0,) e K'|[T<0pg<01<...<0.<0},
with » = p — ¢ and
e(S) = €(og,01)€(01,02) ... €(0r-1,0,) € {+1,—1}
the product of the incidence numbers of the successive codimension 1 pairs
of simplices, defined using the ordering of K. The adjoint of Ap is a Z-
module chain map
AAp : A(K) —— Homy (Z)*(K)(A(K)_*a A(K’))
which is shown to be a chain equivalence in 7.3 below. Cap product with
any homology class [K] € H,(K)
¢ = [K]Nn—: H"*(K) — H.(K') = H.(K)
is induced by the chain map ¢ in A (Z).(K) obtained by the evaluation of
AAFp on any representative n-cycle [K] € A, (K)
¢ = AAp[K] = [K]N—: AK)"™ — A(K') .

The diagonal components of ¢ are the Z-module chain maps

¢(o,0) = ([K]lo], ) :

AK)"™*(0) = §"71712 — A(K')(0) = A(D(o, K),0D(0, K))
obtained by the evaluations on cycles representing the images of [K]
(K)lo] € Ha(K,K\stx () = Hojo) (Do, K),0D(c, K)) .

The following conditions on K are equivalent:

(i) K is an n-dimensional homology manifold with fundamental class
[K] € H,(K), with each ¢(0,0) (¢ € K) a Z-module chain equiv-
alence,

(ii)) ¢ = [K]N—: A(K)"*—A(K’) is a chain equivalence in A (Z).(K).
For a homology manifold K the assembly ¢.(K) is the Poincaré duality
chain equivalence.

o
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DEFINITION 4.14 (i) Let X be a topological space with a covering

U X[ = X

veV
by a collection { X [v] |v € V'} of non-empty subspaces X[v] C X. The nerve
of the covering is the simplicial complex K with vertex set K(©) =V, such
that distinct vertices vg,v1,...,v, € V span asimplex o = (vgvy ...v,) € K
if and only if the intersection

X[o] = Xwo]NX[vi]N...N X]vy,]

is non-empty.
(ii) Let K be simplicial complex. A K-dissection of a topological space X
is a collection {X|[o]|o € K} of subspaces X[o] C X (some of which may

be empty) indexed by the simplexes o € K, such that
Xlor] if o,7 € K span a simplex o1 € K

@ Xiolnxi] = {,

otherwise ,
b) |J X[l = x.
ceK
The nerve of the covering of X is the subcomplex {oc € K | X[o] # 0} C K.

m
EXAMPLE 4.15 Let X, K be simplicial complexes. If f: X—— K’ is a sim-
plicial map then {X[o] = f~!'D(0,K)|oc € K} is a K-dissection of X.
Conversely, any K-dissection {X|[o]|o € K} of X determines a simplicial
map g: X'— K’ with g7 D(0,K) = X[o]’ (0 € K).
For any K-dissection {X[o]|o € K} of X define 0X[o] C X|o] to be the
subcomplex
0X[o] = U X[r] (c € K).
T>0
The simplicial chain complex of X is a chain complex C\(K) = A(X) in
A(Z).(K) with
Clo) = A(X[0],0X[d]) , [C]lo] = A(X]o]) (0 € K) .
The assembly [C].[K] is the cellular chain complex of the homotopy colimit
CW complex

[X] = hocolim X[os] = ( IT 2" % X[a])/{(a,@ib) ~ (8;a,b)}

ceK oK

with one (p + ¢)-cell for each p-simplex o € K and each ¢-simplex in X[o].
The projection

(X] — |X]|; (a,b) —> b

is a map with contractible point inverses, inducing the chain equivalence
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B [Cl«[ K] i>C’,k(K) of 4.9. Define a filtration of [X] by
F,[X] = hocolim X|o]
UEK»"T'SP
= ( IT a xX[a])/{(a,@ib) ~ (da,b)} .
o€K,|o|<p

The spectral sequence determined by the corresponding filtration of [C].[K]
is the spectral sequence E([C]) of 4.6, namely the spectral sequence with
respect to the first grading of the double complex D with

Dpq = Cpyq(Fp[X]) = Z Aq(X[o])

oc€K,|o|=p

ZZ a 0-—>0- Dp,q — Dpfl,q )

= ZdA(X[U]) t Dpq —> Dpg-1 -

E([C]) is the Leray—Serre spectral sequence with E?-terms

Equ = Hy(K;{Hy(X[o])}) ,

converging to

with
Epsy = im(Hpyq(Fp[X])——=Hpq(X))/im(Hpyq(Fp—1[X])—Hp (X)) .

O

ExXAMPLE 4.16 Given a topological space X let Open(X) be the category
whose objects are the open sets in X and whose morphisms are inclusions
of open sets. Let K be the nerve of a finite open cover U = {U,|j € J}
of X, and let R be a commutative ring. The Cech complexr (Bott and Tu

[12,p. 110]) of U with coefficients in a { contrfwamant
covariant

F: Open(X) — B(R) ; U — F(U)
is the assembly R-module chain complex

cw.r = { G

of the { A (R)"[K] -module chain complex C defined by

functor

O[JOJIJH] = F(Ujo ﬂUjl ﬂ...ﬂan) ((.70]1 ) K(n))

In particular, for any finite open cover U of a differentiable manifold X there
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} contravariant
is defined a { ) functor
covarlant

0 (U)

F = {Q* : Open(X) — B(R) ; U — {Q*(U)

0
0 (U)
Q)

of { - differential forms on U. The assembly R-module
compactly supported

sending an open subset U C X to the R-module chain complex {

chain complex C(U, F') is the { Cech—deRham complex

of X, with homology
HL(C(U, F)) = {

compactly supported

H*(X;R)
H7*(X;R)
8.5

deRham cohomology of X, as in [12, { 12.12

the {compactly supported ]'D
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§5. Duality

An algebraic bordism category A = (A, B, C) and a locally finite simplicial
complex K will now be shown to determine an algebraic bordism category
{A*(K) = (A*(K),B*(K),C*(K))

A(K) = (AL(K),B.(K),C.(K))

contravariantly

covariantly

quadratic) L-groups of this category will be identified with the generalized
cohomology

{ homology

which depends n K. In §13 below the symmetric (resp.

groups of K

{L”<A*<K>> = HOURGL)
L(

(
L™M(A(K)) = Hn(K;L(A))

(A (K) = H (KAL)
Ui = moenay ) 052
with coefficients in an -spectrum L'(A) (resp. L.(A)) of Kan A-sets such
that

(resp.

a(L'(A)) = L"(A) (resp. ma(L.(A)) = La(A)) .

Algebraic Poincaré complexes in A*(K) are analogues of the ‘mock bun-
dles’ over K used by Buoncristiano, Rourke and Sanderson [22] as cocycles
for generalized cohomology h*(K). For PL bordism h = QFf a (—d)-
dimensional cocycle p: E— K is a d-dimensional mock bundle, a PL map
such that the inverse image p~1(o) (0 € K) is a (d + |o|)-dimensional PL
manifold with boundary p~!(dc). Dually, algebraic Poincaré complexes in
A (K) are analogues of manifold cycles for generalized homology h.(K).
For PL bordism a d-dimensional cycle p: E— K is just a PL map from a
d-dimensional PL manifold E, in which case the inverse image p~(D(c, K))
(0 € K) is a (d — |o|)-dimensional manifold with boundary p~!(0D(o, K)).

For the additive category M (Z) = {Z-modules} write
{M(Z)*(K) = Z*(K) {M(Z)*[K] = Z'[K]
M(Z).(K) = Z.(K) ~ \M(Z).[K] = Z.[K]
For any finite chain complexes C, D in A there is defined an abelian group

chain complex C' @4 D = Homy (T'C, D) as in §3. Given chain complexes

: A*[K] . . 7* K]
C,D in {A*[K] define a chain complex C ®, D in {Z*[K] by

(C ®a D)[o] = Clo]®a Dlo] (0 € K),
and let
Tep: C®aD — D@,y C
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be the isomorphism with components
Te,plo] = Tepe),plo) : Clo] ®a Dlo] — Dlo] @4 Clo] (0 € K) .

PROPOSITION 5.1 An algebraic bordism category A = (A, B, C) and a locally
finite ordered simplicial complex K determine an algebraic bordism category

{A*(K) = (A%(K),B"(K),C"(K))
A(K) = (A(K),B.(K),C.(K)) .
B (

T: A" [K]—B (A*(K))

PROOF Define a contravariant functor by sending
| | T: A [K)—B (A.(K))
an object M to the chain complex T'M with
T(M[U])T—|J|
TM),. (o) =
w00 = { iy

dry(o,0) = dry(o) : (TM), (o) — (T'M),—1(0) ,
dry(r,0) = (=)' T(M[r]—Mlo]) : (TM),(0) — (TM),—1(7)
g fo>T lo| =|7|+1, 7 =00
o<, lo|l=|r—-1, c =0T .
The contravariant functor defined by the composite
T A*(K) — A*[K] — B(A*(K))
T
T: A(K) — AK] — B((A(K))

. . . A*(K)
is such that for any objects M, N in {A*(K)
{M®A*(K)N = Homy«(g)(TM,N) = ([M]®a [N])*[K]
M @y (k)N = Homy () (TM,N) = ([M]®4 [N]):[K]
M @p«cy N
Thus {M gi Ei; N is a chain complex in A with
(M @ury N)e = 32 >0 (M(A) @ N(1))rt10)
ceK \u<o
(M @p. )y N)r = > >0 (M(A) @4 N(1))r—o| -
ceK \u>o

The duality isomorphism of Z-module chain complexes
TM,N : M®A*(K) N — N®A*(K) M
Ty : M®A*(K) N — N®A*(K) M
for N =T'M sends the O-cycle
{1 € (M ®A*(K) TM)O = HOI’HA*(K)(TM,TM)O
1e (M ®A*(K) TM)O = HOHIA*(K)(TM,TM)O
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to a O-cycle
e(M) € (TM @u+(xy M)o = Homp« () (T?M, M)
e(M) € (TM ®a, (1) M)o = Homy, s (T?*M, M) ,
defining a natural transformation
e: T? — 1: A*(K) — B(A*(K))
{e :T? — 1: AJK) — B(A.(K))
such that e(TM).T(e(M))

= 1.
The additive category {g Egg is the full subcategory of {ggﬁ ((II?)))

with objects the finite chain complexes C' in { ﬁ ((II?) such that each C(0)
(0 € K) is an object in B. The dual chain complex T'C' is then also defined
. BYK) & . C*(K)
in {E*(K). Similarly for {C*(K).

m

ExXAMPLE 5.2 If the chain duality on A is 0-dimensional (e.g. if A = A (R) =

{f.g. free R-modules}) then the dual of an object M in {ﬁ ((II?) is the

chain complex T'M in { A (K) with
r=lo|

T10) = (M) it {717,

B = 0 otherwise .

O

EXAMPLE 5.3 The chain complexes B,C in A (Z).(K) defined in 4.2 and
4.15 by

B(o) = Sz | B.(K) = A(K)™,
C(oc) = A(D(0,K),0D(0,K)) , Cu(K) = A(K') ~ A(K)
are dual to each other, with the subdivision chain equivalences in A (7Z)
TB(o) = S7TIPIA(K, K\stx(0)) ~ C(0) = A(D(0,K),dD(0,K))
defining a chain equivalence TB ~ C' in A (Z).(K).
m

EXAMPLE 5.4 An m-dimensional quadratic Poincaré complex n-ad over
a ring with involution R in the sense of Levitt and Ranicki [94, §3] is an
(m — n)-dimensional quadratic Poincaré complex in A (R)*(A").

m

EXAMPLE 5.5 Let C be the chain complex in A (Z).(K) associated to a
K-dissection {X[o]|o € K} of a simplicial complex X in 4.15, with

Clo) = A(X[0],0X[0])) (0 € K) , Cu.(K)=A(X).
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For any n € Z the n-dual of C is the chain complex ¥"TC = C"™* in
A(Z).(K) with
C"*(0) = A(X[o])" 1
[C"lo) ~ A(X[o],0X[0])* 117" (0 € K),
(C")(K) = ([CLIK)"™ ~ AX)"".
i

A A-map of simplicial complexes is a simplicial map which is injective on
simplexes.

PROPOSITION 5.6 Let A = (A, B,C) be an algebraic bordism category.

A— . S .
A { simplicial map f: J—K of finite ordered simplicial complexes induces

{ contravarianily a covariant functor of algebraic bordism categories

covariantly
f*: AN(K) — A*(J)
ot A(J) — AL(K)
inducing morphisms of the symmetric L-groups
{f* L LAN(K)) = H(KLA(A)) — L7(A*(J)) = H"(J5L'(A))
fo o LM(AL(T)) = Hp(J;L0(A)) — L"(AL(K)) = Hp(K;L(A))
Simalarly for the quadratic L-groups.
PROOF See §13 below for the identifications of the L-groups with the gen-

eralized (co)homology groups.
(i) The functor induced by a A-map f: J—— K is defined by

ffr ANK)— A"(J); M — M, f*M(oc) = M(fo),

with T(f*M) = f*(T'M).
(ii) The functor f.: A, (J)—>A.(K) induced by a simplicial map f: J— K
is given by
for Bu(D) — AL(K); M — f.M | fM(T) = Y M(o),
ced,fo=T1
with
(fM)u(K) = M.(J) = Y M(o) .
oeJ

For any object M in A ,(J) define a C-equivalence in A

Br(M) : [M].[J] — [f.M].[K]
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by
Br(M) = [M]L[J], = (DA @z M(o)), —
ceJ
[fM]K], = () AAV )&, M(0)), s a®b — fa®b.
ced

The dual C-equivalences determine a natural C, (K )-equivalence
G(M) = T(Bf(M)) : T(f.M) — f(TM),

making F' = f.: Ay (J)— A (K) a functor of algebraic bordism categories.
m

EXAMPLE 5.7 Given a simplicial complex K let f: K——{x} be the unique
simplicial map. The assembly of a finite chain complex C' in A ,(K) is the
finite chain complex C,[K]| = f.C in A induced by the functor

fo t A(K) — AL({x}) = A.
The C-equivalence defined in the proof of 4.9 is given by
Be = B4(C): [OLIK] — Cu(K) .
]

ExAMPLE 5.8 Let X,J be simplicial complexes such that X has a J-
dissection {X|[o]|o € J}, so that as in 4.15 there is defined a chain complex

Cin A(Z).(J) with
Clo) = A(X[o],0X]0]) , [C]lo] = A(X[o]) (0 €J).
The pushforward of C' with respect to a simplicial map f: J——K is the

chain complex f,.C in A (Z).(K) associated to the K-dissection { f. X[7] | T €
K} of X defined by

LX) = U Xl
oed, f(o)=T1
In particular, if X[o] = g~'D(o, J) for a simplicial map g: X —.J’ then
fX[r] = (f'9)7'D(r,K) (1 € K)
for the composite simplicial map f’g: X —J' — K, since
fID(1,K) = lJ Do) (r€K).
o€, f(o)=T

REMARK 5.9 The method of 5.1 also applies to show that
{A*[K] = (A*[K],B*[K],C~[K])
A [K] = (ALK],B.[K], C.[K])
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is an algebraic bordism category, with the chain duality

T A*[K] — B(A*(K)) — B (A*[K])

T
T: AK] — B(A.(K)) — B(A.[K])
such that for any objects M, N in {ﬁ [[KK]]

) = (M ®a N)*[K]
) = (M ®a N)[K].

{M@A*[K]N = HOIIlA*[K](TM N
k) (TM, N

M®A*[K] N = HOD’IA* T

O

EXAMPLE 5.10 The dual in the sense of 5.9 of the object Z in A (Z).[K]
of 4.5 is the chain complex [A(K)™*] in A (Z).[K] associated to the chain
complex A(K)™* in A(Z).(K) of 4.2
TZ = [A(K)™],
with
TZlo] = [A(K)"][lo] = A(K,K\stx(0))™" (0 € K) .
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§6. Simply connected assembly

Asin §5 let A = (A, B, C) be an algebraic bordism category, and let K be a
locally finite simplicial complex. The simply connected assembly functor of
algebraic bordism categories A,(K)——A will now be defined. The simply
connected assembly map for the algebraic bordism category A = A(R) of
a ring with involution R will be generalized in §9 to a universal assembly
functor A(R).(K)—A(R[m(K)]).

PROPOSITION 6.1 The assembly functor of §4
A(K)— A; M — M.(K)
extends to a simply connected assembly functor of algebraic bordism cat-

symmetric

quadratic L-groups

egories A (K)—A inducing assembly maps in the

{L”(A*(K)) — L(A) 5 (C,0) — (Cu(K), 0. (K))
Ln(A(K)) — La(A) 5 (C,¢) — (C(K), 9 (K)) -

PROOF For any object M in A ,(K) use the dual of the natural chain equiva-
lence By [M]«[K] = M., (K) given by 4.9 to define a natural C-equivalence
Ty : TOL(K) = T(MLIK]) = (TM).(K)

In particular, for any finite chain complex C' in A ,(K) there is defined an

assembly Z|[Zs]-module chain map
C ®a,(x)C = Homy, ()(TC,C) —
Homy ((TC).(K),Ci(K)) ~ Homy(T(Ci(K)),Ci(K))
= Cu(K) @4 Cu(K) .
o

The Alexander—Whitney—Steenrod diagonal chain approximation of a sim-
plicial complex X is a Z-module chain map

Ax : AX) — WPA(X) = Homgg, (W, A(X) @z A(X)) ,
called the symmetric construction in Ranicki [145]. The evaluation of Ax
on any n-cycle [X] € A, (X) representing a homology class [X]| € H,(X)
determines an n-dimensional symmetric complex (A(X), ¢) in A (Z), with
¢ = Ax([X]), such that

po = [X]N—: AX)"™" — A(X) .
If X is an n-dimensional Z-coefficient geometric Poincaré complex with fun-

damental class [X] € H,(X), then ¢q is a chain equivalence and (A(X), ¢)
is an n-dimensional symmetric Poincaré complex in A (Z).



82 ALGEBRAIC L-THEORY AND TOPOLOGICAL MANIFOLDS

EXAMPLE 6.2 Given a K-dissection {X|[o]|o € K} of a simplicial complex
X let C be the chain complex in A (Z).(K) defined in 4.15, with

C(o) = A(X|o],0X]o]) (c € K) , C.(K)=A(X).
The symmetric constructions
Axio : [C)lo] = A(X[o]) — W#A(X[o)) (o € K)
fit together to define a Z-module chain map
Ao : [CLIK] — WHC = Homgpz, (W, ([C] @2 [C)).[K]) .

The evaluation of Ax on any n-cycle [X] € [C].[K], representing a homol-
ogy class

[X] eHn([C]*[K]) - Hn(C*(K)) - Hn(X)

determines an n-dimensional symmetric complex (C, ¢) in A (Z).(K) with
¢ = Ac¢[X], such that the assembly is homotopy equivalent to the n-
dimensional symmetric complex in A (Z)

(Cu(K), 04(K)) = (A(X), Ax([X]))

considered in Ranicki [145]. Let E = E([C]) be the Leray—Serre spectral
sequence associated to the double complex D of 4.15, with E%-terms

E2, = Hy(K;{Hy(X[o])}) ,

converging to H,(X). For each o € K let D[o] be the quotient double
complex of D defined by

Diolp,q = Z A(X[T])q ,

T>0,|T|=p
and let
9, : A(X) ~ D — D[o] ~ SI¥IA(X[0],0X][0])

be the chain map determined by the projection of the total complexes. (See
8.2 below for a direct construction of d,.) The n-dimensional symmetric
complex (C,¢) in A (Z).(K) is such that

do(0) = [X(@)]N—: C"*(0) = A(X][o])"lol=>
— C(o) = A(X[0],0X[0])
with
[(X[o]] = 0, ([X]) € Hyjo)(X[0],0X[0]) (0 € K) .

The spectral sequence E = E([C™"*]) of 4.6 is the spectral sequence of the
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double complex D with

Dpg = Z A(X([o], X[0o])" P71,

geK, |o|=p

— i % — R

d =) > (=)(6—60)": Dpyg —> Dp-14,
—/! * .
d' =) dAxiolox(o)) :

The E -terms are given by

E,, = Hy(K; {H" 177X [0],0X[0])}) ,

p,q

D,q ? Dp,q—l :

)

and E converges to

H ([C"7L[K]) = H"(X)
with respect to the filtration

E,H" *(X) = ker (H”‘*(X) —H"( U Xlo] )) :
c€K,|o|>p
Cap product with [X] € [C].[K],, defines a map of double complexes
[X]N—: D — D
given on the E2-level by the cap products
2 n—|o|—
{[X[INn=}: B,y = Hp(K; {H"""7(X[0],0X[0])})
— By, = Hy(K; {Hy(X[o])})

and converging to the cap product

[(X]Nn—: H""(X) — H.(X)
on the E>-level. In particular, if each (X[o]|,0X]o]) (¢ € K) is an (n —
|o|)-dimensional Z-coefficient geometric Poincaré pair then (C, ¢) is an n-
dimensional symmetric Poincaré complex in A (Z).(K) and X is an n-
dimensional Z-coefficient geometric Poincaré complex. This is a general-

ization of the familiar result that a homology manifold is a Poincaré space.
]

ExXAMPLE 6.3 Let {X[o]|o € K} be the K-dissection of the barycentric
subdivision X = K’ defined by the dual cells

X[o] = D(0,K) (0 €K),
which are contractible. In this case the Leray—Serre spectral sequence E of

4.15 collapses, with

E}, = Hy(K;{H,(D(0,K))}) = {éfp(K) gg;g
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and 5.5 gives the Zeeman dihomology spectral sequence E (already discussed
in 4.11) converging to H" *(K), with
E,, = Hy(K;{H""°1=9(D(0, K),0D(0, K))}) .

p,q
O

REMARK 6.4 The assembly functor A ,(K)——A is defined in 6.1 using
actual colimits, but there is also an assembly functor

AJK] — B(A); M — M,[K],
using chain homotopy colimits. By an abstract version of the Eilenberg—

Zilber theorem there is defined for any chain complex C in A ,[K] an as-
sembly Z-module chain map
ap @ (C @y O) K] — CiK]®a Ci[K] .

As for the construction of the Steenrod squares «q is only Zs-equivariant
up to a chain homotopy aq:apT =~ Tag, with a1 Zs-equivariant up to
a higher chain homotopy as:a3T =~ Ta;, and so on ..., defining a ‘Zso-
isovariant chain map’ {as|s > 0} in the sense of Ranicki [144,§1]. The
simply connected assembly of an n-dimensional symmetric complex (C, ¢)
in A ,[K] is an n-dimensional symmetric complex in A

(C,9)[K] = (C[K], ¢u[K]) .
In particular, for any n-cycle
K] = Y rr€Z.K]n = AK), (r, €Z)
TEK,|T|=n
there is defined an n-dimensional symmetric complex (Z, ¢) in A (Z).[K],
with

Zilo] = {Z h=0 (G eR) | Z.K] = AK).

0 ifk+£0
go = > r(1®1)€(Z@zL).Kln = Y (Zlo]®zZ[0])n 0| ;
TEK,|T|=n ceK

¢s = 0€ (Z®@zL)«[Klnys (s>1)
such that the assembly in A (Z) is the n-dimensional symmetric complex
(Z;0):[K] = (A(K), ok ([K]))
considered in Ranicki [145]. By 5.10 the n-dual of Z is the chain complex
in A (Z).[K]
z = S"TZ = [C)

associated to the chain complex C in A (Z),(K) with

Clo) = Sz, C.(K) = AK)"™,

Z" o] = [Cllo] = A(K,K\stx(0))"™™ (0 €K).
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The duality chain map in A (Z),[K]
¢o = [KlN—=:2""7"—1Z
has components
¢olo] = ([K][o], =) :Z""[0] = A(K, K\stk(0))"™ — Z[o] = Z;

rr ifr>0, |7 = n

—s { ,
0 otherwise

with [K][o] the image of [K]
K]lo] = > rm e A(K, K\stg(0))n (0€K).

T>0,|T|=n

The assembly duality chain map ¢o[K]|: (2" ") [K]—Z «[K] in A (Z) fits
into a chain homotopy commutative diagram

Po[K]

(Z"7)[K] = [ClL[K]

~

Be [K]n—
Ci(K) = AK)"

with B¢ the chain equivalence given by 4.9. Thus K is an n-dimensional Z-
coefficient homology manifold (resp. Poincaré complex) with fundamental
cycle [K] € A(K),, if and only if the chain map ¢g: Z" " ——Z in A (Z).[K]
is such that each

¢olo] : Z"[o] — Z[o] (0 € K)
is a Z-module chain equivalence (resp. the assembly ¢o[K]: (2" ). [K]—>
Z «[K] is a Z-module chain equivalence). Identifying

H(Z""[0]) = H" (K, K\stk(0)) = H""(|K|,[K\{c})

= Hn_|g|_* (starK/ (8), link g/ (6'\)) (O’ S K) ,
we again recover the result that a homology manifold is a geometric Poincaré
complex. This is the chain homotopy theoretic version of the spectral se-
quence argument of 6.2.
]
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§7. Derived product and Hom

Borel and Moore [11] defined derived duality in the category of chain com-
plexes of sheaves of R-modules for a Dedekind ring R, using it to prove
Poincaré duality for R-coefficient homology manifolds. It is a special case
of the Verdier duality for chain complexes of sheaves, which plays an impor-
tant role in intersection homology theory — see Goresky and MacPherson
[63,1.12]. The chain duality defined in §5 on the category of chain complexes
in A (R).(K) (for any commutative ring R and finite simplicial complex K)
will now be interpreted as a Verdier duality, with A(K’; R) as the dualizing
complex.

For a Dedekind ring R with field of fractions F' the derived dual of an
R-module M is defined to be the R-module chain complex

TM : ... — 0 —» Hompg(M, F) —s Homg(M, F/R) ,

using the injective resolution F——F'/R of R. The derived duality M —T M
has better homological properties than the ordinary duality M—M* =
Hompg(M, R). The homology H,(TC) of the derived dual T'C' of an R-
module chain complex C' depends only on the homology H,(C'), with uni-
versal coefficient theorem split exact sequences

0 — Extr(H,-1(C),R) — H,(TC) — Homg(H,(C),R) — 0 .
For a finite f.g. free R-module chain complex C the derived dual T'C' is

homology equivalent to the ordinary dual C* = Hompg(C, R).
Let A = A (R) = {f.g. free R-modules} for a commutative ring R. From

o A(R).[K] . .
now on, the additive categor defined in §6 will be denoted
oy {1 §
A[R, K] . . . R, K]-
by {A(R, K), and its objects will be called (f.g. free) { (R, K)- modules.

Given an { E};{’ I[i]) -module chain complex C' denote the corresponding R-
. C[K] CL[K]
module chain complex by { C(K) rather than by { C.(K).
The abelian groups Homg (M, N), M ®r N are R-modules, for any R-

modules M, N, since the ground ring R is commutative. Thus for { E];’ K];_

modules M, N there are defined R-modules and R-module chain complexes
Hom(p x)(M, N) = Homy g x)(M, N) M @r k) N =M @4 r,x] N

{Hom(RyK)(M, N) = Homy (g i) (M, N), {M@(RK) N =M ®,r,x) N .
Given (R, K)-module morphisms f: M—— M’ g: N——> N’ there is defined

an R-module morphism

(f*,9+) + Homg gy (M', N) — Hom(g g)(M,N') ; h — ghf .
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By the definition of (R, K)-module morphisms
Hom(R,K) (M, N) = Z HOHlR<M(O'), [N] [0]) .
ceK
Thus it is possible to give the R-module Hom g g)(M, N) the structure of
an (R, K)-module by setting
Hom g x)(M,N)(0c) = Hompg(M(o),[N][c]) (0 € K),
but this is unnatural: if f is not the identity the R-module morphism (f*, g.)
is not an (R, K)-module morphism.

The following derived products and Hom functors are modelled on the

derived functors appearing in sheaf theory, and allow the resolution of
Hom (g, x)(M,N) by an (R, K)-module chain complex RHom g g)(M, N)
which is natural in both M and N.

DEFINITION 7.1 The derived product M Rp N of (R, K)-modules M, N is
the (R, K)-module with
(MBRN)K) = 3 M) &g N(p) € M(K) @ N(K) |
M uEK ANp#D
(MRRN)(o) = > MQA)®rN() (0€K).
ANp=0o
The associated [R, K]-module [M Xp N] is such that
[M®g N]lo] = [M]lo]®r [N][o] (o€ K),
[M Xg N][K] = M ®rx) N = Hompx)(T'M,N),
with 4.9 giving an R-module chain equivalence
BMgRN . M®(R,K) N ;> (M &R N)(K) .
m
The derived product C' X D of (R, K)-module chain complexes C, D is
the (R, K)-module chain complex

(CRRD),= > C,RpDy, dzRy) =z Rdy+(-)de Ry .
ptg=r
The R-module chain complex (C' X D)(K) is a subcomplex of C(K) ®p
D(K) such that there is defined a chain equivalence

Bewpp : C®rxy D = [CXg D|[K] = Homg g)(TC, D)
— (CRg D)(K)

and
H,((CXgr D)(K)) = H,(C®r,x) D)

= Ho(Homp 1) (C""", D)) (n€Z).
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EXAMPLE 7.2 Let f: X— K', g: Y —— K’ be simplicial maps, so that there
are defined (R, K)-module chain complexes C, D as in 4.16, with

C = AX;R) , [Cllo] = A(f7'D(0,K);R) (0 € K),
D = A(Y;R) , [Dl[r] = A(g"'D(r,K);R) (7 € K).
The derived product CXp D is chain equivalent to the (R, K)-module chain

complex A(Z; R) associated to a simplicial map h: Z— K’, with Z a tri-
angulation of the pullback polyhedron

1Z| = {(z,y) € |X| x [Y]| f(z) = g(y) € |K'|}
and h a simplicial approximation of the map
Z] — |K'| 5 (z,y) — flz) = 9(y) -
The R-module chain complex Hom g x)(A(X; R), A(Y; R)™") is chain equiv-
alent to A(X x Y, X x Y\Z; R)™*, with

A(Y;R)*(r) = Alg™'D(r,K);R)""™" (1 € K) .
i
ExXAMPLE 7.3 The adjoint of the Flexner chain level cap product (4.13) is
a Z-module chain equivalence
AAp : A(K) — Hom ) (AK) ™ A(K") ~ A(K') By A(K)
by the special case f=g=1: X =Y = K— K of 7.2.
i

EXAMPLE 7.4 The Alexander—Whitney diagonal chain approximation for
K is defined by

Ag : AK) — A(K) @ A(K) ;

n
(Vo1 - .. Vy) — Z(vovl o 0;) @ (VU1 - V)
1=0

Let C be the (Z, K)-module chain complex defined as in 4.15 by
C(K) = AK') , C(o) = A(D(0,K),0D(0,K)) (6 €K).
The Alexander—Whitney diagonal chain map for K’ factors through a (Z, K)-
module chain equivalence
A i AK") — AK") Ry A(K') € AK') 0z AK) .
m
DEFINITION 7.5 The derived Hom RHom g xy(M,N) of (R, K)-modules
M, N is the (R, K)-module chain complex
RHomp x)(M,N) = TMXgrN .
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The derived Hom defined for any (R, K )-module chain complexes C, D by
RHomp xy(C,D) = TCXgr D,
is such that there is defined an R-module chain equivalence
Brewyp : Homg )(C, D) = [RHomg i) (C, D)|[K] = [TCXg D]|[K]

— RHom(p.x)(C, D)(K) = (T'C K D)(K) .
PROPOSITION 7.6 * The (R, K)-module chain complex A(K'; R) with
A(K';R)(0) = A(D(0,K),0D(0,K); R) (0 € K)

is a dualizing complez for the chain duality T: A (R, K)—B (A (R, K)) with
respect to the deriwved Hom, meaning that T is naturally chain equivalent to
the contravariant functor

T = RHom(R,K)(_7 A(K/; R)) DA (R7 K) — B (A (R7 K)) )
M — T/M = RHOI’H(R,K)(M,A(K/,R)) .
PROOF Use the augmentation R-module chain maps e: A(K’; R)(c)—R

to define a natural transformation 7/ ——T
T'M(o) = (TMXgrA(K';R))(0) — TM(c) g R = TM(o) ;

() @ y(p) — z(A) @ ey(p) -
This is a natural chain equivalence, since the R-module chain maps
l@e: [T'M]lo] = [TM][o] ®r [A(K'; R)][0]
= [TM]lo] @r A(D(0,K); R) — [TM][o] ®r R = [TM]|o]
are chain equivalences.
|

More generally, for any (R, K)-module chain complex C' 7.6 gives a natural
(R, K)-module chain equivalence

TC ~ RHomg i) (C,A(K';R)) .
A simplicial map f: K——L induces a pullback functor
ff+ AR L — ARK]; M — f*M, f*M[oc] = M|[fo] .

EXAMPLE 7.7 The [R, K]-module chain complex associated to the dualizing
(R, K)-module chain complex A(K'; R) is chain equivalent in A [R, K] to

* See Proposition 4.1 of A.Ranicki, Singularities, double points, controlled
topology and chain duality, Documenta Mathematica 4, 1-59 (1999) for the
expression of the chain dual of an (R, K)-module chain complex C' as

T(C) = Hompg(Homp k) (A(K;R)™",C),R),

which can also be expressed as Hompg([C].[K], R).
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the pullback f*R along the simplicial map f: K—{x} of the [R, {*}]-module
R

[A(K';R)] ~ f*R.
Specifically, the augmentation maps define chain equivalences

o] - [A(K';R)|[o] = A(D(0,K);R) — f*Rlo] = R (0 € K) .
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¢8. Local Poincaré duality

The following notion of local Poincaré duality is an abstraction of the local
Poincaré duality properties of a homology manifold, and in fact serves to
characterize the geometric Poincaré complexes which are homology mani-
folds. The universal algebraic L-theory assembly map will be defined in §9
by passing from local Poincaré complexes to global Poincaré complexes.

Let R, K be as in §7, with R a commutative ring, K a finite simplicial
complex and A (R, K) the additive category with chain duality defined in

5.1.
DEFINITION 8.1 An n-dimensional symmetFlc complex (C.¢) in
quadratic (C, )

A(R,K) is locally Poincaré if it is C(R).(K)-Poincaré, i.e. if the dual-
ity is given by an (R, K)-module chain equivalence
{¢0 . onr — C
(1+T)py: C* — C.
o

The derived product X of §7 will now be used to associate to an n-

symmetric (C,0) . ‘
quadratic  COMPIeX {(C,?/)) in A(R,K) a collection

{(C,0)l0) |0 € K} N
e Dn ek o pairs in 4 (R),

such that { Eg: zz)) is locally Poincaré if and only if each { Eg: Z))[[Z]]

Poincaré pair in A (R).
Note that for any (R, K)-module chain complex C' there is an identification
of R-module chain complexes

[Cl«[K] = Homg x)(A(K;R)™",C)
and also identifications of Z[Zs]-module chain complexes
C ®(R,K) C = HOHI(R’K)(TC, C)
= [CXWg ClL[K] = Hompx)(AK;R)™,CXRC) .

dimensional {

symmetric

(n — |o|)-dimensional { quadratic

is a

By definition, an n-dimensional symumetric complex { (C.9) inA(R,K)

quadratic (C, )

is an n-dimensional chain complex C' in A (R, K) together with an n-cycle
¢ € (W”C), = Homyy,(W,[C Br Cl.[K]),
T,ﬁ < (W%C)n = W®Z[Z2] [C Xr C]*[K]n .
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DEFINITION 8.2%* (i) Given an (R, K)-module chain complex C define for
each o0 € K the Z[Zz]-module chain map
0, = projection : C®p x)C = [CHRC[K]—[CRRC].[K, K\stx(0)]
(as in Remark 4.10 (i)) with
OB CLIK K\sta (@) = 3 (CO) @r C)a- s
A>o,u>o
and a Z-module projection chain map

[C KR Cl.[K, K\stx(0)] = S!°IC(0) @5 [C][0] .

symmetric

quadratic complex { (C.9) in A (R, K) de-

(C.9)
symmetric
quadratic

{(C,sb)[a] = (i[0]:0[Cllo]—(C][o], 95 (¢))
(C,9)lo] = (ilo]:9Cllo]—(C]la], 05 (¢))

(ii) Given an n-dimensional {

fine for each o € K an (n — |o|)-dimensional pair in A (R)

with
ilo] = inclusion : 9[C][o], = Y C(r)y — [Cllo]r = Y C(7)r
such that coker(i[o]) = C(0). ) m

EXAMPLE 8.3 Let C be the (Z, K)-module chain complex defined as in 4.13
by
C(K) = AK') , C(o0) = A(D(0,K),0D(0,K)) (c € K) .
The Z-module chain map
d, = projection : C(K) ~ A(K)—S191C(0) ~ A(K, K\stx(c))
induces the natural maps passing from the global (= ordinary) homology of

|K| to the local homology at o € | K|

rojection
9y : HAC(K)) = H.(K') = H.(K) = H.(|K[) —— .

H. (K|, |K\{o}) = H.(K,K\stx(0))
= H,(starg/(0),linkg/ (7)) = H.(9c' x (D(0,K),0D(0, K)))
= H,_ 5)(D(0,K),0D(0,K)) = H,_|5(C(0)) .
If K is an n-dimensional homology manifold the images of the fundamental
class [K] € H,(K)
0,([K]) = [D(0,K)] € Hy 1y (D(0,K),0D(0, K)) (0 € K)

* T am grateful to Frank Connolly for pointing out that the definition of 0,
in the original 1992 edition of the book was wrong.
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are the fundamental classes of the (n — |o|)-dimensional geometric Poincaré
pairs (D(o, K),0D(0, K)).

|
: : symmetric (C,o) .
PROPOSITION 8.4 An n-dimensional {quadmtz’c complex {(C,ID) mn
A (R, K) is locally Poincaré if and only if each {<C’ 0)lo] (0 € K) is
(C.9)[o]

symmetric
quadratic
PROOF By 4.7 a chain map f:C——D in A (R, K) is a chain equivalence if
and only if the (o, 0)-component f(o,0):C(0)——D(0) is a chain equiva-
lence in A (R) for each o0 € K. The duality R-module chain map

[Cllo)*~ 1717 = C"*(0) — [C][0]/8[C]lo] = C(o)

an (n — |o|)-dimensional Poincaré pair in A (R).

of { E ’2)[[ ]] is the (o, 0)-component of the duality (R, K)-module chain

Cn* O (C, )
map{ O+ T)o: O —C Of{(c,zp)'
O

REMARK 8.5 An n-dimensional pseudomanifold is a finite n-dimensional
simplicial complex K such that

(i) every simplex of K is a face of an n-simplex,

(ii) every (n — 1)-simplex of K is a face of exactly two n-simplexes.
The result of McCrory [105] that K is a homology manifold with fun-
damental class [K]| € H,(K) if and only if there exists a cohomology
class U € H"(K x K, K x K\A) with the image in H"(K x K) dual to
A[K] € H,(K x K) can now be proved directly, using the chain duality
theory of §5 and the derived product X of §7.

Assume (for simplicity) that K is oriented and connected, so that the
sum of the n-simplexes is a cycle representing the fundamental class [K] €

H,(K)
(K] = > 7eker(d:Ap(K)—A,_1(K)) .
reK ™
For each simplex ¢ € K the pair (D(o,K),0D(c,K)) is an (n — |o])-
dimensional pseudomanifold with boundary. As in 6.2 there is defined an
n-dimensional symmetric complex in A (Z, K)
such that
¢o(0) = [D(o,K)|N—: C"*(0) = A(D(o,K))"loI=
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with assembly

do(K) = [K]Nn—: C""(K) ~ A(K)"" — C(K) ~ A(K) .
K is a homology manifold if and only if (C,¢) is locally Poincaré. The
diagonal chain approximations are chain equivalences

[Aollo] = [Cllo] = A(D(0, K))

— [C®: Cllo] = A(D(0,K)) ©2 A(D(e, K)) .
so that each of the chain maps in the commutative diagram

o) — 2 omgenx]

Bc Bewm,c

C(K) — B0 (OR,C)(K)

is a chain equivalence, and
C®ur C)K) ~ AK) , OK)®zC(K) ~ AK xK) .

By 5.5 the dual (Z, K)-module chain complex T'C' is such that

TC(o) = A(D(o,K))7l9l=* ~ §71°lz (s e K) , TC(K) ~ A(K)™*,

and
(TC @@k TC)(K) ~ AK x K, K x K\A)™™,
TC(K)®zTC(K) ~ A(K x K)™*.

The product K x K (or rather K ® K) is a 2n-dimensional pseudomanifold,

and the diagonal map of polyhedra

A: |K| — |K| x|K|; 2 — (z,2)
induces a diagonal map in homology
A,: H(K) = H.|K|) — H.K x K) = H,(|K| x |K]|) .
A geometric Thom class for K is an element
UecH"(K x K,K x K\A) = H,(TC ®z,x) TC)(K))
= H,(Homz k)(C,TC))

satisfying one of the equivalent conditions:
(i) the image of U under

j* = inclusion®™ : H"(K x K, K x K\A)
— S HY(K x K) = Ho(TC(K) ®7 TC(K))
is an element j*U € H™(K x K) such that
(J"U,AK]) = 1€Z,
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(ii) the (Z, K)-module chain map U: C——C"~* is such that
[¢0][o][U][o] ~ 1: [C]lo] — [C""]lo] — [C][o] (0 € K),
with [C[o] = A(D(o, K)) ~ Z.
We shall now prove the result of McCrory [105] that K is a homology
manifold if and only if there exists a geometric Thom class U.
If K is a homology manifold then (C, ¢) is locally Poincaré, and the inverse

of the (Z, K)-module chain equivalence ¢y: C"~*——C' defines a geometric
Thom class

U = (¢o) " € Hy(Homz, 1y (C,TC)) = H"(K x K,K x K\A) .
This is the Thom class of the homology tangent bundle 7k of K (Spanier
[163, p. 294]), the fibration

(K, K\{*}) — (K x K, K x K\A) — K .

The homology block bundle 7k is the normal bundle of the diagonal em-
bedding A € K x K, with U € H"(T(7x)) the Thom class of the Thom
space T' (1) = (K x K)/(K x K\A).

Conversely, suppose that (C,¢) admits a geometric Thom class U. Each
[po][o] has a right chain homotopy inverse, and since ¢g ~ T'¢g: C"* — C
each [¢p][o] also has a left chain homotopy inverse. It follows that each
[po][o] is a chain equivalence, so that ¢ is a (Z, K)-module chain equiva-
lence and K is a homology manifold.

Note that for a pseudomanifold K the composite

H'(K x K) — B"(K) 5 Hy(K) = Z
sends any element z € H"(K x K) with (z, Ay[K]) = 1 € Z to the Euler
characteristic of K

[K]NA*(z) = x(K)€Z.
If K admits a geometric Thom class U € H" (K x K, K x K\A) then U has
image the Euler number of the homology tangent bundle 75 of K
A'j*(U) = x(tx) € H"(K) = Z,
and z = j*(U) € H"(K x K) is such that (z, A,[K]) =1 € Z. Thus if K is
a homology manifold the Euler characteristic of K is the Euler number of
TK
X(K) = x(7x) € H"(K) = Ho(K) = Z.
(For a differentiable manifold K this is proved in Milnor and Stasheff

[112, pp. 124-130]).
O
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§9. Universal assembly
Universal assembly is the forgetful map from the L-groups of ‘local’ algebraic

bordism categories to the L-groups of ‘global’ algebraic bordism categories,
such as

A: L, (A(R)«(K)) = H.(K;L.(R)) — L.(A(R,K)) = L.(R[m(K)]) .
In §9 only the oriented case is considered; the modifications required for the
nonorientable case are dealt with in Appendix A.

With R, K asin §8, let m = w1 (K) be the fundamental group, and let R|r]
be the fundamental group ring. The assembly functor B (A[R, K])—B (R)
of 4.4 can be lifted to the universal cover K of K:

DEFINITION 9.1 (i) The [R, K]-module chain complex universal assembly is
the functor

B[R, K] = B(A[R, K]) — B(R[r]) ; C — C[K]
with
CIK], = ) Clp6li—jo -
seK
Here, p: K—K is the covering projection.
(ii) The (R, K)-module universal assembly is the functor
A(RK) — A(R[r]) ; M — M(K) = Y M(ps),

seK
with the R[r]-module structure induced from the action of 7 on the universal
cover K by covering translations. An (R, K)-module morphism f: M — N
assembles to the R[r]-module morphism f: M(K)— N(K) with compo-
nents

f(7,5) = {f(T’ o) WOST  M@GE) = M(o) — NF) = N(7) .

0 otherwise
O

Let C be a f.g. free (R, K)-module chain complex. The R-module chain
equivalence B¢ [C][K]—C(K) of 4.9 lifts to an R[r]-module chain equiv-
alence

be : [CNK] — C(K) ,
so that the universal assembly constructions of 9.1 (i) and (ii) agree up to
chain equivalence.

PropoOSITION 9.2 If f: C——D is a chain map of finite [R, K]-module chain
complexes such that each flo]: Clo]—D|o| (o € K) is an R-module chain
equivalence then the universal assembly f[K]: C[K|—sD|[K] is an Rlx]-
module chain equivalence.
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PROOF A chain map of finite chain complexes in an additive category is a
chain equivalence if and only if the algebraic mapping cone is chain con-
tractible. Thus it suffices to prove that a locally contractible finite [R, K]-
module chain complex C' assembles to a contractible R[r]-module chain
complex C[K]. The first quadrant spectral sequence FE(C') of 4.6 has Fs-
terms

E;, = Hy(K:{H,(Clo])}) .
and converges to H,(C[K]). If C is locally contractible then H,(C[o]) =

0 (0 € K), so that H,(C[K]) =0 and C is globally contractible.
m

EXAMPLE 9.3 The universal assembly of the f.g. free [R, K]-module chain
complex R defined as in 4.5 by
Rlo] = R (0 € K)
is the simplicial R[r]-module chain complex of the universal cover K
R[K] = A(K;R) .
o

EXAMPLE 9.4 The Alexander-Whitney—Steenrod diagonal chain approxi-
mation for the universal cover K

A=+ A(K;R) — Homgp, (W, A(K; R) ®r A(K; R))

projects to an R-module chain map
Ag = 1® Az A(K;R) = R®pm A(K;R)

— R ®pjx) (Homggz, (W, A(K; R) ©r A(K; R)))

= Homyg,| (W, A(K: R) ®pim AK: R)) = WHA(K;R)
with R[n] acting on the left of A(K; R) via the covering translation action
of m on K, and on the right via the composition of the left action and the
involution

R[r] — R[] ; rg — rg~! (re R,gen).
As in Ranicki [145] for any n-cycle [K] € A(K;R), there is defined an
n-dimensional symmetric complex (A(K; R), Ax([K])) in A (R[r]) with
Ag([K])o = [K]N—: A(K;R)"™ — A(K;R) .

As in the simply connected case already considered in 6.4 the geometric
nature of A allows (A(K; R), ¢) to be expressed as the assembly of an n-
dimensional symmetric complex (R, ¢) in A[R, K|, with R the 0-dimensional

[R, K]-module chain complex given by

Rylo] = {f oy @K . RIK] = AUGR).
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By 5.6 the n-dual of R is the [R, K]-module chain complex
R"* = ¥'TR = [C]

associated to the (R, K)-module chain complex C with

Clo) = S"VPIR | C(K) = A(K;R)"*,

R"[o] = [C]lo] = A(K, K\stx(o); R)"™" (0 € K) .
Write the n-cycle as

K] = Y rTeRK], = AKiR), (r;€R).

reK,|r|=n

The assembly of the n-dimensional symmetric complex (R, ¢) in AR, K|
defined by

g0 = > r(1®1)€RBOrR)K], = Y (Rlo]@r R[0))n_o| »
TeK,|T|=n ceK
¢s =0e (E QR E)[K]n+s (3 > 1)
is the n-dimensional symmetric complex in A (R[r]) defined above
(R, ¢)[K] = (A(K; R), Ag([K]))

and there is defined a chain homotopy commutative diagram

R"(R] = [C)[R) Polk) RIR] = AGR:R)

Bc [K]N—
C(K) = A(K;R)"*

with B¢ the chain equivalence given by 4.9. Here, ¢y [K] is the assembly of
the [R, K]-module chain map ¢: R"~*—— R with the components

polo] = ([K][o],—) :
R" o] = A(K,K\stg(o);R)"™" — Rlo] = R;

{7“7- ifr>o, |7| = n
7— .
0 otherwise

with [K][o] the image of [K]
[K][o] = Z .7 € AK, K\stg(o);R),, (0 €K).
T>0,|T|=n
K is an n-dimensional R-coefficient homology manifold (resp. Poincaré
complex) with fundamental cycle [K] € A(K; R),, if and only if the [R, K]-
module chain map ¢¢: R"™*—— R is such that each

¢olo] - B""[o] — Rlo] (0 € K)
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is an R-module chain equivalence (resp. the assembly R[r]-module chain
map

¢o[K] : R"[K] — R[K]
is a chain equivalence). In particular, if (R, ¢) is a Poincaré complex in
A [R, K], then the assembly (R, ¢)[K] is a Poincaré complex in A (R[r]), by

9.2. The identifications
H.(R"[o]) = H" (K, K\stx(0); R))

= H"~ (StaI'K/ ((/J'\), linkK/ (6'\), R)

= H" (K[, |[K\{}; R) (0 € K)
again recover the familiar result that a homology manifold is a geometric
Poincaré complex. This is the chain homotopy theoretic version of the
spectral sequence argument of 5.6.
|

Let B(R,K) = B (A (R, K)) be the category of finite chain complexes of
f.g. free (R, K)-modules.

DEFINITION 9.5 Given R, K, 7 as above define three algebraic bordism cat-
egories:
(i) The f.g. free R[r]-module category of 3.6

A(R[r]) = (A (R[x]), B (R[x]), C(R[r])) .
(ii) The local f.g. free (R, K)-module bordism category given by 4.1
with C (R).(K)-equivalences called local equivalences.
(iii) The global f.g. free (R, K)-module bordism category

AR, K) = (A(R,K),B(R,K),C(R, K))
with C (R, K) C B(R, K) the subcategory of the finite f.g. free (R, K)-
module chain complexes C' which assemble to contractible f.g. free R[r]-
module chain complexes C'(K). C (R, K)-equivalences are called global

equivalences.
O

PROPOSITION 9.6 Local equivalences are global, and inclusion defines an
assembly functor of algebraic bordism categories
AR)«(K) — A(R,K) .

PROOF The universal assembly of a finite chain complex C' in A (R, K) is a
finite chain complex C(K) in A (R[r]) which is chain equivalent (by 4.9) to
the assembly [C][K] of the finite chain complex [C] in A[R, K]. Now apply
9.2.

o
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DEFINITION 9.7

symmetric symmetric
The visible symmetrzc L-groups of (R, K) are the normal . L-groups
quadratic quadratic
normal normal
L"(R,K) = L"(A(R,K))
VL™(R,K) = NL"(A(R, K
(R.K) AR E)

L,(R,K) = L,(A(R,K)
NL"(R,K) = NL"(A(R,K))
with
AR,K) = (A(R,K),B(R,K),C(R,K)),

AR,K) = (A(R,K),B(R,K),B(R,K)) .
O

The L-groups defined in 9.7 are all 4-periodic via the double skew-suspen-
sion maps, because the underlying chain complexes are only required to be
finite, allowing non-zero chain objects in negative dimensions. The (poten-
tially) aperiodic versions defined using positive chain complexes are dealt
with in §15.

The exact sequence of 3.10 can be written as

1+T J
. —+ Ly(R,K) — VL"(R,K) — NL"(R,K)

d
— Ly 1(RK) — ... .

drat: L-theory universal assembly maps
quadratic

symmetric
The { visible symmetric
normal

A: L*(R, K)—L*(R[r])

A:VL*(R, K)—V L*(R[r])
A: L.(R,K)—L.(R[r])
A:NL*(R,K)— NL*(R[r])

theory universal assembly maps are shown to be isomorphisms in §10 below,

so that the quadratic L-groups of (R, K) are isomorphic to the surgery

obstruction groups

are defined in 9.11 below. The quadratic L-

L.(R,K) = L.(R[x]) .

(Warning: the quadratic L-theory assembly isomorphisms A: L.(R, K) =
L.(R[r]) are not to be confused with the quadratic L-theory assembly maps
A: H (K;L.(R))——L.(R[r]) defined in 14.5 below, which are not in general
isomorphisms. See 9.17 below for an explicit example where the latter A is
not an isomorphism.)
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REMARK 9.8 The visible symmetric Q-groups of Weiss [187] are defined for
any finite f.g. free R[r]-module chain complex C' to be

VQ*(C) = H.(P ®gjx (Homg, (W, C ®r C))) ,
with P a projective R[r]-module resolution of R, and there are defined
natural maps

14+47T: Q.(C) — VQ*(C) , VQ*(C) — Q*(CO) .

In particular, the visible symmetric Q-group VQ°(C) of a 0-dimensional
R[r]-module chain complex C' consists of the visible symmetric forms on
C?, which are the symmetric forms ¢ = ¢* € Hom R[ﬂ](CO, Cp) such that

o(z)(x) € H(Zy; R) € H®(Zs: R[r]) (z € C°) .
The visible symmetric L-groups VL™ (R[n]) (n € Z) of [187] are the cobor-
dism groups of n-dimensional visible symmetric Poincaré complexes (C, ¢ €
VQ™(C)) over R[r]. The symmetric construction of Ranicki [145] has a
visible version

¢x : Hp(X) — VQ"(A(X))

for any space X with universal cover X , so that an n-dimensional geometric
Poincaré complex X has a wvisible symmetric signature

0" (X) = (AX), ox([X])) € VL™(Z[r (X)) -
By Ranicki and Weiss [150] every finite f.g. free R[r]-module chain complex

is chain equivalent to the universal assembly C(K) of a finite f.g. free
(R, K)-module chain complex C, with K = Br the classifying space of .
It is proved in [187] that for any such C' the Q-group universal assembly
maps are isomorphisms

Q7 (C) — VQ'(C(K)) , Q.(C) — Q.(C(K)),
and hence that the L-group universal assembly maps are isomorphisms

VL*(R,K(m,1)) — VL*(R[r]) , L.(R,K(m, 1)) — L.(R[r]) .
It is also proved in [187] that @*(C’) = 0 for any globally contractible finite
f.g. free (R, K)-module chain complex C, for any K, so that symmetric
complexes in A(R, K) have canonical normal structures and the forgetful
maps are isomorphisms
VL*(R,K) = NL*(A(R,K)) — L*(R,K) = L*(A(R,K))

(see 3.5). In the special case K = {x} already considered in 3.6

VL*(R,{x}) = NL*(AR)) = L*(A(R)) = L*(R) .
The visible symmetric L-groups V L*(Z[r]) are closely related to the R.L.
symmetric L-groups L%, ; (Z[r]) of Milgram [108]. For K = {x}

VL™ (R, {#}) = liy L"***(R)
k
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the free symmetric L-groups made 4-periodic. R.L. stands for Ronnie Lee,
because visible symmetric forms over group rings were first used by Lee
[90].

]

REMARK 9.9 It will be shown in §13 below that the L-groups of the local
algebraic bordism categories are generalized homology groups

L™"(A(R)«(K)) = Hn(K;L'(R))

L,(A(R)«(K)) = H,(K;L.(R)) (n€Z)

NL"(R,K) = H,(K;NL(R))
with coefficients in algebraic L-spectra. In particular, for a classifying space
K = B these are the generalized homology groups of the group .

]

DEFINITION 9.10 Given (R, K)-module chain complexes C, D define the
universal assembly Z-module chain map

ac.p - C@(R,K)D = [C&RD][K]

BoR gD

(CWg D)(K)

Yc,D

——— C(K) @pm DK) 5 ¢ — §(K)
with Scw,, p the chain equivalence given by 4.9 and
vo.p i (CRp D)(K) — C(K) ®p(m D(K) 5 x(\) R y(n) — z(X) @ y(ji)
the injection constructed using any lifts of the simplexes A, € K with

AN # 0 to simplexes A, i € K with AN i # 0.
m

The duality R-module isomorphism
Towr),px) + C(K) @r D(K) — D(K) ®p C(K) ;

@y — (F)Pyzr (reC(K)y ye D(K),)
restricts to define a duality isomorphism of (R, K)-module chain complexes
TC,D : CXgrD — D&RC; z X Yy — (—)pqy@ x ,

such that there is defined a commutative diagram

ac, ~ ~
C@(R,K)D—>D C(K) R[] D(K)

Tep To®).p(&)

ap,c ~ ~
D ®rxyC——— D(K) ®gi C(K) .

For C' = D universal assembly is a Z[Zs]-module chain map
a = acco: COpRir)C — C(K)Qgq CK); ¢ — ¢(K)
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inducing abelian group morphisms
a”: QM) = H, (Homgzz, (W, (C ®r,x) C))) —
Q"(C(K)) = Hy(Homgz, (W, C(K) @px C(K))) ,
ag : Qu(C) = Hu(W ®z(z,) (C ®(r.x) C)) —
Qu(C(K)) = Hy(W ®giz,) (C(K) &g C(K))) (n€Z).

PROPOSITION 9.11 Universal assembly defines functors of algebraic bordism
categories

A: AR K) — AR[r]) , A: AR, K) — A(R[x])
symmetric
visible symmetric

quadratic
normal

+ L"(R, K) — L™(B[r]) ; (C.¢) — (C,9)(K)
: VIR, K) — VL™(R[x]) ; (C,¢) — (C,9)(K)
D Ln(R, K) — L (R[n]) ; (C,¢) — (C,9)(K )~
A: NL"(R,K) — NL"(R[r]) ; (C,¢) — (C,¢)(K) .

inducing universal assembly maps in the L-groups

s s

PROOF The universal assembly functor of the additive categories
A: AR K) — A(R[r]) ; M — M(K)
satisfies condition 3.1 (i), since A(C (R, K)) C C(R[r]) by the definition of
A(R,K). For any object M in A (R, K) the assembly of the 0-cycle
1e (M ®(R,K) TM)() = :[‘IOIIl(RJg)(T']\f7 TM)O
is a O-cycle
I(K) € (M(K) &g k) (TM)(K))o = Homppe (T(M(K)), (TM)(K))o
defining a natural C (R[r])-equivalence
B(M) = L(K): TAM) = T(M(K)) — AT(M) = (TM)(K)

satisfying condition 3.1 (ii).

For finite chain complexes C, D in A (R, K) an n-cycle ¢ € (C ®(g k)
D),, is an (R, K)-module chain map ¢: X" T'C——D. The assembly n-cycle
$(K) € (C(K) Q@ Rx] D(K)),, is the R[r]-module chain map given by the
composite

_ _ _ Y"B(C)
P(K): C(K)"™" = ¥"T(C(K)) ——

" ~ . ~ A(9) ~
SY(TCO)(K) = (E"TC)(K) —— D(K) .
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Thus ¢: 2" TC—D is a C (R, K )-equivalence if and only if ¢(K): C(K)™*

—D(K) is a C (R[r])-equivalence. The universal assembly of an n-dimen-
sional symmetric complex (C, ¢) in A(R, K) is an n-dimensional symmetric
complex in A(R[r])

(C,¢)(K) = (C(K),$(K)) ,
with ¢(K) € W?C(K), the n-cycle defined by the image of the n-cycle
¢ € (W”(C),, under the Z-module chain map

o WRC = Homygz,| (W, C ® k) C) —
WPC(K) = Homgg,) (W, C(K) @i C(K)) .

Similarly for the quadratic and normal cases.
]

EXAMPLE 9.12 Asin 4.15 let X be a simplicial complex with a K-dissection
{X|[o]| o € K}, and regard the R-coefficient simplicial chain complex A(X;
R) as a f.g. free (R, K)-module chain complex C' with

Clo) = AX[o],0X[o];R) , [Cllo] = A(X[o];R),
0X[o] = |J X[r] (c€K).

T>0
The Alexander—Whitney—Steenrod diagonal chain approximation of X is an
(R, K)-module chain map

Ag = A: C(K) = A(X;R) —
(W"C)(K) = Homgg, (W, (C Rz C)(K))
(CW*(C(K)) = Homgz, (W, A(X;R) ®r A(X; R)))
with

Ap(x) = Z(xowl o) (T Tig1 ... xy) € (C R C)(K)y,

(= (zozy...2,) € XM

By the naturality of A there is defined a commutative diagram of R-module
chain complexes and chain maps
A %
[C[K] ————— W C][K]

Bc Bwc

C(K)—2 5 (W"*C)(K) .
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Given an n-cycle
[X] = Y @0 €CK)n = AX;R)n = Y A(X[0],0X[0]; R)»
ceK oEK
use the chain maps 9,: A(X; R)—SI?IA(X[0],0X[0]; R) given by 9.5 to
define (n — |o|)-cycles
[X(0)] = 0-([X]) € A(X[o],0X][0]; R)n—jo (0 € K) .
The n-cycle
¢ = A([X]) € (W*O)(K),
defines an n-dimensional symmetric complex in A (R, K)
o' (X) = (C,¢9)
such that
o (X)[r] = o*(X|[r],0X][r]) (t € K).
The assembly of 0*(X) is an n-dimensional symmetric complex in A (R[r])
(C(K),¢(K)) with a chain homotopy commutative diagram

Xin- C(K) = A(X:R)

C(E)" = AX;R)"

Bt $o(K)

([CIIK])" ™ = C" 7 (K)

where A(X; R) is the simplicial R[r]-module chain complex of the pullback
X to X of the universal cover K of K, and B is the n-dual of the R[z]-
module chain equivalence f¢: [C][K]—C/(K) = A(X; R) given by 4.9. A
normal structure realizing [X]| € H,(X; R) is a pair

(vx: X — BG(k), px:S"F — T(vx)) (k> 0)

such that [X] is the image of the homotopy class of px under the composite

h . t c
7Tn+k(T(Vx)) — Hn+k;(T(VX)) — Hn(X) — Hn(X; R)
with h the Hurewicz map, ¢t the Thom isomorphism and c the change of rings
for the morphism Z—— R;1——1. Use the Pontrjagin-Thom isomorphism
to represent

px € T (T(vx)) = mh(D(x), S(vx)) = Q) (D(vx), S(vx))
by a map (W,0W) — (D(vx),S(vx)) from a framed (n + k)-dimensional
manifold. The inverse images of the dual cells D(o,K) C K’ (0 € K)
define a K-dissection {(W[o|,0W|o])|o € K} of (W,0W) with each W (o)
an (n + k — |o|)-dimensional framed manifold. The composite

(W, 0W) — (D(vx),S(vx)) - X — K’
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can be approximated by a simplicial map, and by the homotopy exten-
sion property of a Hurewicz fibration it may be arranged for this simplicial
map to also factor in this way. Thus each (X[o],0X]o]) is an (n — |o|)-
dimensional normal pair, justifying the statement that the n-dimensional
normal complex *(X) is defined in A(R, K). The geometric normal struc-
ture (vx, px) thus determines an algebraic normal structure (v, x) for the
symmetric complex ¢*(X) = (C, ¢) in A (R, K), and
o' (X) = (C,9,7:X)

is an n-dimensional normal complex in A (R, K) with chain bundle (C,~) =
6'\*(1/)().

o

ExXAMPLE 9.13 Given a simplicial complex K set
X =K |, X[o] = D(o,K)(c€eK) , R=17,
in 9.12, so that C is the (Z, K)-module chain complex of 4.15 with
C(K) = AK') , C(o)=A(D(0,K),0D(0,K)) (c €K) .

For any n-cycle [K] € A(K'), there is defined an n-dimensional normal
complex (C, ¢) in A (Z, K) with

¢ = A(K]) € H,(W"C)(K)) ,
K) = [K]n—: Y"TC(K) ~ AK)"™* — C(K) = A(K'),
o) = [D(o,K)]N—: "TC(6) = A(D(o,K))""lol=*

— C(0) = A(D(0,K),0D(0,K)) (0 € K).

geometric Poincaré complex
homology manifold

cycle [K] € A(K"),, if and only if the symmetric complex (C, ¢) is Poincaré.
In both cases there is defined an algebraic normal structure (v, x), and hence
a visible symmetric signature invariant

K is an n-dimensional with the fundamental

« . VL"(Z,K)
(1) = o0 & { LA k.
The image of (C, ¢) under the full embedding
A(Z,K) — A[Z, K] ; M —[M]
is homotopy equivalent to the symmetric complex (Z, ¢) of 9.4.
o

EXAMPLE 9.14 Let (f,b): M— K’ be a normal map from a compact n-
dimensional homology manifold M to the barycentric subdivision K’ of an

't . P . Vd 1
geometric fomceare complex K, so that for each 7 € K the

n-dimensional { homology manifold
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restriction
(flr]0lr]) = (f,0)]
(M[r],0M[r]) = f~H(D(7,K),dD(r,K)) — (D(7, K),dD(r, K))
is a normal map from an (n — |7|)-dimensional homology manifold with

normal

Poincaré
pair. The quadratic construction of Ranicki [145] associates to (f,b) an

globally
locally

J*(f? b) = (C(f')aw)
with C(f') the algebraic mapping cone of the Umkehr chain map in A (Z, K)

, (K= T M-
o AK) ——— AK)" ——— AM)" ——— A(M)

such that

boundary to an (n — |7|)-dimensional geometric {

n-dimensional quadratic { Poincaré complex in A (Z, K)

o.(f,0)r] = ou(flr],b[7]) (T€K).
The quadratic signature of (f,b) is the cobordism class
Ln(AM(Z, K))
0 L iaca iy

EXAMPLE 9.15 An n-dimensional normal complex
(K, vig: K—BG(k), pr: S"TF—T(vk))
determines (as in 9.13) an n-dimensional normal complex 7*(K) = (C,¢)
in A(Z,K) with C(K) = A(K'), and such that
" (K)[r] = o*(D(r,K),0D(1,K)) (t€K) .
The normal signature of K is the cobordism class
c"(K)e NL"(Z,K) .

]
visible symmetric
EXAMPLE 9.16 The assembly of the { quadratic signature given by
normal
9.13 Poincaré complex K
{ 9.14 for an n-dimensional geometric ¢ normal map (f,b): M— K’ is the
9.15 normal complex K
visible symmetric
quadratic signature
normal

o*(K) € im(A: VL™(Z, K)—V L™ (Z|m1(K)]))
0+ (f;b) € Im(A: L (Z, K)— Ln(Z[m1 (K)]))
0*(K) €im(A: NL"(Z,K)— NL"(Zm (K)]))
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Weiss [187]

of < Wall [180] Also, 0*(K) € L™(Z|m1(K)]) for geometric Poincaré K
Ranicki [146].

is the symmetric signature of Mishchenko [115] and Ranicki [145].

EXAMPLE 9.17 The universal assembly maps
A: H.(Bm;L.(Z)) — L.(Z[r]) ,
A: H.(BmL(Z)) — VL*(Z,Bm)

will now be described in the special case m = Zsy, BZy = RP*°, assuming
the identifications obtained in §10 and §13

L.(Z,Br) = L.(Z[x]) , VL*(Z,Br) = VL*(Z[x]) ,
L.(A(Z).(Br)) = H.(Bm;L.(Z)) , L*(A(Z).(Br)) = H.(BmL'(Z)) .

The computations have been carried out by Wall [180, §14D], Conner (Dover-
mann [46]) and Weiss [187,§7]. The Witt groups of the group ring

ZlZy) = Z[T)/(T* - 1)
with the oriented involution T = T are computed using the cartesian square

of rings with involution

7z, — I .7
g
7z 7,

where
Jx: ZZy) — Z; a+ VT — a+£b.
The quadratic L-groups L.(Z[Zs]) fit into the Mayer—Vietoris exact se-
quence of Ranicki [146,6.3.1]
. — L, (Z[Zs)) M L,(Z) ® L,(Z)
— Ly(Zy) — Lp_1(Z[Z3]) — ... .

Although there is no such Mayer—Vietoris exact sequence for the symmet-
ric L-groups in general (Ranicki [146,6.4.2]) the symmetric Witt group
L°(Z|Z,)) fits into the exact sequence
G+ J-)
0 — LO(Z[Z,]) —
such that up to isomorphism

LNZ) = Z, L°Z|Zs) = Z&Z, L°(Zs) = Zs .

LYZ) o LY(Z) — L°(Zy) — 0
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The Witt group V L°(Z[Zs], 1) of nonsingular visible symmetric forms over
Z[Zs] fits into the exact sequences

U+ J-)

0 — VLY(Z[Z),1) LYZ) @ LY(Z) —s L2%(Z) — 0

0 — Lo(Z[Zs)) — VLO(Z[Zs],1) — L°(Z) — 0
such that up to isomorphism
Lo(Z[Zs]) = VI°(Z[Zo),1) = Z®Z , L°(Z) = NLY(Z) = Zs .
The quadratic L-theory assembly maps are given by:
A+ H,(BZyL.(Z)) = > Hy_(BLs; Li(Z))

keZ
yAY/ 0
0 . 1
— L, (Z]Zs]) = Z itn = 5

are given by

A+ Hy(BZo;L.(Z)) = Ho(BZo:Lo(Z)) = 75 Lo(Z[Zs]) = Z&Z
O L(2[Za]) = Zs

A H3(BZy;L.(Z)) = H3(BZ2;Lo(Z)) ® H1(BZa; L2(Z)) = Zo

01
HLg(Z[ZQ]) = ZQ
(Hambleton, Milgram, Taylor and Williams [69]). The visible symmetric
L-theory assembly maps are given by
A: Hy(BZy;1(Z)) = > Hp y(BZy; LF(Z)) —
keZ

(VIO(Z[Z3),1)® . Hn_i(BZy;L*(Z))
k#£—1,0

VIZ|Zs]) = Zk: H, (BZy; L*(Z))

S H,_1(BZy; L¥(Z))
\ k#3

0

if n= { 1,2 (mod4) .
3

The symmetric L-groups L*(Z[Zs]) are not 4-periodic.

Given a nonsingular symmetric form (M, ¢) over Z[Zs] let
s+(M,¢) = signatureji(M,¢) € L°%(Z) = 7.
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In terms of the signatures
LYZ[Zy)) = {(s1,5.)€Z®Z|s; =5_(mod2)},
VLY (Z|Zs),1) = {(51,5 ) €EZ®Z|sy =s_(mod8)},
Lo(Z|Zs)) = {(s4,5-) €ZDZ|sy =s_ =0(mod38) }
and in each case the image of the assembly map A is
im(A) = {(s4,s-)|st =s_€Z}.
For example
s+ (ZZs),1) = 1, (Z[Zs),1) € im(A) C VLY(Z[Z,)) ,
52 (ZZ),T) = +1, (ZIZa),T) ¢ m(4) C LOZZ]) .
The effect of the restriction map
it LOZ[Z9)) — LY(Z) 5 (M, $) — (i'M,i'p)
is given by
i'(sy,5.) = sy +s_€L%Z) = 7,
since for any a + bT' € Z[Zs] the eigenvalues of

are ji(a+bT") = a+xb. Thus for a nonsingular symmetric form (M, ¢) over
Z[Zs)] the following conditions are equivalent:
() i'(M,6) =2, (M, ) € Z,
(i) 54(M,¢) = s_(M,0) € Z,
(iii) (M, ¢) € im(A: Hy(BZs ;1L (Z))—L°(Z|Z5]))
and similarly for visible symmetric and quadratic forms. For the applica-

tions to topology see Example 23.5C below.
]
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§10. The algebraic -7 theorem

The geometric -7 theorem of Wall [180, 3.2] is that for n > 6 a normal map
(f,b): (M,0M)—(X,0X) from an n-dimensional manifold with bound-
ary (M,0M) to an n-dimensional geometric Poincaré pair (X,0X) with
m1(0X) = m(X) is normal bordant to a homotopy equivalence of pairs.
The 7-7 theorem was used in Chapter 9 of [180] to identify the geometric
surgery obstruction groups L.(K) with the algebraic surgery obstruction
groups of the fundamental group ring Z[m; (K)]

Ln(K) = Ln(Z[m(K)]) (n=35),

for any connected CW complex K with a finite 2-skeleton.
An algebraic 7-7 theorem will now be obtained, in the form of a natural
identification

Ln(A(R,K)) = Ln(Rlm(K)]) (n€Z)

for any commutative ring R and any connected ordered simplicial complex
K, with A(R, K) the algebraic bordism category of 9.5 (iii).

Use the base vertex * € K(9) to define a f.g. free (R, K)-module I" by
To(0) = {R if o =%

0 otherwise .
Let K be the universal cover of K. Choosing a lift * € KO there is defined
an R[m;(K)]-module isomorphism

Rim (K)] — T(K); 1 —> 1(3)

which will be used as an identification.

DEFINITION 10.1 The homology assembly maps are defined for any (R, K)-
module chain complex C' to be the R[m(K)]-module morphisms

H,([C)[+]) — H,(C(K)) (r€Z)
induced in homology by the chain map
Hom g x)(T,C) = [C][*] — Hompp, (x7(D(K),C(K)) = C(K) ;
z(o) — z(6) (x<o0,%x<7).
]

The proof of the algebraic m-m theorem requires a Hurewicz theorem to
represent homology classes in assembled R[r]-module chain complexes by
(R, K)-module morphisms, just as the proof of the geometric m-m theorem
needs the usual Hurewicz theorem to represent homology by homotopy. This
requires the results of Ranicki and Weiss [150, §4] summarized in the next
paragraph.
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An (R, K)-module chain complex C'is homogeneous if the inclusions define
R-module chain equivalences

[Clle] — [C][r] (1<0€K).
The homogeneous envelope of a finite chain complex C' in A(R,K) is a
homogeneous (R, K)-module chain complex V>°C with the following prop-

erties:
(i) Ve°C =lim V*C is the direct limit (= union) of a sequence of inclu-
k
sions of finite chain complexes in A (R, K)
c=vlccvccviec ...
such that each inclusion defines a global equivalence VFC—V#*+1(C |

(ii) the inclusion C——V*>°C assembles to an R[r (K )]-module chain equiv-
alence C(K)—V>C(K),

(iii) for any finite chain complex B in A (R, K) and any n € Z the abelian
group H,(Hom g g)(B,V>C)) of homotopy classes of (R, K)-module
chain maps X" B——V (' is in one—one correspondence with the equiv-
alence classes of pairs (f: X"B——D, g: C—D) of homotopy classes
of (R, K)-module chain maps with D finite in A (R, K) and g a global
equivalence, subject to the equivalence relation generated by

(f:X"B—D,9:C—D) ~ (hf:¥"B—F,hg: D—F)
for any global equivalence h: D—F in A (R, K),
(iv) the homogeneous envelope V>°I" of the 0-dimensional chain complex

I'in A (R, K) is chain equivalent to the (R, K)-module chain complex
A(FEK; R) associated to a triangulation EK of the pointed path space

BIK| = |BK| = (K], {=}) 1)
and the projection
p: EIK| — [K[; w — w(1),
and [V °°T"|[«] is chain equivalent to the R-module chain complex A(Q2K;
R) with QK a triangulation of the pointed loop space
QK| = QK| = p'({x}) = (K[, {x}HOO1

The Hurewicz map m,.(X)— H,(X) assembles a homology class from a
homotopy class. One version of the Hurewicz theorem states that if X
is a space with an (n — 1)-connected universal cover X and n > 2 then

7 (X) = m-(X)—>H,-(X) is an isomorphism for 7 = n and an epimorphism
for r = n + 1. Similarly:

ProPOSITION 10.2 If C is a homogeneous (R, K)-module chain complex
which is bounded below and such that

Hq(C([?)) = 0 forg<n
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then the homology assembly R[mi (K)]-module morphism
H([C[+]) — H,(C(K))

1s an isomorphism for r = n and an epimorphism for r =n + 1.
PRrROOF It suffices to derive the conclusions from the hypothesis that H,([C]
[¥]) = 0 for ¢ < n. By 4.9 C(K) is chain equivalent to [C][K]. As in 4.6
define a filtration of [C][K]

F[C[K] C Fi[C][K] € R[C][K] C ... C [C][K]
by

ECIKl, = ) [Cllolgol
GEK,|5|<p

and consider the corresponding first quadrant spectral sequence (4.6). The
Fs-terms are given by

By, = Hy(Ki{H,([Cllo])}) = Hy(K; Hy([Cl[))) (= 0forg<n),

using the simple connectivity of the universal cover K and the homogene-
ity of C' to untwist the local coefficient systems. The spectral sequence
converges to H,([C][K]) = H.(C(K)), with

goe = g (BONRD — Hyso CED) (g .
im(Hpyq(Fp-1[C][K])—Hp14(C(K)))
The assembly map in n-dimensional homology coincides with the isomor-

phism defined by the edge map
Ej, = Hu(C)l¥]) — L5, = Ha(C(K)) .

A quotient of the assembly map in (n + 1)-dimensional homology coincides
with the edge isomorphism

coker(d: E3,,—E3 1) = coker(Hy(K; Hy([C][*]))—Hpy1 ([C][%]))

— Egpyr = Hopi(C(K))
]

An application of 10.2 to the algebraic mapping cone gives that a chain
map f:C——D of homogeneous finite (R, K)-module chain complexes is
a local chain equivalence if and only if it is a global chain equivalence,
i.e. fis an (R, K)-module chain equivalence if and only if the assembly
F(K):C(K)—D(K) is an R[r]-module chain equivalence.

ExaAMPLE 10.3 Let f: X——K be a simplicial map with barycentric sub-
division f: X’——K’, so that as in 4.15 there is defined a K-dissection
{X]o]|o € K} of X with

X[o] = f'D(o,K) (s €K),
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and hence a (Z, K)-module chain complex C with
C(o) = A(X[o],0X[0]) , [C]lo] = A(X[o]) (0 € K) , C(K) = A(K').

The iterated mapping cylinder method of Hatcher [74, §2] shows that f is
a quasifibration in the sense of Dold and Thom with fibre F' = f~1(x) if
and only if the inclusions X|[o]— X|[7] (7 < 0 € K) are homotopy equiv-
alences, in which case C' is a homogeneous (Z, K)-module chain complex
with [C][*] ~ A(F), and the spectral sequence of 4.6 is the Serre spectral
sequence converging to H,(X) with E2-terms

Epq = Hy(K; {Hy(F)}) .
The path space fibration f: X = EK—— K with fibre ' = QK determines
the homogeneous (Z, K)-module chain complex B with
B(o) = C(f'|: A(f"YD(0,K),0D(0,K)))—A(D(0, K),0D(0, K)))
(c € K),
[Blx] ~ CAQK)—A({x})) ~ TAQK, {x}),

B(K) ~ A(EK—K) ~ A(K,n) .

If K is (n — 1)-connected then H,(B(K)) =0 for ¢ < n and 10.2 gives the
usual Hurewicz theorem, with the assembly map

H([B]l¥]) = Hy-1(QK,{+}) — H.(B(K)) = H.(K,m)
an isomorphism for r = n_and an epimorphism for r = n + 1. (Here,
m=p 1({*}) C K with p: K— K the covering projection.)
|

Identify I' = TT using the isomorphism
Lo(x) = R — TTy(x) = Homg(R,R) ; 1 — (s —> sr) .

An (R, K)-module chain map f: X"I'—C' assembles to an R[m (K )]-module
chain map

f(K): S"TI(K) = S"R[m(K)] — C(K),

that is an n-cycle f(K) € C(K),. Dually, an (R, K)-module chain map
f: C——=3"T" assembles to an R[m (K )]-module chain map

f(K): C(K) — S"I(K) = S"R[m(K)],
defining an n-cocycle f(K) € C(K)™.

ProposITION 10.4 (i) If C is a finite chain complex in A (R, K) such that
Hq(C’(I?)) = 0 for q < n then every element x € H,,(C(K)) form = n,n+1
is represented by a pair (f: ¥"I'— D, g: C—— D) of morphisms in B (R, K)
with g a global equivalence. N

(ii) If C is a finite chain complex in A (R, K) such that H1(C(K)) =0 for
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q > n then every element z € H™(C(K)) for m =n,n—1 is represented by
a pair (f: C——D, g: X" T'—D) of morphisms in B (R, K) with g a global
equivalence.

PROOF (i) By 10.2 the homology assembly map

Hm(Hom(RvK)(F,VOOC)) = Hn([V=O[#])
— H,(VXC(K)) = H,(C(K))

is an isomorphism for m = n and an epimorphism for m =n + 1.
(ii) For any finite f.g. free (R, K)-module chain complexes B,C and r € Z
duality defines isomorphisms

H,((B Rz V=C)(K)) = H,(Homg x)(TB,V=C))

= H,((C ®p VFB)(K)) = H,(Hom 1 (TC,V=B)) ;
(f:X"T'B—D,9:C—D) — (f:¥7"TC—D',¢": B—D')
with
D' = S77C(e(C)@eTh:T*C—CoT (X 'C(f®g: X "TBHC—D))) .
Here, f’, g’ are inclusions and h: Y 1O(f @ g)—C is the projection. Let
now C' be such that H?(C(K)) = 0 for ¢ > n, so that the dual chain complex

TC in A (R, K) is such that H,((TC)(K)) = H9(C(K)) = 0 for ¢ < —n.
By the proof of (i) the assembly map

H_m(HOIIl(R’K) (TC, VOOF)) == H_m(HOIIl(R’K) (TF, VOOC))
— H_o(TC)(K)) = H™(C(K))

is an isomorphism for m = n and an epimorphism for m =n — 1.

The quadratic kernel of an n-dimensional normal map of pairs
(f,b): (M,0M) — (X,0X)
with a reference map X —|K| was defined in Ranicki [145] to be an n-
dimensional quadratic Poincaré pair in A (Z[mr(K)))

a.(f;b) = (COf)—=C(f), (80", ¢")
with f':C(X)—C (M), 0f": C(0X)—>C(OM) the Umkehr chain maps
between the cellular chain complexes of the covers M, X , OM, X of M , X,
OM, 0X obtained by pullback from the universal cover K of K. Apply-
ing the algebraic Thom construction (as in 1.15) gives an n-dimensional
quadratic complex in A (Z[m (K)])

(Cp) = (C(f)/C(0F), 80" /v
with homology and cohomology Z[m (X )]-modules such that
H.(C) = K.(M,0M) =2 K" *(M),

H*(C) = K*(M,0M) = K,_.(M).
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If m(0X) = m(X) ® m(K), n > 5 and (f,b): (M,0M)—(X,0X) is
(i — 1)-connected with 2i < n an element z € K;(M) = H"*(C) can be
killed by geometric surgery on a framed embedded i-sphere S® in the in-
terior of M with a null-homotopy in X if and only if it can be killed by
an algebraic surgery on (C, ) using an (n + 1)-dimensional quadratic pair
(2: C—=X"""Z[m1 (K)], (0¢,%)) (as in 1.12). The following result analo-
gously relates algebraic surgery on a quadratic complex in A (R, K) to al-
gebraic surgery on the assembly in A (R[m1(K)]). It is clear how to pass
from A (R, K) to A (R[m1(K)]), so only the ‘disassembly’ of a surgery in
A (R[m(K)]) to a surgery in A (R, K) need be considered.

ProPOSITION 10.5 Let (C,1)) be an n-dimensional quadratic complez in
A (R,K). For every (n+ 1)-dimensional quadratic pair in A (R[m(K)]) of
the type

B = (f:C(K)—X""'R[m(K)], (00, (K)))

with 2i < n and H1(C(K)) = 0 for ¢ > n — i there exists an (n + 1)-
dimenstonal quadratic pair
B = (f:C—D,(6¢,v))

in A (R, K) with the assembly B(K) homotopy equivalent to B’ relative to
the boundary (C(K),¥(K)).

ProOOF By 10.4 (ii) there exists an (R, K)-module chain map f:C—
¥tV T which up to R[m;(K)]-module chain homotopy assembles to

fK) = f': C(K) — " H(VET)(K) = =" 'Rlm(K))] .
Define Z-module chain complexes
E = CQAe(f B[f):W gz, (C B C)(K) —
W @zz,] (8" VT Kp 2" V>I)(K)) ,

E' = CAe(f Bf):W &gz, (C Hp C)(K) —

W ®zz,) (5" VO R[m1(K)] Rpir, (k) 2" VER[m(K)))) |
E" = C(W &gz, (Z"7 V=T K 2" VET)(K) —

W ®z2,) (5" "V R[m1(K)] Rppr, () 2"V R[m1(K))))

such that E” is chain equivalent to the algebraic mapping cone of the as-
sembly chain map F——FE’, with an exact sequence

.— H.(EF) — H.(F') — H.(E") — H, 1(E) — ... (rez).

By the identification of V°°T" with A(F|K]|; R) and by 7.2 it is possible to
identify the R-module chain complex (V°T' K V>°T")(K) with the simpli-
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cial chain complex of a triangulation FK xx FK of the pullback
|EK| x|k |EK| = |EK xg EK|
= {(w,n) € E|K| x E|K| | p(w) =p(n) € |K[} = QK],
so that up to Z|[Zs]-module chain homotopy
(VT Kr VI')(K) = A(EK xg EK;R) = AQK;R) = [VT[%] .
The homology
Ho(E") = H. o(mn—i)(W ®z(z,) AQK; R)—W ®gzz,] R[m1(K)])
is the relative R-coefficient homology of the map
EZy xz, QK — EZy xz, m1(K) ; (v,w) — (z, [w])

with [w] € mp(QK) = m1(K) the path component of w € QK. Here EZ,
is a contractible space with a free Zs-action, the generator T' € Z, acts on
the pointed loop space 2K by the reversal of loops using

T:[0,1] — [0,1] 5 ¢t —> 1 —1¢
and on the group ring R[m;(K)] by the involution inverting group elements.

By the usual Hurewicz theorem H,.(E") = 0 for r < 2(n — i) + 1. Since
2i < n (by hypothesis) H,1(E") = 0, and the assembly map

Hy1(B) = Quii(f:C—=X"WVeI) —
Hy1(E') = Qui1(C—E""R[m (K)))

is onto, allowing (dv', %) € H,+1(E’) to be lifted to an element (0v,1)) €
H, 1 (F). For sufficiently large & > 0

(00,9) € Im(Qn 41 (C—E"" "V )= Qi1 (f: C—=E""'V>T))

with C——=X""*V*T a restriction of f:C——X" VT, so that (d¢’, 1))
can be further lifted to an element (61),%) € Quy1(C—=X""*VFT). The
(n + 1)-dimensional quadratic pair in A (R, K)
B = (C—X""'VT, (8¢, ¢))
assembles to an (n + 1)-dimensional quadratic pair in A (R[m (K)])
B(K) = (C(K)—X"""VFT(K), (6¢/(K), y(K)))
which is homotopy equivalent to the given (n + 1)-dimensional quadratic
pair
B' = (f:C(K)—E"""R[m(K)], (8¢, (K)))
relative to the boundary (C(K), ¥ (K)).
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In conclusion:

ALGEBRAIC m-m THEOREM 10.6 The global assembly maps in quadratic
L-theory define isomorphisms

Ly(R, K) — Ly(Rlm(K)]) ; (C,¢) — (C(K),$(K)) (n€Z).
PROOF Apply the criterion (x) of 3.24 to the maps induced in quadratic L-
theory by the global assembly functor A(R, K)——A(R[r1(K)]), using 10.5

to lift surgeries in A (R[m(K)]) to surgeries in A (R, K).
m



11. A-SETS 119

§11. A-sets

The semi-simplicial sets in the original theory of Kan are abstractions of the
singular complex, with both face and degeneracy operations. The A-sets of
Rourke and Sanderson [155] are ‘semi-simplicial sets without degeneracies’.
The theory of A-sets is used in §12 to provide combinatorial models for
generalized homology and cohomology, and in §13 to construct the algebraic
[L-spectra. In §11 only the essential results of the theory are recalled — see
[155] for a full exposition.

A A-set K is a sequence K (™) (n > 0) of sets, together with face maps

9 : KW — K=Y (0 <i<n)
such that
0;0; = 0j_10; fori <j .
A A-set K is locally finite if for each € K(™ and m > 1 the set
{y e K™+ 9,0, ...0; y = for some iy, ia,... im}

is finite.

The realization of a A-set K is the topological space

K| = ([T &% x &™)/ ~

n>0
with ~ the equivalence relation generated by
(a,0:b) ~ (Bia,b) (a€ A" ' be K™),
with 9;: A"~1— A" (0 < i < n) the inclusion of A"~! as the face opposite
the ith vertex of A™.

An ordering of a simplicial complex K is a partial ordering of the vertex
set K which restricts to a total ordering on the vertices vg < vy < ... < vy,
in any simplex o = (vovy ...v,) € K. As usual n = |o| is the dimension
of o, and the faces of o are the (n — 1)-dimensional simplexes

810 = (’Uo’Ul e Vi—1V541 - - Un) (0 S 1 § n)
and their faces. In dealing with the standard n-simplex A™ write the vertices
as 0,1,2,...,n, ordering them by 0 <1 <2< ...<n.

A simplicial complex K is locally finite if every simplex is the face of only
a finite number of simplices.

ExAMPLE 11.1 A (locally finite) ordered simplicial complex K determines
a (locally finite) A-set K, with realization |K| the polyhedron of K.
m

The product of ordered simplicial complexes K, L is the simplicial complex
K ® L with

(KoL) = KO x LO
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such that the vertices (ag,bo), (a1,b1),...,(an,by) span an n-simplex o €
(K ® L)™ if and only if

Qg Sal <... Sana bO Sbl <... Sbnv (arvbr) 7&(@7“-1-17(77“—1—1) (O§T<TL)
and the sets {ag,a1,...,a,},{bo,b1,...,b,} span simplexes in K and L.

The geometric product of A-sets K, L is the A-set K® L with one p-simplex
for each equivalence class of triples

(m-simplex o € K, n-simplex 7 € L, p-simplex p € A™ @ A") |

subject to the equivalence relation generated by

(0,7,p) ~ (0,7, p') if there exist A-maps f: A™—A™ |

g: A"—A" such that o = f*o', 7 = ¢*7', (f@9)(p) = ().

ExAMPLE 11.2 The product K ® L of ordered simplicial complexes K, L
agrees with their product as A-sets.
]

PROPOSITION 11.3 The realization of the geometric product K @ L of A-sets
K, L is homeomorphic to the product |K| x |L| of the realizations |K]|,|L|

KoL = |K|x|L|.
O

A A-map f: K——L of A-sets K, L is defined in the obvious way, with
realization a map of spaces |f|: |K|—>|L]|.

Let A be the subcomplex of A™ obtained by removing the n-simplex
(0,1,...,n) and the (n — 1)-simplex (0,...,i —1,i+ 1,...,n) opposite the
ith vertex. A A-set K is Kan if it satisfies the Kan extension condition that
every A-map A’ — K extends to a A-map A" — K.

Given A-sets K, L define the function A-set L¥ to be the A-set with
(L)) the set of A-maps K ® A" —— L, with 9; induced from 9;: A"~ —
A",

PROPOSITION 11.4 For any A-set K and any Kan A-set L the function A-
set L¥ is a Kan A-set such that the realization |L¥| is homotopy equivalent
to the space |L|K! of functions |K|—|L)|.

i

A homotopy of A-maps fo, fi: K—L is an element g € (LK) with
0,9 =f (i=0,1), that is a A-map ¢g: K ® Al—L such that

glz®i) = fi(z)e L™ (ze K™ i=01).

PROPOSITION 11.5 For any locally finite A-set K and any Kan A-set L ho-
motopy is an equivalence relation on the set of A-maps K— L. Realization
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defines a bijection

(K, L] — [IK| L] 5 f — | f]
between the set [K, L] of homotopy classes of A-maps K——L and the set
[|K|,|L|] of homotopy classes of maps |K|—|L|.
i

A A-set K is finite if there is only a finite number of pairs (n,z € K™)
with z # 0. A A-map f: K——L is compactly supported if {x € K | f(x) #
() € L} is contained in a finite subobject J C K. Let [K, L], denote the set
of compactly supported homotopy classes of compactly supported A-maps
K——1L, and let L denote the function space of compactly supported A-
maps K —L.

A A-set K is pointed if there is given a base n-simplex € K™ in each
dimension n >0, with 9;) = (. In dealing with pointed A-sets write LX
for the function A-set of A-maps K ® A" ——L which preserve the base
simplexes, and [K, L] for the pointed homotopy classes of pointed A-maps.
For any A-set K let K be the pointed A-set with

(K)™ = KW u{l} (n>0),
The smash product of pointed A-sets K, L is defined by
KANL = KQL/(K®@l,UDxk L) .
For a pointed Kan A-set K the pointed homotopy sets
T (K) = [0A™ K] (n>0)
can be expressed as
m(K) = {zc K™ |9z =0 K"V 0<i<n}/~,

with the equivalence relation ~ defined by x ~ y if there exists z € K™+

such that
x ifi=0
Oiz = {y ifi=1
() otherwise.
For n > 1 7, (K) is a group, with the group law defined by
Wn(K) X 7Tn(I{) E— 7Tn(I{) ) (a,b) —C
for a,b, ¢ € K™ such that there exists d € K™t with

a ifi=0
e ifi=1
Oid = b ifi=2

() otherwise.
For n > 2, 7, (K) is an abelian group, as usual.
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The following analogue of J. H. C. Whitehead’s theorem holds:

PROPOSITION 11.6 A map of locally finite pointed Kan A-sets f: K——L is
a homotopy equivalence if and only if it induces isomorphisms of homotopy
groups fo:me(K)—m.(L).

|

DEFINITION 11.7 The mapping fibre of a map of pointed Kan A-sets f: K—
L is the Kan A-set M(f) with

M(f)™ =
{(z,y) € KM x LY 900, ... 0,y =0 € L, 8,1y = fo € LM},
0+ M(f)™ — M(H)" Y (2,y) — (0iz, 0iy)

The map M(f)— K; (x,y)—>x fits into a fibration sequence

M(f) — K- 1

inducing a long exact sequence of homotopy groups

s a1 (L) — e (M(f)) — 1 (K) 25 m(L) —> ...

DEFINITION 11.8 The loop A-set of a pointed Kan A-set K is the pointed
Kan A-set

QK = K5
with S the pointed A-set defined by
1\(n) _ {S,@} lfn:1
(5 { {0} itn#1,
such that

Tn(QK) = T (K) (n>0).

QK is the mapping fibre of the unique map {*}—— K, so that
QK(n) = {ilf c K(n+1) ‘6061 L Opx = 0 e K(O), 8n+1:1: =0e K(n)} .

PROPOSITION 11.9 The realization |M(f)| of the mapping fibre M(f) of a
map f: K——L of pointed A-sets with K locally finite and L Kan is homo-
topy equivalent to the mapping fibre M (| f|) of the realization |f|: |K|—|L]|.
In particular, the realization |QK | of the loop A-set QK is homotopy equiv-
alent to the loop space of the realization | K|

QK| ~ QK] .
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DEFINITION 11.10 An Q-spectrum
F = {Fp,Fpi1—QF,|ncZ}

is a sequence of pointed Kan A-sets IF ,, together with homotopy equivalences
F 11— QF ,. The homotopy groups of F are defined by

™) = Tk k) (nk€Z,n+k=0).
O

Note that the indexing of ' is the negative of the usual terminology for
an (2-spectrum

G = {Gn,Grn——QCni1|n €2} .

DEFINITION 11.11 The mapping cofibre of a map f: K——L of ()-spectra of
Kan A-sets is the Q-spectrum of Kan A-sets

C(f) = {C(f)n = M(f: Kn-1y——Ln-1)[n € Z} .

The mapping cofibre fits into a (co)fibration sequence of Q-spectra

I
K - L — C(f)
with
g = inclusion :
L, = QLn—l = M({*}—>Ln—1) — C(f)n = M(fZKn_1—>Ln_1>
inducing a long exact sequence of homotopy groups

(K)o (D) L m(CF) s w1 (K) —

DEFINITION 11.12 The suspension of an Q-spectrum K = {K, |n € Z} is
the Q-spectrum

YK = C(K—{x})
with
(XK), = Kn—1 , m(EK) = m,-1(K) (n€Z).
O

The mapping cofibre of a map f: K——L of Q2-spectra is just the suspen-
sion of the mapping fibre

C(f) = BM(f) .
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§12. Generalized homology theory

The connection between generalized homology and stable homotopy theory
due to G. W. Whitehead [189] and the language of A-sets are used to con-
struct combinatorial models for both the cohomology and homology groups
of a locally finite simplicial complex K with coefficients in an {2-spectrum
F.

DEFINITION 12.1 Let F be an Q-spectrum of Kan A-sets, and let K be a
F -cohomology

locally finite A-set. The { compactly supported F-cohomology $)-spectrum

F-homology
of K is defined by

FE+ = {(Fn)5+ |nez)

Fet = {(Fn)e|nez}

Ky AF = {lig Y (Ky AF,_;)|neZ}
J

[F -cohomology
with homotopy groups the { compactly supported F-cohomology groups of

F-homology
K

HY(K;F) = 7_,(F5+) = [K;,F ]

HINEKF) = n_n(F&F) = [KL,F_pe

Ho(K;F) = mo(K4 AF) = lim mpq(Kp AF_j)
J

Write the F-cohomology 2-spectrum of K as
Ff = H'(K;F) = {H"(K;F)|neZ},
with
H™(K;F) = (F)% |, 7 ,(H (K;F)) = H"(K;F) .

The n-dimensional F-cohomology group F™(K) of a locally finite A-set K
thus has a direct combinatorial description as the set of homotopy classes
of A-maps K, ——F _,,, which may be called ‘F-cocycles in K’. Similarly
for the compactly supported F-cohomology group F7?(K). There follows
a similar description for the F-homology group of a locally finite ordered
simplicial complex K, as the set of cobordism classes of ‘F-cycles in K’.
On the Q-spectrum level it is possible to replace K A F by a homotopy
equivalent Q-spectrum H.(K;F) which is defined directly in terms of the
simplexes of K and F.

Regard the standard n-simplex A" as the simplicial complex with one
k-simplex for each subset 0 C {0,1,...,n} of k 4+ 1 elements. The bound-
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ary 0A™ C A" is the subcomplex consisting of the proper subsets o C

{0,1,...,n}.

A finite ordered simplicial complex J has a canonical embedding as a
subcomplex in IA™! with m + 1 = |J(], namely

J — ATy —

if JO ={v;]0<1i<m}.

Let ¥™ be the simplicial complex with one k-simplex ¢* for each (m — k)-
simplex ¢ in OA™H!, with ¢* < 7% € ¥™ if and only if 7 < o0 € OA™ T,
The face maps in the A-set X are such that

9 : (Z™M® — (zm)E=D s o* 5 9(0%) = (6i0)* (0<i<k<m)
where
61‘ . (8Am+1)(m—k) — (aAm+1)(m—k+1) :
o = {0,1,,m+1}\{j0,j1,,jk} — (51'0' = O'Ujl' (OSZSI{?) .
The simplicial map
3 = OA™ - o* 5 {0,1,...,m+1}\o

is an isomorphism of simplicial complexes. Regard ¥ as the dual cell
decomposition of the barycentric subdivision (9A™T1) with o* the star of
the barycentre ¢ and (§;0)* C do* the embedding of the star of §;0 in the
link of .

DEFINITION 12.2 The supplement of a simplicial subcomplex K C 9A™*1
is the subcomplex K C ¥™ given by
K = {0"eX"|ccdA™\K} .
O

The definition of the supplement goes back to at least Blakers and Massey
[10]. In particular

AT = ¢ | = x™

and if J C K C 9A™*! then K C J C ¥™.
DEFINITION 12.3 Let F be an Q-spectrum of Kan A-sets.
(i) Given a finite simplicial complex J define the Q-spectrum

H.(J;F) = {H,(J;F)|n € Z}
by

H,(J;F) = H* ™™, J;F),
using the canonical embedding J C A™*! (m+1 = |J(©)]), with homotopy
groups

m,(H.(J;F)) = H™"™(X™ J;F) (n€Z).



126 ALGEBRAIC L-THEORY AND TOPOLOGICAL MANIFOLDS

(ii) Given a locally finite ordered simplicial complex K define the Q-spectrum
H.(K;F) = limg H.(J;F)
J

with the direct limit over finite subcomplexes J C K. The homotopy groups
are such that

m(H.(K;F)) = lim A" "(X™, J;F) (ne€Z).
J
O

Given a A-set K let A(K) be the abelian group chain complex with
A(K), the free abelian group generated by K™ and

dary  AK )y — AK)p1 3 2 — Y (=)0 .
1=0

PROPOSITION 12.4 The Q-spectrum H .(K;F ) is homotopy equivalent to the
F -homology Q-spectrum K, AT, with
m(H.(K;F)) = (K AF) = H,(KG;F) (neZ).

PROOF Since generalized homology commutes with direct limits, there is
no loss of generality in assuming that K is finite, with canonical embed-
ding K € OA™*!. By construction H,,(K;F)®) consists of the A-maps
YY" ® AP—TF,,_,, sending K ® AP to (). Approximate the reduced di-
agonal map S™—|K|, A (S™/|K|) of G.W.Whitehead [189, p. 265] by a
A-map Y™ — K, A (¥™/K), subdividing ©™ if necessary — see Remark
12.5 below for an explicit construction. The A-map represents the m-cycle

Y oot € (AK)®@AE™,K))m

with adjoint the isomorphism A(K)™~* — A(X™, K) sending the elemen-
tary cochain of ¢ € K to the elementary chain of o* € ¥™/K. Define a
map of Q-spectra H.(K;F)— K AF by

Ho(KiF) = (Fpopn, )& E)
e (K AF )Y = QK AT )
— (K4 AF)y = lim QY(Ky AF ;) ;
J
(™ K) ® AP—(F n—. D))
— (Z"ANAE— K AE"/K)ANAE — KL AF,_) .

This is a homotopy equivalence by J.H.C. Whitehead’s theorem, since it
induces the Alexander S-duality isomorphisms

o (H (K F)) = H™ (™ K;F) — 1 (Ky AF) = H(K;F) (n € 7).



12. GENERALIZED HOMOLOGY THEORY 127

O

REMARK 12.5 Regard a simplicial complex K as a category with one object
for each simplex ¢ € K and one morphism oc——7 for each face inclusion
o < 7. The homotopy colimit (Bousfield and Kan [13]) of a contravariant
functor

F: K — {pointed A-sets} ; 0 — F'[o]
is the pointed A-set
FIK] = (I A"'® Flo])/ ~,

ceK
with ~ the equivalence relation generated by

(i) fra®b~a® f*b for any morphism f:o—s7 , a € Al°l | be F[r],
(ii) Al g )~ Al°'T & ¢ for any 0,0 € K .

Given a subcomplex J C JA™T! define a contravariant functor
/] ifoeld

G : OA™ — {pointed A-sets} ; 0 — Glo] = {
0 otherwise

with homotopy colimit
GOA™ T = T A (Z™/)T) .
Quinn [137] proved that the homotopy colimit F[0A™ 1] of the dual simplex
functor
F: OA™1 — {pointed A-sets} ; 0 — o* = A™I°

is a subdivision of X", allowing the construction of a combinatorial approx-
imation of the reduced diagonal map S ——|J|+ A (S™/|J|) as the A-map

ROA™ ] . F[OA™ ] = ™ — GIOA™H] = Jo A (2™/T)
induced by the natural transformation h: F—G with
hlo] = ¢*: Flo] = A™ 7l — Glo] = /T (0 € J)

the characteristic A-maps.
]

DEFINITION 12.6 An n-dimensional F-cycle in an ordered simplicial com-
plex K is a pair (J,z) with J C K a finite subcomplex and z a 0-simplex

z € im(H,(J;F) O —H, (K;F)®)
that is a collection
z = {z(0) eF" Vs e}
defined using the canonical embedding J C OA™*! such that

8@(0) _ {.77(510') if 9,0 € J

0<i<m-—|o|).
0 toogy OSism=lol
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O

In dealing with cycles (J, x) the finite subcomplex J C K will usually be
omitted from the terminology. For finite K it is always possible to take
J=K.

DEFINITION 12.7 A cobordism of n-dimensional F-cycles (Jo,xo), (J1,21)
in K is a 1-simplex y € H,,(K;F )M such that d;y = ; (i = 0,1), that is a
compactly supported A-map
y: (" N@AY — (Fpepm,0) (J = JoUJ)
such that
ylo®1i) = z;(o0) € IF‘,(:Z;@IUD (ceJi=0,1).
]

PROPOSITION 12.8 Cobordism is an equivalence relation on n-dimensional
F -cycles in K, such that the set of equivalence classes is the n-dimensional
F -homology group H, (K;F).
PROOF Immediate from 12.4.

]

EXAMPLE 12.9 Given an abelian group 7 and an integer n > 0 let K (7, n)
be the Kan A-set defined by forgetting the degeneracies in the Eilenberg—
MacLane simplicial abelian group obtained from the abelian group chain
complex C' with

C’n:ﬂ', 01':0 (z#n)
by the Kan—Dold construction. Let F be the Q2-spectrum defined by
F, = K(r,—n) (n<0), =0 (n>0).

An n-dimensional F-cycle (J, z) in a simplicial complex K is determined by
a finite subcomplex J C K, with

z = {z(0) eF" 1V iget (m+1=[JO)
determined by a finite collection of group elements
z(o) € Fiz”i;") =7 (0 € K™)
corresponding to an n-cycle
xr = Z x(o)o € Ay (K;m)
ocEK(n)
representing a homology class

x € Hy(K;F) = H,(K;m) .
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The cycle approach to F-homology generalizes to the relative case. Let
(K,L C K) be a pair of ordered locally finite simplicial complexes. For
any finite subcomplex J C K with m + 1 = |J(©]| the supplements of .J
and J N K are such that J C JNL C Y™, and H.(L;F) C H.(K;F) .
An n-dimensional F -cycle in L is an n-dimensional F-cycle (J, z) in K such
that x(o) =0 for o € J\(J N L).

DEFINITION 12.10 (i) The relative F-homology Q-spectrum of (K, L)
H.(K,L:F) = {H,(K,L;F)|necZ)
is defined by

H, (K, L;F) = lim (Fp_pn,0)T L) (nez),
J
with the direct limit taken over finite subcomplexes J C K. The relative
F -homology groups of (K, L) are the homotopy groups of H.(K, L;F)
m(H.(K,L;F)) = H,(K,L:F) (n€Z).
(ii) A relative n-dimensional F -cycle (J,x) in (K,L) is an element of
H, (K, L;F)©), that is a finite subcomplex J C K together with a col-
lection
z = {2(0) eF" Vg e \(INL)}
such that

[ x(00) if d;0€ J\(JNL) ,
Oix(o) = {Q) if 6.0 ¢ J 0<i<m-—|a|) .

By analogy with 12.8:

ProrosiTiON 12.11 Cobordism of relative cycles is defined as in the abso-
lute case, and H, (K, L;F) is the abelian group of cobordism classes. The
fibration sequence of 2-spectra

H.(L;F) — H.(K;F) — H.(K,L;F)
induces the long exact sequence of F -homology groups
oo — H,(L;F)— H,(K;F)— H,(K,L;F)— H, 1(L;F)— ....

PROOF As in the proof of 12.4 it may be assumed that K is finite, with a
canonical embedding K C dA™* 1. The homotopy equivalences QF ,,_,,_1

—F,,_m given by the Q-spectrum F and the excisive inclusion

(LAY KR A'UL®IAY) — (E" @AY, KRA'UL® 0 A'US" @0, A)
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may be used to define homotopy equivalences
H (K, LiF) = (Fnp,0)5K)

~ (OF ey, 0) (5 F)
(F s @>(Z® A K@ A'UL®0AY

~

(Fo @) @ALKE @A UL ® A US™ © 91AY)
= mapping cofibre of H,,(L;F) — H,, (K;F) ,

obtaining a homotopy equivalence between H .(K, L;F) and the mapping
cofibre of the inclusion H.(L;F)—H .(K;F).
]

ExAMPLE 12.12 Consider H, (K, L;F) in the special case L C K C dA™ !
with K = L U AF obtained from L by attaching a k-simplex along a sub-
complex JA* C L. An n-dimensional F-cycle x in (K, L) is an element

r(AF) € ]F‘i"_l_mk) such that 9;z(A*) =) for 0 <4 < m — k, and the map

H,(K,L;F) — 7k (Fp—pn) = mp—x(F); 2 — x(Ak)

is an isomorphism.
O

The Kan extension condition will now be used to define the assembly map
A: H.(K;F({x})) — F.(K')
for any covariant functor
F : {simplicial complexes} — {Q-spectra} ; K — F(K) .

Let A™*tt ¢ A™*! be the subcomplex obtained by removing the face
A™ < A™*1 opposite the vertex m + 1, such that

OA™MTL = AmTLA™ , A A AT = GA™TL = HA™ .
The inclusion
(Am“, 8Am+1) C (Am“, aAm+1)

is a homotopy equivalence such that for a Kan A-set F the induced homo-
topy equivalence

(F7@)(Am+17aAm+1) i}(F,®)(Am+1,aAm+l)

admits a section

B : (F7®)(Am+1,aAm+1) N (F’w)(Am—&—l’aAm—i—l)

verifying the Kan extension condition. The inclusion

(A™, 9A™) C (A™F! gA™T1)



12. GENERALIZED HOMOLOGY THEORY 131

is a homotopy equivalence, inducing a homotopy equivalence
m-+1 m—+1 ~ m m
v (087 0ATT) =, g)(AT 087

PROPOSITION 12.13 For a Kan A-set F the composite A-map
m+1 m+1 B m+1 m+1
a = B (F,0)OTLONT) S )AL OATT

LN (Fj(z))(Am,(‘)Am)
is a homotopy equivalence of Kan A-sets.

PROOF Both g and v are homotopy equivalences.
]

The geometric realizations of A1 and A™ may be identified by means
of the homeomorphism
|Am—|—1| s |Am| :
()\0, )\1, ce 7)‘m+l) —

()‘0 + )‘m+1/(m + 1)7 A1+ )‘m—i-l/(m + 1)7 R 7)\m + )\m—l—l/(m + 1))
m—+1
O< A0 AL Amr 1, D A =1, AA1. A = 0),
i=0
which maps OA™! to OA™. This identification is used to visualize a as
sending a A-map
f : (Am—i-l,aAm—l—l) — (Fa(b)
to the A-map
alf) = |J flo): (A™,0A™) — (F,0)
O-eAm+1

obtained by assembling together the pieces f(o) € F U glueing by the
Kan extension condition. N

Given an Q-spectrum F let ©:F,, —> QF,,_; (n € Z) be the given homo-
topy equivalences. Given a subcomplex K C OA™*! define A-maps

6: Ho(K;F) = (Fr_m,0)E"K)

s F oo, A0 e 7
by sending a A-map
f:E™K)RA — (F o, 0)
to the A-map
¢(f) + (A™F20A™T2) @ AP — (Fymp—1,0)
O(f(c* ®p) ifo=1{0,1,.... m+2\7€ K

TR U —
. { 0 otherwise .
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DEFINITION 12.14 Given an (2-spectrum F and a locally finite simplicial
complex K define the assembly to be the map of {2-spectra

A:H.(KF) = lim H.(;F) — F
J

using the canonical embeddings J C OA™T! of the finite subcomplexes
J C K, with

A:H,(J;F) i> (Fn—m_1,®)(Am+2’aAm+2)

m+1 m-+1 emtiy—1
- ’aA ) - Qm—~_1IF7L—m—1 ( ) ? Fn7

— (F n—m-—1; (Z))(
inducing assembly maps in the homotopy groups
A:m(H.(K;F)) = Hy(K;F) — m(F) (neZ).
]

In terms of the homotopy equivalence H.(K;F)—— K, AT of 12.4 the
assembly A is just the map of the F-homology Q-spectra K AF —{x} AF
induced by the unique simplicial map K —{x}

A:H(KF) ~ Ky N\F — {x}; AF = F .
An element x € H,,(K;F) is represented by an F-cycle (J C K, z) with
= {a(0)eF;", Vo€ T}

x
Visualize A: H,,(K;F )—m,(F) as assembling the components x(o) to an
element

Alx) = U z(0) eFO
ocJ
representing

A(z) € Hy({#};F) = mo(Frn) = ma(F) .
For a subcomplex J C 9A™*! and o € J let J(o) C ¥™ be the subcom-

plex consisting of the dual simplexes 7* € ¥™ of the simplexes 7 € QA™ !
such that either 7 ¢ J or o £ 7 € J, that is

J(o) = J\stj(oc) C X™
with sty(o) ={p€ J|o <p}. If o < p € J then J(p) C J(0), and
U 7o) = =m.
oed
The relative simplicial pair (J(o), J) has one (m — |7|)-simplex 7* for each
T € sty(o), with

0;(t*) = (7)€ J(o) (0<i<m—|7|).

DEFINITION 12.15 Given a covariant functor
F : {simplicial complexes} — {Q-spectra} ; K — F (K)
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define the local {F }-coefficient homology Q-spectrum of a subcomplex K C
OA™ !

H.(K{F}) = {Hn(K;{F})|n € Z}
by
Ho (K {F}) = 1 Jim (Foon(D(0,)),0)70707)
The homotopy groups of H . (K(,TEE]‘ }) are the local {F }-coefficient homology
groups of K
Ho (K {F}) = m(H.(K{F})) (neZ),

which may also be written as H,,(K;{F (D(o, K))}).

m

EXAMPLE 12.16 If F is constant, with F (K) = F for all K, then H . (K; {F })
is the F-homology spectrum H.(K;F) of 12.3, with

Ho(K:{F}) = Jim (F (Do, K)), 8) K (0), K)

= Fo, & E) — HL(KGF) (nez).
O

DEFINITION 12.17 An n-dimensional {F }-cycle in a simplicial complex K
is an element of H,, (K;{F})®, that is a collection
2 = {x(c) €F p_m(D(c, )™ | e J}
with J C K a finite subcomplex and J C JA™*! the canonical embedding,
such that
i (0; if ; :
duate) = { F7O) AT 0<icm—ol),
0 if 0,0 ¢ J
with f;:F (D(6;0,J))—F (D(o,J)) the map induced by the inclusion
D(é;0,J) C D(o,J).
m
As in the constant coefficient case (12.6,12.8) there is a corresponding
notion of cobordism, such that H,(K;{F}) is the cobordism group of n-
dimensional {F }-cycles in K.

DEFINITION 12.18 The local {F }-coefficient assembly is the map of Q-
spectra

A: H.(K;{F}) — F(K')
given by the composite

A H.(K{F)) — H.(K;F(K')) — F(K')
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of the forgetful map H.(K; {F })—H .(K;F (K’)) induced by all the inclu-
sions D(o, K) C K’ (0 € K) and the assembly A:H .(K;F(K'))—F (K’)
of 12.14.

O

A functor
F : {simplicial complexes} — {Q-spectra} ; K — F (K)

is homotopy invariant if a homotopy equivalence f: K — L induces a ho-
motopy equivalence of {2-spectra

f:F(K) — F(L).
For such F the forgetful map from local I -coefficient homology to constant
F ({*})-coefficient homology is a homotopy equivalence
H.(K{F}) — H.(KGF({*})) ,
since each of the unique simplicial maps D(o, K)—{*} (¢ € K) is a ho-

motopy equivalence.

DEFINITION 12.19 The constant F ({x})-coefficient assembly for a homotopy
invariant functor F' and a subcomplex K C OA™*! is the map of -spectra

A: H.(K;F({+})) — F(K)
given by the local {F }-coefficient assembly A of 12.18, using the homotopy
equivalences

H.(K;{F}) —4 . F(K')

:| |:

H.(K;F ({+})) —34— F(K) .
O

REMARK 12.20 The assembly map A:H.(K;F ({*}))—F (K) of 12.19is a
combinatorial version of the assembly map of Anderson [4] and Quinn [137],
which is defined as follows: a functor

F : {pointed topological spaces} — { spectra}
induces a natural transformation of function spectra
X — xUb F()()F({*}) :
with adjoint the assembly map
A:H.(X;F({+}) = XANF({*}) — F(X) .
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EXAMPLE 12.21 Let Q%9 (K) = {Q°9(K), |n € Z} be the Q-spectrum
with Q59 (K),, the Kan A-set defined by

Q%9 (K)*®) = { (n + k)-dimensional smooth oriented manifold k-ads
(M;00M,0. M, ...,0,M) such that
OMNIMN...NnoxM = 0, with a map M—|K|}

with base simplex the empty manifold k-ad (). The homotopy groups
T (QO(K)) = Q°(K) (n>0)

are the bordism groups of maps M——|K| from closed smooth oriented
n-dimensional manifolds. The functor

Q59 . {simplicial complexes} — {Q-spectra} ; K — Q%9(K)
is homotopy invariant, since for any k-simplex M in Q%9(K), there is
defined a (k+1)-simplex M ®1I in Q99 (K ® A'),,, so that the two inclusions
K—K ® A' induce homotopic A-maps Q% (K)—Q%° (K ® A'). The
assembly map defines a homotopy equivalence

~

A H(K;Q99({+}) — Q%9(K),
a combinatorial version of the Pontrjagin—Thom isomorphism and the Atiyah

formulation of bordism as generalized homology. The assembly of an n-
dimensional Q_SO({*})—coefﬁcient cycle in a subcomplex K C 0A™ !

r = {M@©)" "o e K}
is a map
A(z): M" = | M(o) — |K| = |K|
oEK
from a closed smooth oriented n-manifold such that

A(z) 'D(0,K) = M(o) (0 €K).
The smooth oriented bordism Q-spectrum Q%9 (K) is just a combinatorial
version of the Thom suspension spectrum |K|y A M SO, with

MSO = {MSO(j), EMSO(j)—MSO(j +1)|j >0},
OPO(K)p =~ Ho(K;Q79({+}) =~ lim O (|K[y AMSO()) (n€Z).

O
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§13. Algebraic L-spectra

The algebraic LL-spectra consist of Kan A-sets with homotopy groups the
algebraic L-groups. Given an algebraic bordism category A = (A,B,C)
there will now be defined an 2-spectrum

L'(A)={L"(A)[neZ}
L.(A) = {L,(A)[necZ)}
NL'(A) = {NL*(A)|n € Z}

symmetric
of Kan A-sets with homotopy groups the { quadratic L-groups of A
normal
m(L'(A)) = L™(A)
Tn(L.(A)) = L,(A) (neZ).
n(NL'(A)) = NL™(A)
L-(A)
The { L.(A) -cohomology (resp. homology) groups of a simplicial complex
NL"(A)
symmetric
K will be identified with the { quadratic L-groups
normal
H"(K;L'(A)) = L7 (A*(K))
H™(K;L.(A) = L_n(A*(K))
H"(K;NL(A)) = NL™™"(A*(K))

Hn(K L'(A)) = L"(A(K))
(resp. § HL(KLW) = Lo(d.() )
(K NL'(A)) = NL™"(A«(K))
of the algebraic bordism category A*(K) (resp. A.(K)) of §5. The various
algebraic LL-spectra are used in Part II to express the geometric properties

of bundles and manifolds in terms of L-theory.

The algebraic surgery classifying spaces and spectra are analogues of the
geometric surgery classifying spaces and spectra, which arose as follows:

REMARK 13.1 (i) The classifying space G /O for fibre homotopy trivialized
vector bundles and its PL analogue G/PL first appeared in the surgery
classification theory of exotic spheres (Kervaire and Milnor [86], Levine [91,
Appendix]). The fibration sequence

PL/O — G/O — G/PL
induces an exact sequence
. —mp11(G/PL) — m,(PL/O) — 7,(G/O) — 7, (G/PL) —
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which for n > 5 is isomorphic to the differentiable surgery exact sequence
i — Ly 1(Z) — SP(S™) — 1, (G/O) — L, (Z)

with 7, (PL/O) = S°(S™) = 6,, the groups of h-cobordism classes of n-
dimensional exotic spheres, and 7, (G/PL) = L,(Z) the simply-connected
surgery obstruction groups. An exotic sphere X" is sent by 7, (PL/O)—
T (G/O) to the classifying map S™ ~ ¥"——G/O for the fibre homotopy
trivialization of its stable normal bundle determined by the trivial Spi-
vak normal fibration. This is also the classifying map of the normal map
(f,b) : ¥"——S" with f : ¥"——S" a homotopy equivalence representing
the element [f] € SP(S™) of the differentiable structure set, corresponding
to [X"] € 0,,.

(ii) The topological surgery classifying space G/TOP first appeared in the
work of Casson [34] and Sullivan [167] in which block bundles were used
to obtain the obstruction to deforming a homeomorphism f : M— N of
compact n-dimensional PL manifolds (n > 5) to a PL homeomorphism

k(f) = wlvm — fron) € H(M;Zs) |

disproving the manifold Hauptvermutung that every homeomorphism of PL
manifolds is homotopic to a PL homeomorphism — see Wall [180, §17A],
Armstrong, Cooke and Rourke [5]. The classifying spaces BPL, BTOP,
BG for PL bundles, topological bundles and spherical fibrations are related
by a commutative braid of fibrations

with x € [BTOP, K (Z3,4)] = H*(BTOP;Z3) the Kirby-Siebenmann in-
variant.

(iii) Quinn [130] defined the geometric surgery spectrum L.(K') of a space
K, with homotopy groups

T (L.(K)) = L.(Z[m (K)]) -
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The algebraic surgery spectrum L.(R) of a ring with involution R with
m«(L.(R)) = L.(R)
was first constructed using forms and formations (Ranicki [138], [139]), with
L(K) ~ L.(Zm(K)]) .

The simply-connected surgery spectrum L.({*}) ~ L.(Z) is the 4-periodic
delooping of G/TOP given by the characteristic variety theorem of Sullivan
[168], with

See Ranicki [143],[146], Levitt and Ranicki [94], Weiss and Williams [188]
for other accounts of the quadratic L-spectra. Also, see Siegel [162], Goresky
and Siegel [64], Pardon [125], Cappell and Shaneson [28] and Weinberger
[185] for some of the connections between L-theory, the characteristic variety

theorem, intersection homology theory and stratified spaces.
]

As before, let A = (A, B, C) be an algebraic bordism category.
L"™(A)
DEFINITION 13.2 Let ¢ L,,(A) (n € Z) be the pointed A-set with m-
NL™(A)
symmetric
simplexes the (m-+n)-dimensional { quadratic complexes in A*(A™), with
normal

the zero complex as base m-simplex (). The face maps are induced from the
standard embeddings 0;: A™~!—=A™ via the functors

(0:)* : A*(A™) — A*(A™ 1) .
o
DEFINITION 13.3 Given a pair of locally finite simplicial complexes (K, J C
K) let
A (K,J) = (A*(K,J),B*(K,J),C*(K,J))
be the algebraic bordism category defined by the full subcategory of A*(K)
(5.1) with objects C' such that C'(¢) =0 for o € J.

O
L™(A)
PROPOSITION 13.4 ¢ L,,(A) is a Kan A-set with homotopy groups and
NL™(A)
loop A-set
T (L"(A)) = L™T(A) QL”(A) = L"TY(A)
Tm(Ln(A)) = Lmin(A) Ln(A) = Lpta(A)
Tm(NL?(A)) = NL™T(A) , QNL"(A) = NL"*1(A)



13. ALGEBRAIC L-SPECTRA 139

formeZ, m+n>0.

PRrROOF Only the quadratic case is considered, the symmetric and normal
cases being entirely similar.

The Kan extension condition is verified using the algebraic analogues of
glueing and crossing with the unit interval I = [0, 1]. See Ranicki [146,§1.7]
for the glueing of quadratic complexes. Crossing with I corresponds to the
following chain complex construction. A pair (C,0C) of chain complexes in
the additive category A is a chain complex C' in A which is expressed as

de = (d%c 3?) : Cp = 90, ®C, — Cry = 0C,_; ®Cry
C

so that AC is a subcomplex of C' and C = C'/OC is a quotient complex.
Define

(D,0D) = (C,0C)® (1,0I)
to be the pair with

dac ec e¢ 0
0 dC’ 0 (—)T_l
0 0 ds ()
0 0 0 dg

D, = 0C, ®Cr @ C, ® Cry
—— D,y = C 1 DC_ 1 ®Cr 1 ®Cr_s,
0D, = 9C, &C,®Cy , Dy = Cr_y.
Let C ® {0},C ® {1} be the subcomplexes of D defined by
(C®{0}), = {(x,9,0,0) € D,.|(z,y) € C, =3C, @ C,} ,
(C®{1})r = {(,0,9,0) € D,|(z,y) € C, =3C, & C, } .

The inclusions

dp =

Tk C®{]€}———>D (k:O,l)

are chain equivalences, with chain homotopy inverses ji: D—C ® {k} de-
fined by

0.0
Jot Dy — (C& RN : (2,92 w) — {@’y“’ 0) ifk::{o -
(x,0,y + 2,0)

Let A™ C A™ be the subcomplex of A™ obtained by removing the in-
teriors of A™ and of a face A™~! < A™. Define the extension of a chain
complex C' in A*(A™) to a chain complex C in A*(A™) by

(C7(A™),C7(0A™)) = (C*(A™),C"(9A™) ® (1,01)
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with
(Clo)®{0}),  ifoeA™
Clo)r = { (C*(A™ @ {1}), ifo=Am!
C*(Am)r—l ifo=A™.

Use the identification of pairs of abelian group chain complexes
(W, C)'[A™], (Wy, C)*[0A™]) = (W, C)"[A™], (Wi, C)*[0A™]) @ (I,01)
to define the extension of an n-dimensional quadratic complex (C,v) in
A*(A™) to an n-dimensional quadratic complex (C,) in A*(A™) by
¥ = (jo)u () € (W O)*[A™],, .
The homotopy group m,,(LL,(A)) is the group of equivalence classes of
m-simplexes (C, %) in L,,(A) such that

0;(C,p) =0 (0<i<m).
Such simplexes are n-dimensional quadratic complexes (C,v) in A*(A™,

OA™), which are just (m + n)-dimensional quadratic complexes in A. The
homotopy of simplexes corresponds to the cobordism of complexes, so that

Tm(Ln(A)) = Lpan(A) (m>0,n€Z).

Let (ig,%1,...,i,) denote the r-simplex of A™ with vertices ig,i1,...,1,
given by a sequence 0 < iy < i1 < ... < %, < m. The standard embedding
Oms1: A™ C A™F! identifies A™ with the face of A™*! opposite the vertex
m+1. By definition, an m-simplex of QL,,(A) is an n-dimensional quadratic
complex (C, ) in A*(A™TL A™ U {m + 1}), so that

C((m+1)) =0,

C((ig,i1,-..,0r)) = 0 (0<ig<i; <...<ip <m).
Except for terminology this is the same as an (n 4+ 1)-dimensional quadratic
complex (C’, ') in A*(A™) with
C/(<i0,i1,...,ir>) = C((io,il,.. . ,ir,m+1>) (O << <...<1, < m) .
This is an m-simplex of LL,,+1(A), so that there is an identity of A-sets

QL,(A) = L,+1(A) .

O
symmetric
DEFINITION 13.5 The ¢ quadratic L-spectrum of an algebraic bordism
normal

category A is the Q-spectrum of Kan A-sets given by 13.4

L'(A) = {L*(A)|neZ)}
L.(A) = {L.(A)|neZ}
NL'(A) = {NL™(A)|n € Z}
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with homotopy groups the L-groups of A
T (L'(A) = mapn(L7F(A)) = L™(A)
Tn(L.(A) = mpar(L_k(A)) = L,(A) (n,k€eZ,n+k>0).
T(NL'(A)) = Toss(NLF(A)) = NL7(A)

O

ExXAMPLE 13.6 For any additive category with chain duality A and the
algebraic bordism category of 3.3

A(A) = (A,B(A),C(A))

symmetric symmetric
the ¢ quadratic L-spectrum of A(A) has homotopy groups the < quadratic
normal normal

L-groups of A

Also, by 3.6
m(L'(A(A)) = L7(A) = NL*(A) = m(NL'(AA))) ,
so that the forgetful map defines a homotopy equivalence

NL'(A(A)) — L'(A(A)) .

o
symmetric
PROPOSITION 13.7 The {quadmtz’c L-spectrum of A*(K) (resp. A(K))
normal
L(A)
is homotopy equivalent to the < IL.(A) -cohomology (resp. homology) spec-
NL(A)

trum of the locally finite simplicial complex K

L'(A*(K)) ~ H'(K;L'(A))
{]L.(A*(K)) ~ H'(K;L.(A))
NL'(A*(K)) =~ H'(K;NL(A)) ,
L(A«(K)) ~ H.(K;L(A))
(resp. {L.(A*(K)) ~ H.(K;L.(A)) >
NL'(A(K)) ~ H.(K;NL(A))

so that on the level of homotopy groups
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Hy (K51 (A))
(resn. § oA (K)) = HL (L) )
NL"(A(K)) = Hn(K;NL'(A)) .
PROOF As in 13.4 consider only the quadratic case, the symmetric and
normal cases being entirely similar. An n-dimensional quadratic complex
in A*(K) is a collection of n-dimensional quadratic complexes in A*(A™),
one for each m-simplex of K, with the common faces in K corresponding to
common faces of the quadratic complexes. Thus the A-maps K, —L,,(A)
are just the n-dimensional quadratic complexes in A*(K). For each p > 0
identify
L,(A*(K))? = {n-dimensional quadratic complexes in A*(K)*(AP)}
(L.(A)5+)®) = {n-dimensional quadratic complexes in A*(K @ AP)}

= {A-maps (K @ A?)y—L,(A)} .
The Kan A-set spectra L.(A*(K)), L.(A)%+ are not isomorphic, but they
are homotopy equivalent®, so that

L,(A*(K)) ~ L,(A)%+ = H"(K;L.(A)) .

As in 12.4 there is no loss of generality in taking K to be finite, so that there
is an embedding K C OA™*! for some m > 0, and the supplement K C ™
is defined (12.2). There is a natural one—one correspondence between chain
complexes C in A, (K) and chain complexes D in A*(X™, K), with

C(oc) = D(¢c*) (c € K) , [Cl«]K] = S™[D]*[¥", K] .
For each p > 0 identify
Ly, (A (K))® = {n-dimensional quadratic complexes in A, (K)*(AP)}
H,, (K;L.(A)® = {(n—m)-dimensional quadratic complexes in
A (X" @ AP, K @ AP) }
= H" (S, K;L.(A)P = L,_n(A*(3™,K))®
= {A-maps (™, K) @ AP—L,_,,(A)}

* See Multiplicative properties of Quinn spectra by Gerd Laures and Jim
McClure (http://arxiv.org/abs/0907.2367, Forum Math. 26 (2014), no. 4,
1117-1185) for a proof.
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and so
Ln(A(K)) = H,(K;L.(A))
O

REMARK 13.8 The identification HY(K;L'(A)) = L°(A*(K)) is an ana-
logue of the identification due to Gelfand and Mishchenko [60] (cf. Mishch-
enko [116,4.2])
K(X) = L°(C(X,0))
of the topological K-group of complex vector bundles over a topological
space X with the symmetric Witt group of the ring C(X,C) of continuous
functions X——C with respect to the involution determined by complex
conjugation z—Z2. See Milnor and Husemoller [113, p.106] for the corre-
sponding identification of the real K-group
KO(M) = L°(C*™(M,R))
with M a differentiable manifold and C°°(M,R) the ring of differentiable

functions M ——R with the identity involution.
i

PROPOSITION 13.9 Given an algebraic bordism category A = (A,B,C) let

~

A = (AB,B).
(i) The exact sequence of 3.10
14T J -0
. — Ly(A) — NL™(A) — NL"(A) — L,—1(A) — ...
is the exact sequence of homotopy groups of a fibration sequence of Q2-spectra
L.(A) = NL'(A) N NL'(A) .
(ii) If @*(C’) = 0 for C-contractible C then the forgetful map defines a
homotopy equivalence of LL-spectra
NL'(A) — L'(A) .
PROOF (i) The one-one correspondence between the C*(A™)-equivalence
classes of (normal, quadratic) pairs in A*(A™) and the B*(A™)-equivalence

classes of normal complexes in A*(A™) given for any n > 0 by 2.8 (i) defines
a homotopy equivalence of (2-spectra

(mapping cofibre of 1 4+ 7" LL.(A)—NL"(A)) = NL'(A) .

(ii) Immediate from 3.5.
m

PROPOSITION 13.10 The relative symmetric L-theory exact sequence of 3.8
for a functor F: A—— A’ of algebraic bordism categories

L IPFY(E) — IY(A) s LAY — L(F) — L LAY — .
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is the exact sequence of homotopy groups of a fibration sequence of Q2-spectra
F
L'(A) — L'(A) — L' (F)

and similarly for quadratic and normal L-theory.
PrROOF Let L'(F) = {L™(F)|n € Z} be the Q-spectrum of Kan A-sets
with homotopy groups 7, (L'(F")) = L*(F') defined by

L™(F) = mapping cofibre of F:L"(A)—L"(A') .
O

PROPOSITION 13.11 Let A be an additive category with chain duality, and
let (BCB(A),CCB,DCC) bea triple of closed subcategories of B (A).
(i) The exact sequence of 3.9 (i)

. — L"(A,C,D) — L"(A,B,D) — L"(A,B,C)
o
— L"1(A,C,D) — ...

1s the exact sequence of the homotopy groups of symmetric L-spectra in a
fibration sequence

L'(A,C,D) —s L'(A,B,D) — L'(A,B,C) .

Similarly in the quadratic and normal cases.
(ii) The braid of exact sequences of algebraic L-groups of 3.13

NG T

L,(A,C,D) NL"(A,B,D) NL"(A,B,B)
L,(A,B,D) NL"(A,B,C)
NL"+1(A,B,B) L,(A,B,C) Ln_1(A,C,D)

consists of the exact sequences of homotopy groups of algebraic IL-spectra in
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a braid of fibration sequences

N TN

(A,C, D) (A, B, D) L'(A,B,B)
(A, B,D) NL'(A,B,C)
(A,B,C)

PROOF (i) Inclusion defines a functor F: (A, B, D)— (A, B, C), so that L. (F)
is defined as in 13.10. The inverse isomorphisms of quadratic L-groups de-
fined in 3.9 (ii)
L.1(A,C,D) | L.(F)
are induced by inverse homotopy equivalences of quadratic LL-spectra
YL.(A,C,D) | L.(F)
defined by
YL, (A, C, D)™
= L,1(A,C,D)™ = L,_1(A*(A™),C*(A™),D*(A™))©®
— H—‘n(F)(m) = Ln(F*(Am))(O) )
(C, 1) — algebraic mapping cylinder of (C—0, (0,%)) ,
Lo (F)™ = Ly (F*(A™)©
— YL, (A,C, D)™ = L,_;(A*(A™),C*(A™),D*(A™))® ;
(f: C_—_>D7 (5¢7 d])) — (Cla ¢l) )
with (C’,4") the quadratic complex obtained from (C, ) by algebraic sur-

gery on the quadratic pair (f: C——D, (d1, %)), and F*(A™) the functor of
algebraic bordism categories

FE(A™) = (AT(A™), BT (A™), D*(A™)) — (A*(A™),B*(A™),C*(A™)) .
(ii) The fibration sequences through NL'(A,B,B) are given by 13.9, and
those through L.(A,C,D) by (i).

m
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§14. The algebraic surgery exact sequence

Given a commutative ring R and a simplicial complex K the visible sym-
metric L-groups VL*(R, K), the generalized homology groups of K with
coefficients in the various L-theories of R and the quadratic L-groups L. (
R[m (K)]) are related by a commutative braid of exact sequences

Sn-i—l(RaK) Hn(KaL(R)) Hn(KvN]L(R))
\ 1V’ NA /
H,(K;L.(R)) VL"(R,K)

/’ X 1% &’
Hp 1 (K NLY(R)) L (R (K)]) Sn(R, K)

with the ‘quadratic structure group’
Sn(Ra K) = Ln—1<A (R7 K)? C (R’ K)a C (R)*(K))

defined to be the cobordism group of (n — 1)-dimensional quadratic com-
plexes in A (R, K) which are globally contractible and locally Poincaré.

The ‘algebraic surgery exact sequence’ is the exact sequence
. — H,(K;L.(R)) — L,(R[m1(K)]) — S,(R, K)

— Hp, 1 (K;L.(R)) — ...
relating the generalized homology groups H,.(K;L.(R)), the surgery ob-
struction groups L. (R[m1 (K)]) and the quadratic structure groups S, (R, K).
The algebraic characterization in §18 of the topological manifold structure

sets actually requires the ‘1/2-connective’ version of the algebraic surgery
exact sequence for R = 7Z, and this will be developed in §15.
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symmetric
DEFINITION 14.1 The < quadratic L-spectrum of a ring with involution

normal

R
(R) = {L"(R)|neZ}

) = {Lu(R)|n€Z}
L'(R) = {NL*(R)|n€Z}

symmetric { L(A(R)) = {L"(A(R))|n€eZ}
is the { quadratic L-spectrum ¢ L.(A(R)) = {L,(A(R))|ne€Z} of

normal NL(A(R)) = {NL"(A(R))|neZ}
13.5 with
= (A(R),B(R),C(R)) .
symmetric
The homotopy groups are the { quadratic L-groups of R
normal
L) = L
(]L (R)) = L.(R)
m(NL(R)) = NL*(R) .

The algebraic L-spectra of 14.1 are the special case K = {x} of:

symmetric

visible symmetric
quadratic

normal

DEFINITION 14.2 The L-spectrum of a pair (R, K)

with R a commutative ring and K a simplicial complex is the algebraic
LL-spectrum

L(R,K) = {L"(R,K)|neZ} = ‘(A(R K))
VL'(R,K) = {VL"(R,K)|n€Z} = NL(A(R,K))
L.(R,K) = {L.(R,K)|ne€Z} = ]L(A(R,K))
NL'(R,K) = {NL"(R,K)|neZ} = NL(A(R,K))

of 13.4 for the algebraic bordism categories
AR,K) = (A(R,K),B(R,K),C(R,K)) ,
AR K) = (A(R,K),B(R,K),B(RK)) .
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symmetric
The homotopy groups are the visible symmetric L-groups of (R, K)

quadratic
normal

m(L'(R, K)) = L*(R, K)

(VL' (R,K)) = VL*(R,K)

me(L.(R, K)) = L.(R,K)

m(NL'(R,K)) = NL*(R, K)

defined in 9.7.
O

REMARK 14.3 It follows from 9.8 that the forgetful map defines a homotopy
equivalence

VL'(R,K) — L'(R,K) .
In the special case K = {x} already considered in 3.6 this is
VL'(R, {+}) = NL(AR)) ~ L(A(R)) = L'(R) .

2

O

A functor of algebraic bordism categories F: A——A’ induces a map of
algebraic LL-spectra
F:L(A) — L)
F:L.(A) —L.(A)
F: NL(A) — NL'(A) .
PROPOSITION 14.4 The universal assembly functor of §9
A: AR, K) — A(R[m1(K)])
induces maps of the algebraic 1L-spectra
A: L (R, K)— L' (R[m(K)])
A VL'(R, K) — L' (R[m (K)])
A: L(R,K) — L.(Rm(K)])
A: NL(R,K) — NL'(R[r1(K)])
which is a homotopy equivalence L.(R, K) ~ LL.(R[m (K)]) in the quadratic
case.
PROOF The universal assembly maps in quadratic L-theory define isomor-
phisms A: L.(R, K)—L.(R[n1(K)]) by the algebraic -7 theorem (10.6).
]

Recall from §9 the local algebraic bordism category of (R, K)
A(R)«(K) = (A(R,K),B(R,K),C(R).(K)) .

An object in C (R).(K) is a finite f.g. free (R, K)-module chain complex C
such that each [C][o] (¢ € K) is a contractible finite f.g. free R-module chain
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complex. The assembly C' (I? ) over the universal cover K is a contractible
finite f.g. free R[m (K)]-module chain complex, by the algebraic analogue of
the Vietoris theorem (which may be proved using the algebraic Leray—Serre
spectral sequence of the proof of 10.2). Thus C(R).(K) is a subcategory
of C(R, K), and there is defined a forgetful functor of algebraic bordism
categories A(R).(K)—A(R, K).

symmetric

quadratic L-theory homology Q-spectrum. of

PRrROPOSITION 14.5 (i) The {

symmetric

(R, K) is the quadratic

AR, K)

L-spectrum of the algebraic bordism category

with homotopy groups
{W*(H-(K;L'(R))) = H.(K;L(R)) = L*(A(R).«(K))
m(H.(K;L.(R))) = H.(K;L.(R)) = L.(A(R)«(K)) .
The assembly maps given by 12.19
A: H(K;L'(R)) — L*(R,K) = L*(A(R,K))

{A : H(K;L.(R)) — L.(R,K) = L.(A(R,K))
coincide with the maps induced by the forgetful functor A(R).(K)—>
AR, K).
(ii) The normal L-theory homology Q-spectrum of (R, K) is the normal LL-
spectrum of the algebraic bordism category A(R, K)

H.(K;NL'(R)) = NL'(A(R,K)) = NL'(R,K) ,
with homotopy groups
7 (H.(K;NL(R))) = H,(K;NL(R)) = NL*(R,K) .
The assembly maps given by 12.19
A: H.(K;NL(R)) — NL*(R,K) = L*(A(R,K))
are isomorphisms.

(iii) The L-homology spectra of (i) and (ii) fit into a fibration sequence
H.(K;L.(R)) — H.(K;L'(R)) — H.(K;NL(R)) = NL'(R, K) .
PROOF (i) Only the quadratic case is considered, the symmetric case being
entirely similar. The identification of the quadratic L-theory of A.(R, K)
with the L. (R)-homology of K is the quadratic case of 13.7, with A = A(R).

The covariant functor
L.(R,—) : {simplicial complexes } — {-spectra} ;

K — L.(R,K) = L.(A(R, K))
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is homotopy invariant, since for any quadratic Poincaré complex (C,)
in A(R, K) there is defined a quadratic Poincaré cobordism (C,¢) ® I
in A(R, K ® A') (as in the verification of the Kan extension condition in
14.3), so that the two inclusions K—K ® A! induce homotopic A-maps
L.(R,K)—L.(R,K ® A'). Also, there is defined a commutative diagram
of )-spectra

H.(K:{L.(R,D(c,K))}) —2 - L.(R, K"

~ ~

H.(K;L.(R)) A

L.(R,K)

with A the local {L.(R, —)}-coefficient assembly of 12.18.
(ii) This is the normal case of 13.7 with A = A(R, K).
(iii) This is the special case of 13.9 (i) with A = A(R).(K).
m

The forgetful map H.(K;L.(R))—L.(R, K) may be composed with the
homotopy equivalence of 14.4 L.(R, K) ~ LL.(R[r1(K)]) to define an assem-
bly map

A: H.(K;L.(R)) — L.(R[m (K)]) .

DEFINITION 14.6 (i) The quadratic structure groups of (R, K) are the cobor-
dism groups

Su(R,K) = Ln_1(A(R,K),C(R,K),C(R).(K)) (n€Z)

of (n — 1)-dimensional quadratic complexes in A (R, K') which are globally
contractible and locally Poincaré.
(ii) The quadratic structure spectrum of (R, K) is the quadratic L-spectrum

S(R,K) = YL.(A(R,K),C(R,K),C(R)«(K))
with homotopy groups
T (S.(R,K)) = S«(R,K) .
(iii) The algebraic surgery exact sequence is the exact sequence of homotopy

groups
s Hy(K:LA(R)) — Ly(Rlm (K)])
Sy (R K) —> Hy y(K:L.(R)) —> ...

induced by the fibration sequence of spectra
H.(K;L.(R)) — L.(R[mr1(K)]) — S.(R,K) .
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The symmetric structure groups S*(R, K) and the symmetric structure
spectrum S'(R, K) are defined entirely similarly, using symmetric L-theory.

PROPOSITION 14.7 For any commutative ring R and simplicial complex K
there is defined a commutative braid of exact sequences of algebraic L-groups

\ 1% x /
H,(K;L.(R)) VL™ (R, K)
/ X‘ 1% NA
H,11(K;NL'(R)) Lo (R (K)) Su(R, K)

which are the exact sequences of homotopy groups of algebraic 1L-spectra in
a braid of fibration sequences

H.(K;L.(R)) H.(K;NL'(R))
H.(K;L.(R)) VL' (R, K)
L.(R[mi (K)]) S.(R, K)

PROOF These are just the braids of 13.11 for
using 14.4 to replace L.(A,B,C) by L.(R[m(K)]) and 14.5 (ii) to replace
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NL'(A,B,B) by NL'(R, K). The universal assembly map
A Hn(K;L.(R)) — Lo (R[m(K)]) 5 (C,¢) — (C(K), ¥ (K))
is defined in 9.10. The map
0: VL"(R,K) — Sn(R, K) ; (C,¢) — (9C,¢)
sends an n-dimensional globally Poincaré normal complex in A(R, K) to
the boundary (n — 1)-dimensional globally contractible locally Poincaré
quadratic complex in A (R, K) defined in 2.10.
o

PROPOSITION 14.8 The wvisible symmetrization maps
1+T: Ly(R[m(K)]) — VL"(R,K) (n€Z)

are isomorphisms modulo 8-torsion.
PROOF The relative homotopy groups H,(K;NL'(R)) are 8-torsion, since

m(NL'(R)) = NL™(R) = liy L""*(R) (ne€Z),
k
and the hyperquadratic L-groups L* (R) of Ranicki [146, p.137] are 8-torsion.

O
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§15. Connective L-theory

Let ¢ € Z. An Q-spectrum F is g-connective if m,(F) = 0 for n < q. A
g-connective cover of an Q-spectrum F is a g-connective {)-spectrum F (q)
together with a map F (q)——F inducing isomorphisms 7, (F (¢)) = 7, (F)
for n > ¢. In general, F(q) is obtained from F by killing the homotopy
groups m,(F) for n < ¢, using Postnikov decompositions and Eilenberg—
MacLane spectra.

The g-connective L-theory required for the applications to topology will
now be developed. The g-connective covers of the IL-spectra are explicitly
constructed using algebraic Poincaré complexes of the appropriate connec-
tivity, rather than by killing the homotopy groups using the general ma-
chinery.

Let A = (A, B, C) be an algebraic bordism category.

symmetric L*(q)(A)
DEFINITION 15.1 The g-connective {quadratic L-groups ¢ L.(q)(A) of
normal NL*{q)(A)
A are defined by
L™{(q)(A) = L™(A) itn>¢q,0iftn <gq
L.{(¢)(A) = Lp(A) iftn>q, 0iftn<gq
NL™g)(A) = NL™(A) ifn>gq, 0ifn < q.
]

Write the p-skeleton of a simplicial complex K as K!P!. Similarly, the
p-skeleton of a pointed A-set K is the pointed A-set KP! with

(K@ = {K(q) ifg<p
{0}  otherwise .

symmetric
DEFINITION 15.2 The g-connective < quadratic L-spectrum of A is the

normal
Q-spectrum of Kan A-sets

L{g)(A) = {L™(@)(A)[neZ}
LAg)(A) = {Lp{g)(A)[n e Z}
NL{(g)(A) = {NL"(¢)(A)|n € Z}
with
L"(g)(A)(™ symmetric (C, )
L,{(g)(A)(™ = {n-dimensional { quadratic complexes ¢ (C.,1))
NL"(g)(A)t™ normal (C, )

in A*(A™) such that C' is C*((A™)l="~)_contractible,
ie. C(0)isin C for 0 € A™ with|o| <¢g—n—1},
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such that
QL™(q)(A) = L™ {(g)(A) (L™ (g)(A)) = L™ (q)(A)
{QLn<q>(A) = Lny1(q)(A) {MGLM )(A)) = Lintn{q)(A)
ONL"™(g)(A) = NL"*H{q)(A), Umn(NL™(g)(A)) = NL™"(q)(A),
(L {(q)(A)) = L*(g)(A)
{w*(l-<q>(1\)) = L.(q)(A)
m(NL(q)(A)) = NL*(q)(A),

L"™{(q)(A)
with ¢ L,{(q)(A) (¢ —n — 1)-connected.
NL™(g)(A)

For a ring with involution R and the algebraic bordism category
A(R) = (A(R),B(R),C(R))
of 3.12 write
L{g)(A(R)) = Liq)(R) L*{g)(A(R)) = L*(q)(R)
LA{g)(A(R)) = L.(q)(R) Li(q)(AM(R)) = L.(q)(R)
NL(g)(A(R)) = NL{q)(R) , UNL*(q)(A(R)) = NL*(¢)(R) .
Given a simplicial complex K and an abelian group A let A*(K; A) be
the A-coefficient simplicial cochain complex of K.

The following results hold in symmetric, normal and quadratic L-theory,
although they are only stated in the symmetric case:

cohomology

homology of a stmplicial complex

ProPOSITION 15.3 (i) The L'<q>(A)—{

cohomology

K is expressed in terms of the L'(A)‘{ homology

and the simplicial
Li(A)-coefficient { czchgin groups of K by
chain

( H7"(K;L(g)(A))

= im(H (K, K= L (A)) s H (K, K92 L7 (A)))
coker(0: A" (K; LI(A))— H (K, Kli—"=1: 1L"(A)))
K; L (q)(A))
im(H (K45 L (A))—— Hy (K41 L7 (A)))
[ = coker(0: A,_q41(K; LI(A))—H, (KI"=4;1L°(A))) .

Hy

—~

h [
(ii) The L' {(q)(A)- and L'{q + 1>(A)—{ ;Zn?:;(?ggo/gy groups are related by an
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exact sequence

. — HT(K; L (g + 1)(A) — H"(K; L (q)(A))
s HOMKGLI(A)) — H YKL (g + 1)(A) — ... |
. — Hy(KGL (g + 1)(A)) — Han (KL (g)(A))

— H,_((K;LI(A)) — Hp1 (KL (g+1)(A) — ...
with
( H™"(K;L(q)(A)) — HT(K; L1(A)) 5
(C,0) — > (C(o),¢(0))o,

ceK(a—n)
H, (K;L(q)(A) — Hp—g(K; LI(A)) ;
(C,0) — > (C(o),9(0))o .

\ ceK(n—aq)

. n—qz=1 . ,
(iii) If { n— q> dim(K) then the natural map defines an isomorphism
{H-n<K;L-<q><A>> — H"(K;L'(A))
Hp (KL (q)(A) — Ho(K;L'(A)) .
PROOF It is convenient to replace L."(g)(A) by the deformation retract
L(gA) = {L"()(A)[neZ},
with L™(q)(A) the Kan A-set defined by
L"(g)(4)™
= {n-dimensional symmetric complexes in A*(A™, (A™)la—=1)1
= {n-dimensional symmetric complexes (C, ¢) in A*(A™)
such that C(o) =0 for 0 € A™ with |o| <g—n—1},
such that
QLY @)(A) = L™ (@A), m (@A) = L™ (g)(A)
Define an embedding

{H'(K;L'(Q)(A)) — L'(q)(A*(K))
H.(K;L(g)(A) — L' (g)(A«(K))

cohomology
homology
spectrum as follows. For cohomology use the embeddings of A-sets

H™(K; L (g)(A) — L™(q)(A(K)) (n € Z)

of the L'(q)(A)- spectrum in the g-connective symmetric L-
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by means of the identifications
H™(K; L (g)(A)® =
{ n-dimensional symmetric complexes in A*(K @ AP (K ® Ap)[q—n—l]) }
L™ (q)(A* (K)®) =
{ n-dimensional symmetric complexes in A*(K ® AP, K @ (AP)la—n—1])}
and the inclusion
(K ® AP (K @A) =l) — (K@ AP, K @ (AP)lr=t)

For homology use an embedding K € OA™*! to define embeddings of A-
sets

Ho (K5 L (q)(A) — L™ (q)(A(K)) (n € Z)
by means of the identifications
HL, (KL (q) (A) ™ = H" (27, K L (q)(A)) ™
= {(n — m)-dimensional symmetric
complexes in A*(E™ @ AP, (2™ @ AP)la—n+m=U UK @ AP)} |
L™(@)(A(K)® = L""(q)(A* (™, K),B*(Z", K),C* (L™, K))™)
= { n-dimensional symmetric complexes in A, (K)*(AP, (AP)la—n—1)}
= {(n — m)-dimensional symmetric
complexes in A*((¥™, K) ® (AP, (AP)la—m=1]))}
and the inclusion
(™ @ AP, (2™ @ AP)la—ntm=l UK @ AP) —
(2™, K) @ (AP, (AP)len=1y — (2™ @ AP 5™ @ (AP)la—"" U UK @ AP) .

(i) Consider the two cases separately, starting with cohomology. Use the
identifications

{ A-maps K1 —L"(¢)(A)} = {A-maps (K, K"~ 1)—1L"(A)}
= {n-dimensional symmetric complexes in A*(K, K19~y
to define a surjection of homotopy groups
H ™KK 1L (A) = [K, K41 L7 A), 0]
— H™"(K;L(q)(A) = [Ky, L"(q)(A)] -
An element in the kernel is represented by a A-map
(K, K1) @ {0} — (L"(A),0)
which extends to a A-map
(Ko AL K Ug {0y uKl" Ao A'UK @ {1}) — (L"(A),0) .
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The first map in the exact sequence
H ™K oAL K Ug 0l uKI Ao A'UK @ {1};1L(A))

inclusion”

—————— H (K {0}, K" U {0};L(A)
— H™"(K;L(g)(A) — 0
is isomorphic to the first map in the exact sequence
H_”_l(K[q_”_l],K[q_"_2];L'(A)) _6_>
H (K, Kl 11 (A) — H (K, K92 1L (A)) .

This gives an identification
H™"(K; L (q)(A)) = coker(d) ,
and the domain of § can be expressed as a cochain group
HY(glamn=1 gla=n=2l.1(A)) = AT YK LI(A)) .
The result for homology may now be deduced from the cohomology result.

Embed K C OA™*! for some m >0, and note that the supplement of the
p-skeleton K in 9A™+1 is given by

KPPl = Ku(xmm=—r-llcym (p>0).
By duality and the cohomology result
H, (KL (q)(A)) = H™ (5™, KL (q)(A))
= coker(0: H™ " HEK U (xm)lantm-l Ky (mm)lamntm =2l (A))
N Hm—n(zm, KU (Em)[q—n-i-m—l] : ]L(A)))
= coker(0: Hy, 41 (K9t K= 1 (A)) — H, (K"~ 1" (A)))
= coker(d: A, g1 (K; LY(A))— H, (K"~ L7 (A))) .
(ii) The relative homotopy groups of the pair (IL'(¢)(A),L' (¢ + 1)(A)) are
given by

(L7 (@)(A), L'(g + 1)(A)) = {gQ(A) ft}Te:vize

so that there is defined a fibration sequence of {2-spectra
L(g+1)(A) — L'(g)(A) — K.(LI(A),q) .
Here, K.(L1(A), q) is the Q-spectrum of Eilenberg—MacLane spaces with
K.(LY(A),q)n = K(LI(A),q—n) (n<gq).
(iii) This follows from
H™(K;L(A)) = lim H™"(K;L(g)(A))

q——00

Ho(KiL(A)) = lim H, (KL (q)(A))
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and the identifications given by (ii)
{H—%K;w S 1)(A) = H ML —2)(A) = ... = H(K;L(A))
Ho(K L — K)(A)) = Ho(Li(n— k= 1)(A)) = ... = Hy(K;L'(A)),
with k = dim(K).
m
DEFINITION 15.4 (i) A finite chain complex C' in A (R) is g-connective if
H.(C) =0 forr<gq,
or equivalently if C' is chain equivalent to a complex D with D, = 0 for
r<aq.
(ii) A finite chain complex C'in A (R, K) is g-connective if each C (o) (0 € K)
is g-connective, or equivalently if each [C][o] (o € K) is g-connective.
(iii) An n-dimensional symmetric complex (C, ¢) in A (R, K) is g-connective
if C'and C™™* are g-connective.
(iv) An n-dimensional symmetric complex (C,¢) in A (R, K) is locally q-
Poincaré if 0C = ST1C(¢o: C"*——C) is g-connective.
Similarly for normal and quadratic complexes.
O
Note that the assembly of a g-connective chain complex C' in A (R, K) is
a g-connective chain complex C(K) in A (R[m(K)]).

EXAMPLE 15.5 Given a simplicial complex K and any homology class [K] €
H,(K) let (C, ¢) be the n-dimensional symmetric complex defined as in 9.13,
with

C(o) = A(D(0,K),0D(0,K)) (0 € K),

¢o(K) = [K]N—: C""(K) ~ A(K')"* — C(K) = A(K').
If K is n-dimensional then (C, ¢) is 0-connective. (C, ¢) is locally g-Poincaré
if and only if

HT([D(O-v K)] n—: A(D(U7 K))n_|o|_*_>A(D(0-a K)7 8D(O', K))) =0

(ceK,r<q),
in which case
H,.(0D(0,K)) = H,(linkg(c)) = H.(S"17I"Y (r<q-1).
]

The following conditions on an n-dimensional symmetric complex (C, ¢)
in A(R, K) are equivalent:

(i) (C,¢) is locally g-Poincaré,

(ii) the R-module chain complexes

9C(0) = S™'C(¢o(0): [Cllo]" 177" —C(0)) (0 € K)

are g-connective,
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(iii) the R-module chain complexes
0C)[0) = S7'C([¢o][o): C ()" 117" —[C[0]) (0 € K)
are g-connective.

A simplicial complex K is locally q-Poincaré with respect to a homol-
ogy class [K] € H,(K) if the n-dimensional symmetric complex (C,¢) in
A(Z,K) defined in 9.13 (with C(K) = A(K’) etc.) is locally g-Poincaré.

REMARK 15.6 The following conditions on a simplicial complex K with a
homology class [K| € H,(K) are equivalent:
(i) K is locally ¢g-Poincaré,
(ii) H,.([D(o, K)]N—: A(D(o, K))"~lol=* — A(D(0, K),0D(0,K))) = 0
forall o € K, r <gq,
(iii) H,([D(o, K)]N—:A(D(0, K),0D(0o, K))"~l7l=* —A(D(0, K))) = 0
foralloe K, r <gq.
o

DEFINITION 15.7 (i) The g-connective algebraic bordism categories of a ring
with involution R are

Mg)(R) = (A(R),B(q)(R),C{q)(R)) ,

Mg)(R) = (A(R),B(q)(R), B(¢)(R))
with B(q) (R) the category of g-connective finite chain complexes C'in A (R),
and C(q)(R) = C(R) C B(q)(R) the subcategory of contractible complexes.
(ii) The g-connective algebraic bordism categories of a commutative ring R
and a simplicial complex K are
A<Q>(R7 K) = (A (R7 K)? B<Q>(R7 K)? C<Q>(R7 K)) )

~

Mg)(R, K) = (A(R,K),B(q)(R, K),B(¢)(R, K))

with B(q)(R, K) = B(q)(R)+(K) the category of g-connective finite chain
complexes C' in A (R, K) and C(¢)(R, K) C B(q)(R, K) the subcategory of
the globally contractible complexes.

m

In the special case K = {x} write the g-connective algebraic bordism
categories as
M) (R, {*}) = Mg)(R),

M) (R, {+}) = AMg)(R) .

It should be noted that the symmetric L-groups L*(A(q)(R)) of the ¢-
connective algebraic bordism category A{q)(R) need not be the same as
the g-connective symmetric L-groups L*(q)(R) of R. Likewise for the other
categories.
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ExAMPLE 15.8 (i) The quadratic L-groups of A(0)(R) coincide with the
0-connective quadratic L-groups of R
Lyn(A0)(R)) = Ln(0)(R) = Ln(R) (n=0),
by virtue of the 4-periodicity of the quadratic L-groups, and the map of
quadratic L-spectra
L.(A{0)(R)) — L.(0)(R)
is a homotopy equivalence.
(ii) The symmetric L-groups of A(0)(R) are the connective symmetric L-
groups of 3.18
L"(AQO)(R)) = L"(R) (n=0),
while the 0-connective symmetric L-groups of R are the 4-periodic symmet-
ric L-groups of 3.12
L"(0)(R) = L™*(R) (n>0).
If R is a ring such that the symmetric L-groups L*(R) are 4-periodic (such
as R = Z) then the map of symmetric L-spectra
L(A{0)(R)) — L(0)(R)
is a homotopy equivalence. If also L°(R)—NL°(R) is onto then the map
of normal LL-spectra
NL'(A{0)(R)) — NL(0)(R)
is a homotopy equivalence.

O

PROPOSITION 15.9 For any commutative ring R and a simplicial complex K

symmetric
the § quadratic L-spectrum of the algebraic bordism category A{q)(R).(K)

normal
(given by 4.1) is the homology spectrum of K with coefficients in the corre-

sponding q-connective L-spectrum of R
L (Ag)(R)«(K)) = H.(K;L(Alg)(R)))
L.(AMg)(R)«(K)) = H.(K;L.(Ag)(R)))
NL (A()(R)«(K)) = H.(K;NL'(A(g)(R))) -
Proor Exactly as for 13.7, which is the special case ¢ = —o0.

By analogy with 15.6:

DEFINITION 15.10 (i) The g-connective quadratic structure groups of (R, K)
are the cobordism groups

Sn(@)(R, K) = Ln1(A(R, K),C(q)(R, K),C(q)(R)«(K)) (n€Z)
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of g-connective (n — 1)-dimensional quadratic complexes (C, 1) in A (R, K)
which are globally contractible and locally Poincaré.

(ii) The g-connective quadratic structure spectrum of (R, K) is the quadratic
LL-spectrum

with homotopy groups
T (SAq) (R, K)) = S.(q)(R, K) .

(iii) The g-connective algebraic surgery exact sequence is the exact sequence
of homotopy groups

- Hy(K5L(q)(R)) — La(Alg)(R.K)) —
Sn(9)(R, K) — Hn 1 (K;L.{q)(R)) — ...
induced by the fibration sequence of spectra
H.(K;L.(q¢)(R)) — L.(A{g)(R, K)) — SA{q)(R, K) .
]

The g-connective symmetric structure groups S*(q)(R, K) and the g-conn-
ective symmetric structure spectrum S'(q)(R, K) are defined entirely simi-
larly, using symmetric L-theory.

PROPOSITION 15.11 (i) The assembly map
Ln(Alg) (R, K)) — Ly (R[m (K))])

1s an isomorphism if n > 2q.
(ii) For n > max(2q+ 1,q + 2)

Sn(g) (R, K) = ker(Sp(R, K"~ — A, (K; Ly-1(R)))
and for n > max(2q +1,q + 3)
Su(@)(R, K) = im(Sp(R, K"~ 1)—8,, (R, KI"~)) .

(iii) For n > 2q + 4 the g-connective and (q + 1)-connective quadratic S-
groups are related by an exact sequence

- = Hy (K5 Le(R)) — Sp{qg + 1)(R, K) —
S{Q)(R,K) — Hy—q_1(K;Lg(R)) — ... .
(iv) If K is k-dimensional and n > max(q+ k + 1,2q + 4) then
Sn{g)(R,K) =S, (R,K) .
(v) If K is k-dimensional and n > max(q+ k,2q +4) then there are defined
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exact sequences
0 — Su{g)(R, K) —> Sulg— (B, K) — Hy_y(K; Ly (R))
— Sp— () (R, K) — Spa{g — YR, K) — ...,
0 — Sp—1{qg —1)(R,K) — Sp—1{q — 2)(R,K) — H,_(K;L,_2(R))
— Sp—2(¢g—1DH(R,K) — Sp—2(¢ —2)(R,K) — ...
with
Sulg— 1)(RK) = Su(RK) , Sy1lg—2(R,K) = Sy 1(R,K) .

PROOF (i) The assembly map L, (R, K)— L, (R[m (K)]) is an isomorphism
by the algebraic -7 theorem (10.6). The forgetful map L,,(A{q)(R, K))—
L, (R, K) is an isomorphism for n > 2¢, with the inverse

Ln(R, K) — Ln(Ag)(R, K)) ; (C,1p) — (C",%))

defined by sending an n-dimensional quadratic complex (C,1) in A(R, K)
to the n-dimensional quadratic complex (C’,v’) in A{q)(R, K) obtained by
surgery below the middle dimension using the quadratic pair (C—D, (0,1)))
with

D. — {CT if 2r >n+1
" 0 otherwise.

(ii) Consider the map of exact sequences

H,(K" 9 L.(q)(R)) —— Hn(K;L.(g)(R))
Ln(Ag)(R, K"™)) ——— L, (A(q)(R, K))
Sp(g)(R, K"™) —————— S, (¢)(R, K)

Hy (K" LA{g)(R)) —— Hoo1 (K L) (R))

Lo 1(Mg)(R, K1) —— L,,_1(A(g)(R, K)) .

The condition n — ¢ > 2 is used to identify
m (K1) = m(K),
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and since n — 1 > 2q (i) applies to show that up to isomorphism
Lin(Ma)(R, K1) = Lyn(Rlmi (K"~ 7))
= Ln(Rm(K)]) = Ln(AMq)(R, K))
for m =n,n — 1. By 15.3 (i) the map
Hy (K" 7L (q)(R)) = Ho(K" % L.(R)) —
H,(K;L.(¢)(R)) = im(H, (K" % L.(R))—H, (K" " L.(R)))

is a surjection, so that there is defined an isomorphism

~

Hyy (K" L(g)(R)) —
Hy—1(K;L.(q)(R)) = im(Hy—y (K" LU(R)) = Hy o1 (K95 L(R))) -
An application of the 5-lemma gives an isomorphism

Sula) (R, K1) = Su()(R, K) .

Consider the map of exact sequences

H, (K" L.(q)(R)) —— H, (K", L.(R))

Ly (Alg) (R, K"~)) Ly (A(R, KI"=4))

Sula) (R, K" 1) ———— S, (q) (R, K"~ )

Hyo1 (K" LAg) (R) — Hp—1 (K" L.(R))

Lnfl(A<Q>(R7 K[n—q])) - Lnfl(A(Ra K[n—q])) :

Again, (i) applies to show that up to isomorphism
L (M) (R, K1) = Ly (R[my (K"~ )
= Ln(R[m(K)]) = Ln(A(R, K))

for m =n,n — 1. By 15.3 (i) there is defined an isomorphism

H, (K0 L.(g)(R)) — Ho(K"9L.(R)),
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and there is also defined an exact sequence
0 — Hy 1 (K91 (g)(R))

— H, (K" L (R)) — A,_o(K; Ly 1(R)) .
It follows that
Sn(g) (R, K) = Sp(g)(R, K""%)

= ker(Su(R, K" —— A, _(K; L, 1(R))) .

If n — g > 3 there is defined a map of (co)fibration sequences of Q-spectra

H.(K"~ 1L (R) — L.(R, K"~y — S (R, K[P—a—1)

| | |

H.(K"~9;L.(R)) L.(R, KP4y — - S(R, Kn=9)

with L.(R, K"=¢=1)— L (R, K[*~4) a homotopy equivalence, giving rise
to a homotopy equivalence

homotopy fibre of S.(R, I([”’Cfl])——>8.(11{7 K[n*q])
~ homotopy cofibre of H.(K" 97U L (R))—H.(K"9;L.(R)) .

Thus there is defined an exact sequence
Sn(R, K971y s, (R, K"~y — H, (K"9 k=11 (R))
(= An—q(K;Lg-1(R)))
and
Sn(g)(R, K) = im(S,(R, K"~ 1) —§, (R, K"~1)) .

(iv) There is defined a map of (co)fibration sequences of {)-spectra

H.(K;L.(g + 1)(R)) —— L.(A{g + 1)(R, K)) —S.{¢ + 1)(R, K)

! I i

H.(K;L.(q)(R)) ——— L.(A(g)(R, K)) ———S.(¢)(R, K)

inducing an exact sequence of relative homotopy groups
. —> mp(a) — T (B) — T (y) — o1 (@) — ...
By (i) m(B8) = 0 for n > 2q + 3, so that for n > 2q + 4
(1) = Taoi(@) = Hoyor (K L(R))
(by 15.3 (ii)).
(iv)+(v) Apply (iii) and 15.3 (iii).
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DEFINITION 15.12 (i) The g-connective visible symmetric L-groups of (R, K)
are the cobordism groups

VL™ {(g)(R,K) = NL"(A{g)(R,K)) (n€Z)

of g-connective n-dimensional normal globally Poincaré complexes (C, ¢) in
A(R, K).

(ii) The g-connective visible symmetric L-spectrum of (R, K) is the algebraic
LL-spectrum

VL (q)(R, K) = NL'(A{g)(R, K))
with homotopy groups
(VL {(¢)(R, K)) = VL*(q)(R, K) .

By analogy with 15.7:

PROPOSITION 15.13 For any commutative ring R and simplicial compler K
there is defined a commutative braid of exact sequences of algebraic L-groups

Sn+1<q>(}< yﬂ(A@(Q) yl\l L{g)(R))
}(K;lL (9)(R)) }@(RJ{)
H,1(K;NL () (R)) Ln(A{g)(R, K)) Sn(@)(R, K) .

O

In view of the topological applications it is convenient to introduce the
following ‘1/2-connective’ hybrids of 0-connective and 1-connective algebraic
[L-spectra, making use of the following algebraic bordism categories.
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DEFINITION 15.14 (i) The 1/2-connective algebraic bordism categories of a
ring with involution R are

A1/2)(R) = (A(R),B(0)(R),C(1)(R)) ,
A(1/2)(R) = (A(R).B(0)(R).B(1)(R)) .

(ii) The 1/2-connective algebraic bordism categories of a commutative ring
R and a simplicial complex K are
A1/2)(R, K) = (A(R,K),B(0)(R, K),C(1)(R, K)) ,
R/2)(R,K) = (A (R, K),BO)(R, K), B{)(R, K))
(iii) An n-dimensional normal complex (C, ¢) in A(R, K) is 1/2-connective
if it is defined in A(1/2)(R, K), i.e. if it is O-connective and locally 1-
Poincaré.

(iv) The 1/2-connective {mszble symmetric

L-groups of (R,K) are the
normal

cobordism groups
VL*(1/2)(R,K) = NL*(A(1/2)(R,K))
{NL*<1/2><R,K> = NL*(A(1/2)(R, K))

globally Poincaré

of n-dimensional 1/2-connective { normal complexes in

AR, K).
O

DEFINITION 15.15 The 1/2-connective normal L-spectrum of a ring with
involution R is the Q-spectrum of Kan A-sets

NL'(1/2)(R) = NL'(A(1/2)(R))
with
NL™(1/2)(R)(™
= {(C,¢) € NL"(A{0)(R)™ [ (2C, ) € L1 (A(1)(R))"™ }
and homotopy groups ~
m(NL'(1/2)(R)) = NL*(A(1/2)(R)) .
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PROPOSITION 15.16 (i) The 1/2-connective normal L-spectrum NL*(1/2)(R)
fits into a commutative braid of fibrations of Q2-spectra

/\A
\/\/

NL(1/2)(R

/\/\,
\/\/

(ii) The 1/2-connective normal L-groups are such that

(R))

YTINL (A

NL™(R) ifn>1
NI - { RN R) i
0 ifn<0,

with a long exact sequence
. — L,(1)(R) — L"(0)(R) — NL"(1/2)(R) — L,—1(1)(R) — ... .

(iii) For a commutative ring R and a simplicial complex K there are natural
identifications

NL*(1/2)(R,K) = H.(K;NL'(1/2)(R)).

O

DEFINITION 15.17 The 1/2-connective visible symmetric L-spectrum of a

commutative ring R and a simplicial complex K is the {2-spectrum of Kan
A-sets

VL (1/2)(R,K) = NL'(A(1/2)(R, K))
with
VL™ (1/2)(R, K)™
= {(C,6) € NL"(A(0)(R, K))"™ [ (9C, ) € L1 (A(1)(R, K))™ }
and homotopy groups
m (VL (1/2)(R,K)) = VL*(1/2)(R,K) .
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PROPOSITION 15.18 (i) The 1/2-connective visible symmetric L-groups
VL*(1/2)(R, K) fit into a commutative braid of exact sequences of algebraic
L-groups

The map

Lo(Rm(K)]) = La(AM1L)(R, K)) — VL"(1/2)(R, K) ;
(Cop) — (¢, (1+T)Y)

sends an n-dimensional quadratic complex (C,v) in A(R, K) to the sym-
metrization of any globally Poincaré cobordant quadratic complex (C';1)")
in A(1)(R, K).

(ii) The 1/2-connective visible symmetric L-groups V L*(1/2)(R, K) are re-
lated to the 0-connective visible symmetric L-groups

VL (0)(R,K) = NL"(A(O)(R,K)) (n>0)
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by a commutative braid of exact sequences

H,(K; Lo(R)) H,(K;NL(1/2)(R))) L1 (AO)(R, K))
VL™(1/2)(R, K) H,(K;NL (A(0)(R)))
L,(A0)(R, K)) VL™ {(0)(R, K) H,_1(K;Ly(R))

(iii) The 1/2-connective visible symmetric L-groups V L*(1/2)(R, K) fit into
a commutative braid of exact sequences

Hy (KL (A{0)(R))) VL™ (0)(R, K) Hy,—1(K; Lo(R))
VL"(1/2)(R, K) Sn(0)(R, K)
H,(K;Lo(R)) Sn(1)(R, K) H, -1 (]G L (A(0)(R)))

PROOF (i) The 1/2-connective visible symmetric L-spectrum VIL'(1/2)(R, K)
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fits into a commutative braid of fibrations of (2-spectra

}KI’L Q yﬂ(l/?ﬂ )
N M{ }“ WK
L.(A(1)(R, K)) S.(1)(R, K) ,

inducing a commutative braid of exact sequences of homotopy groups.
(ii) and (iii) follow from (i).
i

Note that for a ring R with L*(R) 4-periodic and L°(R)— NL°(R) onto
(e.g. R = Z) the O-connective n-dimensional L-groups of (R, K) are 4-
periodic for n > dim(K), with

VL"(0)(R,K) = VL"(R,K) = VL"™(R,K)

Sn<0>(R7K) = Sn(RaK) = Sn+4(R7K)

Hy, (KL (A{0)(R))) = Hn(K;L{0)(R))
= H,(K;L'(R)) =

= Hy (K5 L(R))
Hy(K;L.(A0)(R))) = Hn(K;1L.(0)(R))

= Hn( L.(R)) = Hn+a(K;L.(R))
H,(K;NL'(A(0)(R))) = n(K NL(0)(R)
= Hu(K;NL(R)) = Hppa(K;NL(R)) .

Also, for n > 2
Lo(AMR,K)) = Lo(AMO) (R, K)) = Lo(AL)(R,K)) = Lp(R[m(K)]) .



15. CONNECTIVE L-THEORY 171

DEFINITION 15.19 The algebraic surgery exact sequence of a simplicial com-
plex K is the exact sequence

. — H,(K;L.) i L (Z[m1 (K)])

o
— Sp(K) — Hp1(KGL) — ...
given by 15.18 in the special case R = Z, with
S«(K) =S.(1)(K), L. = L.(1)(Z) .
i

The algebraic surgery exact sequence will be identified in §18 with the
Sullivan—Wall geometric surgery exact sequence for the topological manifold
structure set.






Part 11

Topology
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§16. The L-theory orientation of topology

The algebraic theory of §§1-15 is now applied to construct the L-theory ori-
entations which distinguish topological bundles and manifolds from spheri-
cal fibrations and geometric Poincaré complexes. The geometric interpreta-
tion of such orientations has already been discussed in Ranicki [143], Levitt
and Ranicki [94]: the L-theory orientations are algebraic images of the
geometric Poincaré orientations, which are the homotopy theoretic conse-
quences of the transversality properties characteristic of topological bundles
and manifolds

Topological bundles and spherical fibrations are already distinguished by
the rational homotopy groups of the classifying spaces

W*(BG>®Q = 7T>.8<_1®Q =0 (*>O)’
m.(BTOP)®Q = m.(G/TOP)®Q

Q if x =0(mod 4)
= L@)eQ = {0 if * # 0(mod 4) .
The rational cohomology ring H*(BSTOP;Q) = H*(BSO;Q) of the clas-
sifying space BSTOP for stable oriented topological bundles is the poly-
nomial algebra over Q generated by the universal Pontrjagin classes p. €
H*(BS0;Q) (Milnor and Stasheff [114], Novikov [123]). The Pontrjagin
classes are not defined for spherical fibrations, since H*(BSG;Q) = 0 for
* > (.
Abbreviate
L(0)(Z) = L, L.(1)(Z) = L. , NL(1/2)(Z) = L',

VL*(1/2)(Z,X) = VL*(X) , NL*(1/2)(Z,X) = L*(X) .

A spherical fibration v: X — BG(k) will now be given a canonical L-
cohomology Thom class U, € Hk(T(V); ]i), with T'(v) the Thom complex,
H* reduced cohomology. Topological reductions 7: X —sBTOP (k) of v (if
any) are in one—one correspondence with lifts of U, to an L"-cohomology
Thom class Uy € H*(T(v); L"), with any two lifts differing by an element
of H*(T(v);1L.). Rationally, such lifts correspond to the Pontrjagin classes
p«(7) € H¥*(X;Q), or equivalently the £-genus £L(7) € H¥*(X;Q).

The normal signature of an n-dimensional geometric Poincaré complex X
is a canonical IL."-homology fundamental class

[X]o = 6%(X) € Hy(X;L) = L"(X) .
In §17 it will be proved that for n > 5 topological manifold structures in the
homotopy type of X (if any) are in one-one correspondence with lifts of [X ]~

to an L'-homology fundamental class [X]. € H, (X;L") with assembly the
‘1/2-connective visible symmetric signature’ A([X]L) = c*(X) € VL™(X).
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(Recall that 1/2-connective = 0-connective and locally 1-Poincaré). In the
first instance, only the oriented case is considered: see Appendix A for the
modifications required for the nonorientable case. From now on the same
terminology is used for a simplicial complex X and its polyhedron | X|, and
both are denoted by X.

The difference between the stable theories of spherical fibrations and topo-
logical bundles can be formulated as a fibration sequence of the classifying
spaces

J
G/TOP —s BTOP — BG ,

and also in terms of the algebraic L-spectra. See Appendix B below for an
account of the multiplicative structures on the algebraic LL-spectra involved.
See Rourke and Sanderson [154] for the theory of topological block bundles.
For k > 3 the classifying space BTfOJP(k;) for k-dimensional topological
block bundles fits into a fibration sequence

G/TOP —»s BTOP(k) —» BG(k)
with BG(k) the classifying space for (k — 1)-spherical fibrations. For k& < 2

there is no difference between spherical fibrations, topological block bundles

and vector bundles, so that BG(k) = BTAO/P(k) = BO(k).

PROPOSITION 16.1 (Ranicki [143], Levitt and Ranicki [94,1.12]) Let k > 3.
(i) A (k—1)-spherical fibration v: X — BG(k) has a canonical L°-cohomo-
logy orientation

~

U, € H*(T(v);L") .
(i) A topological block bundle : X —s BTOP(k) has a canonical LL'-cohomo-
logy orientation

Uy € H*(T(v); L)
with image J(Uy) = U, € Hk(T(l/),IE) the canonical L' -cohomology orien-
tation of the associated (k — 1)-spherical fibration v = J(0): X — BG(k).
(iii) The topological reducibility obstruction of a (k — 1)-spherical fibration
v: X—BG(k)

t(v) = 8(U,) € H**(T(v);L.)

is such that t(v) = Oi'f/and only if there exists a topological block bundle

reduction v: X —BTOP(k). Here, 0 is the connecting map in the exact

sequence
14T

. X J . ~
. — HYT(v);L.) — HYT(v);L") — H¥T(v);L")
) .
— H"YT);L.) — ... .
(iv) The simply connected surgery obstruction defines a homotopy equiv-
alence between the classifying space G/TOP for fibre homotopy trivialized
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topological bundles and the 0th Kan A-set Lo = 1L(1)o(Z) of the 1-connective
quadratic L-spectrum L. of Z

G/TOP — Ly .
(v) The difference between two topological bundle reductions v,v': X —

BTB/P(k) of the same (k—1)-spherical fibration v: X — BG(k) is classified
by a difference element

t(v,7") € [X,G/TOP] = H°(X;L.)
such that
Uy — Uy = (1+T)(Up Ut(0,7)) € HY(T(v); L),
with Uz U —: HY(X;1L.) iﬂk(T(V); L.) the L.-cohomology Thom isomor-

phism. If v"": X—BTOP(k) is yet another reduction of v then
to, ") = t(,v) + t@, ") + t(v, V) Ut(@, ") € H'(X;L.) .

PROOF The singular complex of the Thom complex T'(v) of a spherical
fibration v: X — BG(k) contains as a deformation retract the subcomplex
of the singular simplexes p: A" —T'(v) which are normal transverse at the
zero section X C T(v), with M = p~1(X) an (n — k)-dimensional geometric
normal complex n-ad.

(Added in 2009: Let QN (X,v) be the Kan A-set in which an n-simplex
is an (n — k)-dimensional normal space n-ad (Y;01Y,...,0,Y; vy : Y —
BG(k),p: A™ — T(vy)) such that p(0;A™) C T(ve,y ), with a normal map
(f,0) : (Y,vy) — (X,v). The map of Kan A-sets

ON(X,v) > T(w) 5 (Y;0Y,...,0,Y;vv,p) = T(b)p

induces the normal space Pontrjagin-Thom isomorphisms
ON(X,v) = 7, (T (v)) with inverses

Wn(T(V)) - szv(Xa V) ; PX ((X7 V?lOX)al)

and is thus a homotopy equivalence.) R

The canonical L'-cohomology orientation U, € H* (T'(v); L") is represented
by the A-map U,: T(v)—L~* sending p to the (n— k)-dimensional normal
complex 6*(M) = (C, ¢) in A(Z)*(A™) defined in 9.15. A topological block
bundle reduction r: X ———>BTAO/P(I€) corresponds to a further deformation
retraction of the singular complex of T'(v) to the subcomplex consisting
of the singular simplexes p: A" ——T'(v) which are Z-coefficient Poincaré
transverse at the zero section X C T'(v), with M = p~1(X) a Z-coefficient
geometric Poincaré n-ad. The reduction is equivalent to the lift of (7,, to the
LL"-cohomology Thom class Uy € H*(T(v);L’) represented by the A-map
Us: T(v)—L~* sending p to the (n — k)-dimensional symmetric Poincaré
complex ¢*(M) = (C, ¢) in A(Z)*(A"™) defined in 9.13. For further details
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see [94] and [143].
O

For k > 3 the classifying space BTfOJP(k) for k-dimensional topological
block bundles fits into a fibre square

BTOP(k) — BL'G(k)

| |

BG(k) —— BL'G(k)

with BL'G(k) the classifying space for (k — 1)-spherical fibrations with a
ws-twisted L'-orientation, and similarly for BL'G(k).

REMARK 16.2 The canonical ."’-cohomology orientation of an oriented topo-
logical bundle 7: X — BSTOP(k) is given rationally by the inverse £-genus

U, ®Q = L71(D)
e HNT(v)L)e@Q = Y HY'™(T(®);Q) = Y HY(X;Q).

320 320
Both the £-genus and the symmetric signature determine and (modulo tor-
sion) are determined by the signatures of submanifolds, as used by Thom to
characterize the £-genus as a combinatorial invariant (Milnor and Stasheff
[114,§20]).
]

REMARK 16.3 The characterization of topological block bundles as LL'-
oriented spherical fibrations generalizes the characterization due to Sullivan
[168] of topological block bundles away from 2 as KO[1/2]-oriented spher-
ical fibrations, which is itself a generalization of the Atiyah—Bott—Shapiro
K O-orientation of spin bundles. See Madsen and Milgram [102,5A] for a
homotopy-theoretic account of the K O[1/2]-orientation of PL-bundles. The
characterization of topological block bundles as spherical fibrations with al-
gebraic Poincaré transversality (i.e. an L’-orientation) corresponds to the
characterization of topological block bundles as spherical fibrations with
geometric Poincaré transversality due to Levitt and Morgan [93], Brumfiel
and Morgan [20].

]

If X is an n-dimensional geometric Poincaré complex with Spivak normal
structure (vx: X —BG(k), px: S"TF—T(vx)) then X, = X U {pt.} is
an S-dual of T'(vx), with S-duality isomorphisms

W (T (vx)) 2 ha(X)



16. THE L-THEORY ORIENTATION OF TOPOLOGY 179

for any generalized homology theory h. The topological reducibility ob-
struction of vx

t(vx) € H¥ YT (vx);L.) = Hn,_1(X;L.)
will now be interpreted as the obstruction to lifting the fundamental L-
homology class

[X]e = U,y € HMT(vx);L) = Ho(X;L)

to a fundamental L'-homology class [X]|, € H,(X;L’). In the first in-
stance it is shown that every finite geometric Poincaré complex X is homo-
topy equivalent to a compact polyhedron with a 1/2-connective symmetric
normal structure, allowing the direct construction of [X ]E as the cobor-
dism class of an n-dimensional 1/2-connective symmetric normal complex in
A (Z, X). This will also allow the refinement of the visible symmetric signa-
ture 0*(X) € VL"(Z, X) defined in §9 to a 1/2-connective visible symmetric
signature o*(X) € VL"™(X). The total surgery obstruction s(X) € S, (X)
will be defined in §17 as the boundary of ¢*(X) € VL"™(X), such that
s(X) = 0 if and only if 0*(X) = A([X]L) € VL™(X) for a fundamental
L'-homology class [X]., € H,(X;L").

DEFINITION 16.4 An n-circuit is a finite n-dimensional simplicial complex
X such that the sum of all the n-simplexes is a cycle

(X] = > 7eker(dAX)y——AX)n 1) ,
TeX(n)

possibly using twisted coefficients (in the nonorientable case).
m

By the Poincaré disc theorem of Wall [177,2.4] every connected finite
n-dimensional geometric Poincaré complex X is homotopy equivalent to
Y Ue™ for a finite (n — 1)-dimensional CW complex Y, and hence to an
n-circuit. Thus in dealing with the homotopy theory of finite geometric
Poincaré complexes there is no loss of generality in only considering circuits,
and for the remainder of §16 only such complexes will be considered.

Let then X be a finite n-dimensional geometric Poincaré complex which
is an n-circuit. (It is not assumed that each (n — 1)-simplex in X is the face
of two m-simplexes, cf. 16.8.) As in 9.13 define an n-dimensional globally
Poincaré normal complex (C, ¢) in A(Z, X) with

C(X) = AX'") , C(r) = A(D(1,X),0D(1,X)) (teX).
The (Z, X)-module duality chain map
do(X) = [X]Nn—: C"*(X) ~ AX)"" — C(X) ~ AX)
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has components
¢o(T) = [D(r, X)]N—:
C" (1) = AD(r, X))~ I"I=* — C(r) = A(D(r,X),dD(r, X)) .
For every simplex 7 € X up to chain equivalence
go(r) : §"7MZ — STITIAX, X\(7}) ; 1 — [X][7]
and
H,(do(7)) =
H.([D(r, X)] N —: A(D(r, X))"~I"I=*—A(D(1, X),0D(r, X))) ,

with an exact sequence
n—|(7|—r a3 [X]ﬁ— al
> T ({3)) —— Heqn (X, X\{7}) —
H(¢o(7)) — H" T ({7)) — ..

The n-dimensional normal complex (C,¢) in A (Z, X) is 0-connective and
globally Poincaré, and the boundary (n — 1)-dimensional quadratic complex

in A(Z, X)
9(C,¢) = (9C,¥)
is O-connective, locally Poincaré and globally contractible, with
o0(1) = S71C(¢o(1): C"*(1)—C(7)) ,
H.(0C(1)) = Hiy1(¢o(7)) (1€ X).

For each n-simplex p € X the (—1)-dimensional quadratic complex
(0C(p),(p)) in A (Z) is contractible (since D(p, X) = {p} is a 0-dimensional
Poincaré complex), so that for each (n — 1)-simplex 7 € X~V the 0-
dimensional quadratic complex (0C(7),1(7)) in A (Z) is Poincaré. In view
of the exact sequence given by 15.11 (iii)

. Sp(X) — Sp(0)(Z, X) — Hp—1(X; Lo(Z)) — Sp—1(X) — ...

the image of (0C, ) € S,,(0)(Z, X) is the element
o(X) = ) T(0C(r),%(r))
TEX("_l)
€ H, 1(X;Lo(Z)) = Hp—1(X;L.(1)(Z)—L.{(0)(Z))

which is the obstruction to the existence of a 0-connective locally Poincaré
globally contractible quadratic cobordism (0C & 0C'— D, (61, & —1'))
between (0C, 1) and a 1-connective locally Poincaré globally contractible

quadratic complex (0C’,v¢') in A (Z, X). Such a complex is the boundary
of the union n-dimensional normal complex in A (Z, X)

(C".¢") = (C,¢) Vg (D, (14 T)d1))
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which is 1/2-connective and globally Poincaré with

(0C", ")y = o(C’,¢) .
Each (n — 1)-simplex 7 € X(»~1) is the face of an even number (say 2m.)
of n-simplexes, and D(7, X) is the one-vertex union of 2m, 1l-simplexes.

The 1-dimensional normal pair (D(7, X),dD(1, X)) may be resolved by a
normal degree 1 map

(D(Ta X),aD(T,X)) — (D(T,X),@D(T,X))

from a 1-dimensional manifold with boundary (D(r, X),dD(7, X)), with
D(7,X) the disjoint union of m, I-simplexes. The resolution determines
a vanishing of the obstruction ¢(X) € H,,—1(X;Lo(Z)) on the chain level,
corresponding to a 1/2-connective globally Poincaré n-dimensional normal
complex (C’,¢') in A (Z, X).

DEFINITION 16.5 The 1/2-connective visible symmetric signature of a finite
n-dimensional geometric Poincaré complex X is the cobordism class

o (X) = (C',¢") e VL™(X) ,
with (C’, ¢') as defined above.
m

The visible symmetric signature o*(X) = (C,¢) € VL™(Z,X) of 9.13 is
the image of the 1/2-connective visible symmetric signature under the natu-
ral map VL™ (X)——V L"(Z, X ) which forgets the 1/2-connective structure.

DEFINITION 16.6 A chain map f: C——D in A (Z, X) is a global 1-equivalence
if the algebraic mapping cone C(f) is 2-connective and globally contractible.
i

The following conditions on an n-dimensional symmetric complex (C, ¢)
in A (Z, X) are equivalent:
(i) (C,¢) is locally 1-Poincaré and globally Poincaré,
(ii) the duality chain map ¢g: C"~*——C is a global 1-equivalence,
(iii) the (n — 1)-dimensional quadratic complex 0(C, ¢) is 1-connective, lo-
cally Poincaré and globally contractible.

PROPOSITION 16.7 The following conditions on a finite n-dimensional ge-
ometric Poincaré complex X are equivalent:

(i) the 1/2-connective visible symmetric signature o*(X) € VL™(X) is the
assembly of an L' -homology fundamental class [X]1, € Hp(X;L")

oc"(X) = A([XL) e VL™(X) ,
(ii) o*(X) € VL™(X) is represented by a 0-connective n-dimensional glob-
ally Poincaré normal complex (C',¢") in A (Z, X) which is globally 1-equiv-
alent to a 0-connective n-dimensional locally Poincaré normal complex (B, 6)
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in A(Z,X), with

(X)L, = (B,#) €e H,(X;L) , o"(X) = (C',¢") e VL™(X) .
PROOF (ii) = (i) Globally 1-equivalent globally 1-Poincaré complexes are
globally 1-Poincaré cobordant.
(i) = (ii) Let (C"”,¢") be a 0-connective n-dimensional locally Poincaré
normal complex in A (Z,X) realizing [X]. € H,(X;L’), and let (C" &
C"—D, (0¢,¢" & —¢")) be a 0-connective globally Poincaré cobordism
in A (Z, X) realizing 0*(X) — A([X]L) = 0 € VL™(X). The relative bound-
ary construction gives a 0-connective (n + 1)-dimensional locally Poincaré
normal triad in A (Z, X)

a(C" @ C") T 94 & —0¢" — 93¢
(C/ D C//)n—* (D/(Cl D C//))n—i—l—* 0 O

with
oC” = STC(¢y: " ——=C")
locally contractible and
oC" = S71C(¢p:C""*—(C")
0D = S7'C(6¢py: (D/(C' @ C")"T1=*—D)
globally contractible. The union n-dimensional normal complex
(B,0) = (C™*,0) Uac,0¢) (0D, d6¢)/0C"
is locally Poincaré, and the projection
(B,#) — (B,0)/0D = (C',¢)

is a global 1-equivalence.
]

REMARK 16.8 An n-dimensional pseudomanifold X is an n-circuit such
that each (n — 1)-simplex is the face of two n-simplexes (cf. 8.5). An
n-dimensional pseudomanifold X is normal if the natural maps define iso-
morphisms

~

H,(X) — H,(X,X\{z}) (ze€X).

Normal pseudomanifolds are called normal circuits by McCrory [104]. The
following conditions on an n-dimensional pseudomanifold X are equivalent:
(i) X is normal,
(ii) the link of each simplex of dimension < n — 2 is connected,



16. THE L-THEORY ORIENTATION OF TOPOLOGY 183

(iii) the local homology groups H, (X, X\{7}) (7 € X) are infinite cyclic,
with generators

(D X)] = [X]lr) = >, »
p>T,|pl=n
€ H,_;|(D(r,X),0D(r, X)) = H,(X,X\{7})
the images of the fundamental class of X
[X] = Z T € Hp(X) ,
TEX,|T|=n
(iv) the O-connective n-dimensional normal complex (C, ¢) in A (Z, X') with
C(X) = AX') , C(r) = A(D(r,X),0D(r, X)),
¢o(T) = [D(r,X)]N—: C" (1) = A(D(r, X))" 7=
— C(1) = A(D(1,X),0D(1, X)) (1€ X)
is locally 1-Poincaré, with
Hy(¢o(r)) = 0 (r<1,7€X),
(v) the locally Poincaré (n — 1)-dimensional quadratic complex (0C, ) in
A(Z,X) is 1-connective, with
H.(0C(r)) =0 (r<0, 7€X).

The equivalence of (i) and (ii) is due to Goresky and MacPherson [62, p. 151].
The equivalence of (i) and (iv) is the special case ¢ = 1 of 15.6.
For an n-dimensional geometric Poincaré complex which is a normal pseudo-
manifold the 1/2-connective visible symmetric signature c*(X) € VL™ (X)
is represented by the 0-connective locally 1-Poincaré globally Poincaré sym-
metric complex (C,¢) in A (Z, X)

oc"(X) = (Cy9) e VL"(X) .

O

DEFINITION 16.9 (i) The canonical ]/I:'—homology fundamental class of an
n-dimensional normal complex X is the cobordism class

[X]e = (C,¢) € Ho(X;L)

with C'(X) = A(X').

(ii) An n-dimensional geometric Poincaré complex X is topologically re-
ducible if the Spivak normal fibration vx: X —BG admits a topological
reduction vx: X —BTOP.

(iii) The topological reducibility obstruction of an n-dimensional geometric
Poincaré complex X is the image

HX) = O[X| € Hyor(X;L.)
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of [X]-~ € H, (X IE) under the connecting map 0 in the exact sequence
14T
. — Ho(X;L.) — H,(X;L)

J . d
— H,(X;L) — H,_1(X;L.) — ....
O

PROPOSITION 16.10 An n-dimensional geometric Poincaré complexr X is
topologically reducible if and only if t(X)=0¢€ H,_1(X;L.).

PROOF Let (vx: X—BG(k), px: S"t*——T(vx)) be a Spivak normal str-
ucture. The fundamental IE'-homology class of X is the S-dual of the canon-
ical L-orientation of Ux

[X]e = U,y € Ho(X;L7) = HYT(vx);L) ,

and t(X) is the S-dual of the topological reducibility obstruction of vx
tX) = 6(U,,) = tvx) € Hy_1(X;L.) = H*'(T(vx);L.) .
]

A polyhedron K is an n-dimensional combinatorial { homotopy manifold

homology
PL

if the links of i-simplexes are { homotopy (n — i — 1)-spheres.
homology

REMARK 16.11 (i) A triangulation (K, h) of a topological space M is a poly-
hedron K with a homeomorphism h: K——M. If M is an n-dimensional
topological manifold then K is an n-dimensional combinatorial homology
manifold. Siebenmann [159] showed that for n > 5 an n-dimensional com-
binatorial homotopy manifold is an n-dimensional topological manifold.
(ii) A triangulation (K, h) of a topological manifold M is combinatorial if K
is a combinatorial manifold. A PL manifold is a topological manifold with a
PL equivalence class of combinatorial triangulations. The Hauptvermutung
for manifolds was that every homeomorphism of compact PL manifolds is
homotopic to a PL homeomorphism. The Casson—Sullivan invariant for a
homeomorphism f: N—— M of compact n-dimensional PL manifolds (Arm-
strong et al. [5])

k(f) = K(M—TOP/PL) € H*(M;Zs) = H,_3(M;Zs)
is such that x(f) = 0 if (and for n > 5 only if) f is homotopic to a PL
homeomorphism (13.1), with M—TOP/PL = K(Z2,3) the classifying
map for the topological trivialization determined by f of the difference
v — (f71)*vn: M——BPL of stable PL normal bundles. For n > 5 every
element

ke SPE(T™) = [T", TOP/PL] = H*(T";Z)
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is realized as k = k(f) for a homeomorphism f : T"*——T" from a fake PL
n-dimensional torus 7'", with a normal map

(F,B) : (W"hTm, T™) — T™ x ([0,1];{0}, {1})
on a PL cobordism (W™t Tm T') such that F|r» = id., F|pm = f,

providing counterexamples to the Hauptvermutung for manifolds. The rel
0 surgery obstruction

O-*(Fv B) = (07 w) € Ln+1(Z[Zn]) = n-l-l(Tn;]L-)
is represented by an (n + 1)-dimensional quadratic Poincaré complex (C, 1))
in A(Z).(T™), and
R(f) = ) (signature(C(0),4(0))/8) o
oe(Tm)(n=3)
€ H(T"; Zy) = Hy, 3(T";Z2)

is an image of 0. (F, B) € L, 1(Z[Z"]). The surgery-theoretic classification
of the PL structures on 7" (by Casson, Hsiang, Shaneson and Wall) is an
essential ingredient of the obstruction theory of Kirby and Siebenmann [87]
for the existence and uniqueness of combinatorial triangulations on compact
topological manifolds in dimensions > 5.

(iii) The Kirby—Siebenmann invariant of a compact n-dimensional topolog-
ical manifold M

k(M) € H*(M;Zs) = H,_4(M;Zs)
is such that k(M) = 0 if (and for n > 5 only if) M admits a combinatorial
triangulation. By construction, x(M) is the homotopy class of the composite
k(M) : M —% BTOP —s B(TOP/PL) = K(Zs,4)

and is such that x(M) = 0 if and only if vy;: M—BTOP lifts to a PL
reduction vy;: M—— BPL. The invariant is realized by compact topological
manifolds in each dimension > 5 which do not admit combinatorial trian-
gulation. For example, if f: T'"——T™, (F, B), W™ are as in (ii) then the
(n + 1)-dimensional topological manifold

N = W Uy iq. T™ % [0, 1]
is equipped with a normal map (g, c) : N**1—=T"*+1 such that
0:(g,¢) = (0«(F,B),0)
€ Lnt1(Z[2"Y) = Lot (ZIZ") © Lu(Z[ZM) |
g«(N) = (k(f),0)
€ Hy 3(T"Zs) = Hp—3(T";Z2) & Hy—a (T Zo) .

(iv) Let 03 be the cobordism group of oriented 3-dimensional combinatorial
manifolds which are homotopy spheres, modulo those which bound con-
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tractible 4-dimensional combinatorial manifolds. Cohen [39, §4] defined an
invariant of a compact n-dimensional combinatorial homotopy manifold K

o(K) = Y [linkg(o)]o € H*(K;03) = Hy_4(K;05)

cEK(n—4)

such that ¢(K) = 0 if and only if K admits a PL resolution, i.e. a trans-
versely cellular PL map M — K from an n-dimensional combinatorial man-
ifold M.

(v) Let 04 be the cobordism group of oriented 3-dimensional combinato-
rial homology manifolds which are homology spheres, modulo those which
bound acyclic 4-dimensional combinatorial manifolds. Let a: 0 —Zs be
the Kervaire-Milnor-Rohlin epimorphism, with

a(X%) = signature (W)/8 € Zj

for any parallelizable 4-dimensional combinatorial manifold W with bound-
ary OW = 3. If A = (K, h) is a triangulation of a compact n-dimensional
topological manifold M the element

ka(M) = > [linkg(0)]o € H*(M;05) = H,_4(M;05)
UGK(n_4)
is such that ka(M) = 0 if (and for n > 5 only if) A is a combinatorial

triangulation of M. The combinatorial triangulation obstruction is an image
of the triangulation obstruction

k(M) = a(ka(M)) = Z (signature W(o)/8) o
ceK(n—4)
€H4(M;Z2) = n_4(M;ZQ),

with W (o) a parallelizable 4-dimensional combinatorial manifold with bo-
undary 0W (o) = linkg (o).

(vi) A triangulation (K, h) of a topological manifold M is non-combinatorial
if K is not a combinatorial manifold. Non-simply connected combinatorial
homology (n — 2)-spheres H provided examples of non-combinatorial tri-
angulations (32H,h) of S™ (n > 5), with a copy of H as the link of each
1-simplex in the suspension circle of the double suspension 2H (Edwards,
see Daverman [43,11.12]).

(vil) Galewski and Stern [58],[59] showed that for n > 5 a compact n-
dimensional combinatorial homology manifold has the homotopy type of a
compact n-dimensional topological manifold, and that a compact n-dimen-
sional topological manifold M admits a triangulation if and only if the
Kirby—Siebenmann invariant k(M) € H*(M;Zs) is such that

5k(M) = 0e H(M;ker(c))
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with 6 the connecting map in the coefficient exact sequence

. HY(M:ker(a)) —s HY(M;0H) — HY(M:Z,)

i> H°(M;ker(a)) — ... .

(viii) The Casson invariant of 3-dimensional combinatorial homology spheres
shows that certain compact 4-dimensional topological manifolds are not tri-
angulable (Akbulut and McCarthy [1,p.xvi]). In particular, the Freedman
manifold M* with

o (M) = (Z% FEg) =8¢ L*(Z) = 7,

k(M) = 1€ HYM;Zs) = Zs
is not triangulable (Freedman and Quinn [56,10.1]).
(ix) Compact n-dimensional topological manifolds with n > 5 are finite CW
complexes, by virtue of the topological handlebody decomposition obtained
by Kirby and Siebenmann [87] for n > 6 and by Quinn for n =5 ([56,9.1]).
At present, it is not known if every compact topological manifold of dimen-
sion > 5 is triangulable.
(x) Edwards [47] showed that for n > 5 an n-dimensional combinatorial
homology manifold K is a topological manifold if and only if the link of
each simplex o € K is simply-connected.

]

The following conditions on a finite n-dimensional geometric Poincaré
complex X are equivalent:
(i) X is an n-dimensional combinatorial homology manifold,
(ii) the algebraic normal complex (C,¢) in A (Z, X) with C(X) = A(X")
is locally Poincaré,
(iii) the quadratic boundary (0C, ) is locally contractible.

Transversality is a generic property of maps on manifolds, but not of maps
on geometric Poincaré complexes.

DEFINITION 16.12 Let X, Y be compact polyhedra, with Y an n-dimensional
geometric Poincaré complex. A simplicial map h: Y —— X" is Poincaré trans-
verse if each

(Y(1),0Y (7)) = R YD(r,X),0D(r, X)) (1€ X)

is an (n — |7|)-dimensional Z-coefficient Poincaré pair.
O

EXAMPLE 16.13 If Y is an n-dimensional combinatorial homology manifold
then every simplicial map h:Y—— X' is Poincaré transverse, since each
(Y(7),0Y (7)) (tr €Y) is an (n — |7|)-dimensional combinatorial homology
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manifold with boundary.
]

In dealing with the L-theoretic properties of topological manifolds in §17
use will be made of the following version of an ‘intrinsic transversality struc-
ture’ of Levitt and Ranicki [94].

DEFINITION 16.14 A transversality structure I1 = (X,Y, g, h) on a finite n-
dimensional Poincaré space Z consists of compact polyhedra X,Y together
with homotopy equivalences g: Y ——Z, h: Y —— X’ such that h is simplicial
and Poincaré transverse.

|

PROPOSITION 16.15 A transversality structure 11 = (X,Y,g,h) on a fi-
nite n-dimensional Poincaré space Z determines a fundamental I -homology
class

[Z]n = (gh™1)«(C,¢) € Ho(Z; L)
with (C, @) the n-dimensional locally Poincaré normal complex in A(Z).(X)
defined by
C(r) = AY(7),0Y (1)) (r€X).
The 1/2-connective visible symmetric signature of Z is the assembly of [Z]n
o*(Z) = A([Z|n) e VL™(Z)
and the total surgery obstruction is s(Z) =0 € S, (Z).
m
In §17 it will be proved that a finite n-dimensional Poincaré space Z
admits a transversality structure IT if (and for n > 5 only if) Z is homotopy

equivalent to a compact n-dimensional topological manifold. In the first
instance we have:

PROPOSITION 16.16 If M is a finite n-dimensional Poincaré space which is
either (i) a combinatorial homology manifold
or  (ii) a topological manifold
then M has a canonical transversality structure I = (X,Y, g, h) and hence
a canonical fundamental IL°-homology class

(M. = [M]n € Hy(M;L")
with the following properties:
(a) The assembly of [M]y, is the 1/2-connective visible symmetric signature

o*(M) = A([M|L) e VL™ (M) .
(b) [M]L has image the canonical L'-homology fundamental class
JIML = [M]-€ H,(M;L) .
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(¢) The canonical 1" -cohomology orientation Uy,, € H*(T(var); L) of the
topological normal block bundle Uys: M—%BTfOJP(k) of an embedding M™ C
S+ s the S-dual of [M], € H,(M;L").

(d) If N*=% C M™ is a codimension k submanifold with a normal block

bundle v = vnc e N—>BT/(\)/P(I<:) then the canonical I."-homology funda-
mental classes [M]y, € H,(M;L"), [N]L € Hy,—r(N;L") and the canonical

LL"-cohomology orientation U, € H*(T(v); L") are related by

j*[M]]L N Uu = [N]]L € Hn—k(NaL) )

i«[Nl, = [MLnj*U, € H,—(M;L")
with

i = inclusion: N — M , j = projection: My = M U {pt.} —T(v).
PROOF (i) The canonical transversality structure is defined by
(X,Y,g,h) = (M,M'id.,id.) ,
and the corresponding canonical L'-homology fundamental class of M is the
cobordism class
(ML = (C,¢) € Hn(M; L)

of the n-dimensional symmetric Poincaré complex (C, ¢) in A (Z).(M) with
C(M)=A(M").
(ii) Any map f: M—— X to a compact polyhedron X can be made topolog-
ically transverse, with the inverse images

(M(0),0M(e)) = f~1(D(0, X),0D(0, X)) (7 € X)
(n—|o|)-dimensional submanifolds, some of which may be empty. Let (Y, Z)
be a closed neighbourhood of M in R™** (k large), a compact (n + k)-
dimensional PL manifold with boundary which is the total space of a topo-
logical (D¥, S*~1)-bundle vj; : M—=BTOP(k). By Quinn [133] Y can
be taken to be the mapping cylinder of a map e:Z——M. Make e PL
transverse, and define an X-dissection {Y (0)|o € X} of Y by

Y (o) = mapping cylinder of e|:e ' M(c)—M(c) (0 € X) .
The projection g:Y——M is a hereditary homotopy equivalence, so that
each (Y(0),0Y (0)) is a simplicial (n — |o|)-dimensional geometric Poincaré
pair homotopy equivalent to (M (o),0M (c)). The composite

!
h = fg:Y 7, M — X
is such that
h™'D(0,X) = g 'M(o) = Y(o) (0 €X).

In particular, if f: M—— X is a homotopy equivalence in the preferred sim-
ple homotopy type of M (e.g. the inclusion M C Y), then (X,Y,g,h)
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defines the canonical transversality structure on M.
]

REMARK 16.17 (i) By 16.2 the canonical I."-homology fundamental class of
an oriented n-dimensional manifold M™ is given rationally by the Poincaré

dual of the £-genus L£L(M) € H*(M;Q)
ML®Q = LIM)N[Mlg € Ho(M;L)2Q = 3 Hoan(M:Q)
k>0
with [M]g € H,(M;Q) the Q-coeflicient fundamental class. See 24.2 (i)
for the evaluation of the signatures of submanifolds N*¥ ¢ M™ in terms of
(ii) The identity o*(M) = A([M]L.) € VL™(M) is a non-simply connected
generalization of the Hirzebruch signature formula in the case n = 4k
signature (M) = (L(M),[M]g) € L*(Z) = 7.
Also, for any free action of a finite group G on M the identity
o (M/G) = A(M/G]L) e VL™(M/GQG)
gives the corresponding special case of the Atiyah—Singer index theorem,
that the G-signature of such an action is a multiple of the character of the
regular representation. See §22 for rational surgery obstruction theory with

finite fundamental group.
]
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§17. The total surgery obstruction

The total surgery obstruction s(X) € S, (X) of a finite n-dimensional ge-
ometric Poincaré complex X is the invariant introduced in Ranicki [143],
such that s(X) = 0 if (and for n > 5 only if) X is homotopy equivalent to
a compact n-dimensional topological manifold M™. Moreover, if s(X) =0
and n > 5 the manifold structure set STOF(X) is in unnatural bijective
correspondence with S;,11(X), as will be shown in §18. Provided the funda-
mental group 71 (X) is ‘good’ in the sense of Freedman and Quinn [56] these
results also hold for n = 4. In view of the close connections between the
obstruction theories for the existence and uniqueness of manifold structures
it is convenient to treat the actual invariants simultaneously, as will be done
in §20 in the simply connected case, in §22 for finite fundamental groups,
and in §23 for generalized free products and H NN extensions.

The total surgery obstruction unifies the two stages of the obstruction
provided by the Browder—Novikov—Sullivan-Wall surgery theory for the ex-
istence of a manifold structure in the homotopy type of a geometric Poincaré
complex. The first stage is the topological K-theory obstruction to the ex-
istence of a topological bundle. The second stage is the algebraic L-theory
surgery obstruction to the existence of a homotopy equivalence respecting
a choice of topological bundle reduction. As in §16 only the oriented case
is considered: see Appendix A for the nonorientable case.

The various generalized homology groups, L-groups and structure groups
are related by the following commutative braid of exact sequences, the spe-
cial case of 15.18 (i) for R=7Z,n > 2:

Sn-H(X) Hn(X§]L) Hn(Xa]L>
\ . V x /
H,(X;L.) VLX)

/ X . V K

H,1(X;L) L (Z[m (X)) Sn(X)
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The terminology is as in §16, with
L(0)(Z) = L', L(1)(Z) = L., NL(1/2)(Z) = L',
S(I)(Z,X) = Su(X) , VL*(1/2)(Z,X) = VL*(X) .
Given a finite n-dimensional geometric Poincaré complex X let (C’,¢’)
be the 1/2-connective globally Poincaré n-dimensional normal complex in

A(Z,X) used in 16.5 to define the 1/2-connective visible symmetric signa-
ture o*(X) = (C’,¢') e VL™(X).

DEFINITION 17.1 The total surgery obstruction of a finite n-dimensional
geometric Poincaré complex X is the cobordism class

s(X) = do*"(X) € S, (X)
represented by the boundary 1-connective locally Poincaré globally con-
tractible (n — 1)-dimensional quadratic complex 9(C’,¢') = (9C",¢’) in
A(Z,X).
]
Since OC'(r) is contractible for n-simplexes 7 € X (™) the quadratic com-
plex do*(X) is locally equivalent to a complex in A (Z, X[*=11), so that for
n > 3 the total surgery obstruction can be regarded as an element

s(X) = d0*(X) € Sp(X) = S, 0)(z, x" 1y = §,(z, x|
using 15.11 (ii) to identify the S-groups.
PROPOSITION 17.2 The following conditions on a finite n-dimensional ge-

ometric Poincaré complex X are equivalent:
(i) the total surgery obstruction vanishes

s(X) = 0€S,(X),

(ii) the 1/2-connective visible symmetric signature of X is the assembly
A([X]L) of an IL'-homology fundamental class (X, € Hy,(X;L")

oc"(X) = A([X]L) e VL™(X) .

PROOF Immediate from the exact sequence given by 15.18 (i)

A o
L — Ho(X;L) — VLX) — Su(X) — Hp 1 (XGL) — ... .

O

REMARK 17.3 For a finite n-dimensional geometric Poincaré complex X
which is a normal pseudomanifold (16.8) the 1/2-connective visible sym-
metric signature of X is represented by the 0-connective locally 1-Poincaré

globally Poincaré symmetric complex (C, ¢) in A (Z, X) with C(X) = A(X")
o*(X) = (C,9) e VL™"(X),
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and the total surgery obstruction is represented by the 1-connective lo-
cally Poincaré globally contractible (n — 1)-dimensional quadratic complex
A(C,¢) = (9C, ) in A (Z, X)

s(X) = (0C, ) € S, (X) .
Note that X is an n-dimensional combinatorial homology manifold if and

only if (C,¢) is locally Poincaré, in which case the 1/2-connective visible
symmetric signature is the assembly

o"(X) = A([X]L) e VL"(X)
of the canonical L."-homology fundamental class
XL = (C¢) € Ha(X;L)
and the total surgery obstruction is
s(X) = 90c"(X) = 0€S,(X) .
]

The total surgery obstruction s(X) € S,(X) of a finite n-dimensional
geometric Poincaré complex X measures the failure of the links of the sim-
plexes 7 € X to be homology (n — |7| — 1)-spheres up to chain cobordism:
this is the equivalence relation appropriate for deciding if X is homotopy
equivalent to a compact topological manifold.

THEOREM 17.4 (Ranicki [143]) The total surgery obstruction s(X) € S, (X)
of a finite n-dimensional geometric Poincaré complex X is such that s(X) =
0 if (and for n > 5 only if) X is homotopy equivalent to a compact n-
dimensional topological manifold.

PROOF Let

(v: X—BG(k), p: S"TF—T(v))
be the Spivak normal structure determined by an embedding X C S"** (k
large). The topological reducibility obstruction
HX) = [s(X)] = 6(U,) = t(v) € Hya(X;L.) = H*YT(v);L.)

is the primary obstruction both to the vanishing of s(X) and to the exis-
tence of a topological manifold in the homotopy type of X. Assume this
obstruction vanishes. -

Given a choice of reduction 7: X — BT O P (k) apply the Browder—Novikov
transversality construction to obtain a degree 1 normal map

(f=plb): M = p7H(X) — X
from an n-dimensional topological manifold M, making p: "tk ——T(v) =

T(v) transverse regular at the zero section X C T'(v). Let Il = (Y, Z, g, h)
be the canonical transversality structure on M given by 16.16. The degree
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1 normal map of n-dimensional geometric Poincaré complexes

(f.b)
(FKFEB): Y ~ 72 ~ M —— X

has the same surgery obstruction as (f,b)
o.(F,B) = o0.(f,b) € L,(Z[r(X)]) .

Choosing a simplicial approximation F: Y — X’ there is obtained a degree
1 normal map
{(F(7), B(r))} : {Y(1) = F'D(7,X)} — {D(1,X)} (7€ X)

from a cycle of (n — |7|)-dimensional geometric Z-coefficient Poincaré pairs
(Y(7),0Y (7)) to a cycle of (n — |7])-dimensional geometric normal pairs
(D(r,X),0D(7, X)) with geometric Poincaré assembly |J. D(r,X) = X'.
The quadratic kernel is an n-dimensional quadratic globally Poincaré com-
plex in A (Z, X)

(C.9) = {(C(F(1)"),»(B(r))| 7€ X},
with quadratic signature the surgery obstruction
(C(X),¥(X)) = 0u(F,B) = 0.(f,b) € Ln(Z[m(X)])
and image
Jo.(F,B) = —0c"(X) = —s(X) € Sp(X) .
The surgery obstruction is 0 if (and for n > 5 only if) (f,b) is normal bor-
dant to a homotopy equivalence.

Now suppose that 7, o/: X —s BT OP(k) are two topological block bun-
dle reductions of the Spivak normal fibration v, giving rise to degree 1
normal maps (f,b): M—X, (f',b'): N—X. The quadratic kernel com-
plexes (C, 1), (C’,1') have the same boundary (n—1)-dimensional quadratic
globally contractible locally Poincaré complex in A (Z, X) (up to homotopy
equivalence)

o(C,y) = 9(C", YY) = —dc*(X),
and the union (C,v) U (C',—v') is a 1-connective n-dimensional quadratic
locally Poincaré complex in A (Z, X). The assembly of the element
(C,) U(C,—9") € Lu(AI)(Z). (X)) = Hn(X;L.)
is the difference of the surgery obstructions
= 0.(f,b) —o.(f,V) € L,(Z][m (X)]) .

The symmetric L-spectrum L° is a ring spectrum. (See Appendix B

for the multiplicative structure of the L-spectra). The S-dual of the LL'-

coefficient Thom class Uy € H*(T(v); L") of a topological block bundle re-
duction 7: X — BT OP(k) of v is a fundamental L’'-coefficient class [X]; €



17. THE TOTAL SURGERY OBSTRUCTION 195

H,(X;L"). The quadratic L-spectrum L. is an L'-module spectrum, and
there is defined an L.-coefficient Poincaré duality isomorphism

(X]oN—: [X,G/TOP] = H(X:L.) 25 HF(T(w);L) = Hn(X;L.).

The topological block bundle reductions 7': X ——>BTfO/P(k‘) (k large) of v
are classified relative to 7 by the homotopy classes of maps X —G/TOP.
The difference t(7,7') € [X,G/TOP] (16.1 (v)) corresponds to the element
(C,)U(C',—¢) € H,(X;LL.) constructed above, so that

o.(f,b) — o (f',0) = A(t(r,70)) € im(A: H,(X;L.)— L, (Z[r1(X))])) -
Thus if s(X) € ker(S,,(X)—H,—1(X;L.)) there exist topological block
bundle reductions 7 of v, and the surgery obstructions o, (f,b) of the asso-

ciated degree 1 normal maps (f,b): M—— X define a coset of the image of
the assembly map

im(A: H,(X;L.)— L, (Z[r1(X)])) C L, (Z]m(X)])
(confirming the suggestion of Wall [182, §9]).

The total surgery obstruction s(X) is therefore such that s(X) = 0 €
S, (X) if and only if there exists a reduction © for which o,(f,b) = 0 €
L, (Z|m(X)]). For n > 5 this is the necessary and sufficient condition
given by the Browder—Novikov—Sullivan—Wall theory for X to be homotopy
equivalent to a compact n-dimensional topological manifold.

m

ExAMPLE 17.5 The total surgery obstruction of a compact n-dimensional
combinatorial homology manifold X is s(X) =0 € S,,(X), by virtue of the
canonical fundamental L'-homology class [X]|L € H,(X;L") (16.16). 17.4
gives an alternative proof of the result of Galewski and Stern [58] that for
n > 5 X is homotopy equivalent to a compact n-dimensional topological
manifold.

m

COROLLARY 17.6 A finite n-dimensional geometric Poincaré complexr X

admits a transversality structure Il = (Y, Z, g, h) if (and for n > 5 only if)

X is homotopy equivalent to a compact n-dimensional topological manifold.
i

COROLLARY 17.7 The total surgery obstruction of a topologically reducible
finite n-dimensional geometric Poincaré complexr X 1is given by

s(X) = —00.(f,b)
€ im(0: L, (Z[m (X)])— S, (X)) = ker(S,(X)—H,_1(X;L.)),
with o, (f,b) € L,(Z[m1(X)]) the surgery obstruction of any degree 1 normal
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map (f,b): M——X from a compact n-dimensional manifold M.
o

See 19.7 below for the generalization of 17.7 to a degree 1 normal map
(f,0):Y—X of finite n-dimensional geometric Poincaré complexes, with
b: vy —vx afibre map of the Spivak normal fibrations rather than a bundle
map of topological reductions. The formula of 19.7 is

S(Y) - S(X> = aa*(f? b) € SH(X> ’
expressing the difference of the total surgery obstructions in terms of the
quadratic signature o, (f,b) € L, (Z[m(X)]).

REMARK 17.8 The algebraic surgery exact sequence of a polyhedron X

S HA (XL~ L(Zr (X)) — $n(X) — Hyy 1 (X3L) —> ..

can be viewed as the L-theory localization exact sequence for the assembly
functor

A : {locally Poincaré complexes} — { globally Poincaré complexes}

inverting all the globally contractible chain complexes. The total surgery
obstruction s(X) € S, (X) of an n-dimensional geometric Poincaré complex
X is thus an analogue of the boundary construction of quadratic forms
on finite abelian groups from integral lattices in rational quadratic forms
(cf. 3.13 and Ranicki [146, §§3,4]). The peripheral invariant of Conner and
Raymond [40] and Alexander, Hamrick and Vick [2] for actions of cyclic
groups on manifolds and the intersection homology peripheral invariant of
Goresky and Siegel [64] and Cappell and Shaneson [28] are defined similarly.
]

The connections between the total surgery obstruction and geometric
Poincaré transversality are described in §19 below.
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§18. The structure set

The relative version of the total surgery obstruction theory of §17 will now
be used to identify the Sullivan—Wall surgery exact sequence of a manifold
with the algebraic surgery exact sequence of §15. For n > 5 the structure set
STOP (M) of an n-dimensional manifold M is identified with the quadratic
structure group S,,4+1(M).

DEFINITION 18.1 The structure set STOF(X) of a finite n-dimensional
geometric Poincaré complex X is the set of the h-cobordism classes of pairs
(compact n-dimensional manifold M , homotopy equivalence f: M—X) .

i

By 17.4 for n > 5 the structure set ST97(X) is non-empty if and only if
5(X) =0 € S,(X). The structure set ST?F (M) of a manifold M is pointed,
with base point (M, 1) € STOP(M).

More generally, the structure set SJF(X) of a finite n-dimensional geo-
metric Poincaré pair (X, 0X) with compact manifold boundary 0X is de-
fined to be the set of the rel 9 h-cobordism classes of homotopy equiva-
lences f: (M,0M)—(X,0X) from compact manifolds with boundary such
that f|:OM—0X is a homeomorphism. By the rel 9 version of 17.4 for
n > 5 SFOP(X) is non-empty if and only if s(X) = 0 € S,(X). Note that
SEOF(X) = STOP(X) in the closed case 0X = ().

DEFINITION 18.2 Let (M,0M) be a compact n-dimensional manifold with
boundary, with n > 5. The geometric surgery exact sequence computing the

structure sets SYOF (M x D) (i > 0) is the exact sequence of Sullivan [166]
and Wall [180, 10.8]

. — Lygip1(Z[m (M)]) — SEOF (M x DY)

M x D' O(M x D'); GJTOP, {+}] — Lnys(Zlm (M)))

— ... — Ly (Zr(M)]) — STOP (M)

0
— [M,0M;G/TOP,{+}] — Ln(Zlm(M)]) .
m
An element t € [M,0M; G/TOP,{x}] classifies a topological block bundle
reduction 7: M—BTOP(k) of the Spivak normal fibration Jvy;: M—
BG(k) (k large) such that v| = vgpr: OM —BTOP(k). The surgery ob-
struction map
0: [M,0M;G/TOP,{x}| — L,(Z[r1(M)])
sends such an element ¢ to the surgery obstruction
0(t) = ou(f,b) € Ln(Z[m (M)))
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of the degree 1 normal map of n-dimensional manifolds with boundary ob-
tained by the Browder—Novikov transversality construction on the degree
1 map p: (D"F Sntk=1)(T(5), T(¥|pasr)) determined by an embedding
(M,0M) C (D"tF S™tr=1) (K large)
(f,b) = p|: (N,ON) = p *(M,0M) — (M,0M)
with df: ON——0M a homeomorphism. The group L, 41(Z[m1(M)]) acts
on STOF (M) by
Ly41 (Z[my (M)]) x STOP(M) — STOP(M)
(IE, (N07 f())) — x(NO7 fO) = (vafl) ’
with fo: No—— M, f1: N;——M homotopy equivalences of n-dimensional
manifolds with boundary which are related by a degree 1 normal bordism

(g,¢) W™ Ny, Ny) — M x ([0,1]; {0}, {1})
with rel @ surgery obstruction
0:(9,¢) = x € Lpa(Z[m (M)]) .
Two elements (N1, f1), (Na2, f2) € SYOP(M) have the same image in
[M,0M;G/TOP,{x}] if and only if
(N2, f2) = a(Ny, f1) € S5O7 (M)
for some = € Ly, 11(Z[m1(M))]).

For the remainder of §18 only the closed case OM = () is considered,
but there are evident relative versions for the bounded case. In particular,
SEOP (M) is identified with the quadratic structure group S,11(M) also in
the case OM # ().

The following invariants are the essential ingredients in the passage from
the geometric surgery exact sequence of 18.2 to the algebraic surgery exact
sequence of 15.19.

PROPOSITION 18.3 (i) A normal map of closed n-dimensional manifolds
(f,b): N— M determines an element, the normal invariant
[f, 0L € Hn (ML)
with assembly the surgery obstruction of (f,b)
A([f,blL) = ox(f,b) € im(A: Hp (M; L) — L (Z[m1 (M)]))
= ker(Ln(Z[m (M)])—8,(M)) ,

and symmetrization the difference of the canonical IL."-homology fundamental
classes

A+ D)W = foIN) — [M]s, € Hy(M;L) |
Let t(b) € H°(M;L.) = [M,G/TOP] be the normal invariant classifying
the fibre homotopy trivialized stable bundle vy — vyr: M—— BTOP, with
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vy the stable normal bundle of M and vy; the target of b: vy ——vpr. The
normal invariant is the image of t(b) € [M, G/TOP] under the LL.-coefficient
Poincaré duality isomorphism

[M,n—: H°(M;L.) — H,(M;L.)
defined by cap product with the canonical 1L -coefficient fundamental class
M), € H,(M;L"). The normal invariant is such that [f,b]p, = 0 €
H,(M;L.) if and only if (f,b) is normal bordant to the 1: M—— M.

(ii) A homotopy equivalence of closed n-dimensional manifolds f: N—s M
determines an element, the structure invariant

s(f) € Sp1(M) ,
with image the normal invariant of the normal map (f,b): N— M with
b:vy—(f~1)*vn the induced map of stable bundles over f

t(f) = [s(N] = [f.0r € Im(Spr (M) —Hn(M; L))
= ker(A: H,(M;L.)— L, (Zm(M)])) .
As in (i) the normal invariant is such that t(f) = 0 if and only if (f,b): N

—— M 1s normal bordant to 1: M—— M, in which case the structure invari-
ant s(f) is the image of the reld surgery obstruction of any normal bordism

(9:1, ), (e 1,6)) = (WM, N) — M x ([0,1]; {0}, {1}) ,
that is
s(f) = low(g; o)) € im(Lnta (Z[m1 (M)]) —Sn11(M))
= ker(S,11(M)—H,(M;L.)) .
PROOF (i) Let X be the polyhedron of an n-dimensional geometric Poincaré
complex with a homotopy equivalence g: M—— X, such that both g and
gf: N—X are topologically transverse across the dual cell decomposition
{D(1,X) |7 € X} of X. The restrictions of f define a cycle of degree 1
normal maps of (n — |7|)-dimensional manifolds with boundary
{(F(7),0(m))} : AN(7)} — {M(7)}
with
M(r) = ¢g7'D(r,X) , N(r) = (¢f)"'D(r.X) (r€X),
such that M (1) = {pt.} for n-simplexes 7 € X (™). The kernel cycle
{(C(f(0)),9(0(n)) | T e X}

of (n — |7])-dimensional quadratic Poincaré pairs in A (Z) is a 1-connective
n-dimensional quadratic Poincaré complex in A (Z),(X) allowing the defi-
nition
.6l = {(C(f(r) "), v(b(r)))}
€ L,(A(1)(Z2).(X)) = Hp,(X;L.) = H,(M;L.) .
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(ii) If f: N—— M is a homotopy equivalence the quadratic complex of (i) is
globally contractible, allowing the definition

s(f) = {(CU)),w(B(T))} € S (X) = Spya(M) .
(Equivalently, define the structure invariant s(f) of a homotopy equivalence
f: N—M of compact n-dimensional manifolds to be reld total surgery
obstruction of a finite (n + 1)-dimensional geometric Poincaré pair with
compact manifold boundary

s(f) = so(W,NU—-M) €Sp11(W) = Sp41(M) ,

with W = N x I Uy M the mapping cylinder.)
O

EXAMPLE 18.4 The normal invariant of a normal map of closed oriented
n-dimensional manifolds (f,b): N—— M is given modulo torsion by the dif-
ference between the Poincaré duals of the £-genera of M and N

[/t ©Q = f(L(N)N[N]g) — £L(M) N [M]g

EHn(M7L>®Q = Hn—4*(M;Q) .
O

THEOREM 18.5 (Ranicki [143]) The Sullivan—Wall geometric surgery exact
sequence of a compact n-dimensional manifold M with n > 5 is isomorphic
to the algebraic surgery exact sequence, by an isomorphism

. — L1 (2l (M)]) — STOP (M) — [M, G/TOP] % L, (Z[m (b))

slg tlg

- L1 (2w (M)]) -5 81 (M) —— H, (ML) 45 L, (Z[m (M)

and for all i > 0

SFOP(M x D', M x S'7Y) = S, (M),

[M x D', M x S Y, G/TOP,{x}] = H"(M;L.) = H,s(M;L.) .
In particular, H,(M;L.) = [M,G/TOP] is the bordism group of normal
maps (f,b): N—M of closed n-dimensional manifolds.

PROOF An embedding M C S™** (k large) determines a topological normal
structure

(7: M—BTOP(k), p: S"TF—T()) .
By 18.3 (i) the normal invariant defines a bijection

t: [M,G/TOP] — H,(M;L.); ¢ — [f,blL ,
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namely the Poincaré duality isomorphism
t = [MlLn—: [M,G/TOP] = HY(M;L.) — H,(M;L.) .

The surgery obstruction map 6 thus factorizes as the composite
t A
0:[M,G/TOP] = H°(M;L.) — H,(M;L.) — L,(Z[r(M)]) .
Use the structure invariant of 18.3 (ii) to define a bijection
52 STOP(M) — Suaa(M) 5 (N, ) — s(f) -

Similarly for the higher structures.
o

In particular, for any closed n-dimensional manifold M and any element
x € Sp41(M) there exists a closed n-manifold N with a homotopy equiva-
lence f: N——M such that s(f) = =.

COROLLARY 18.6* Let K be a space with finitely presented w1 (K).
(i) H,(K;LL.) consists of the images of the normal invariants [f, bl of nor-
mal maps (f,b): N— M of closed n-dimensional manifolds with a reference
map M— K.
(ii) The image of the assembly map A: H, (K;L.)— Ly, (Z|m1(K)]) consists
of the surgery obstructions o.(f,b) of the normal maps (f,b): N—M of
closed n-dimensional manifolds with a reference map M— K.
(iii) Sp41(K) consists of the images of the structure invariants s(f) of ho-
motopy equivalences (f,b): N—— M of closed n-dimensional manifolds with
a reference map M— K.
(iv) The image of Sp4+1(K)—H,(K;L.) consists of the images of the
normal invariants [f, bl of homotopy equivalences (f,b): N—M of closed
n-dimensional manifolds with a reference map M— K.

o

ExXAMPLE 18.7 For n > 4 the manifold structure set of the n-sphere S™ is
STOP(S™) = S,41(8™) = 0.

This is the TOP version of the n-dimensional Poincaré conjecture (Smale,

Stallings, Newman, Freedman), according to which any homotopy equiva-

lence M™ ~ S™ from a compact n-dimensional topological manifold M is

homotopic to a homeomorphism.
O

See §20 for S, (M) in the simply connected case m1 (M) = {1}.

* Corollary 18.6 is only true after the 4-periodic stabilization of n: see
Theorem B of [.Hambleton, Surgery obstructions on closed manifolds and
the inertia subgroup, Forum Math. 24, 911-929 (2012)
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REMARK 18.8 The simply connected surgery classifying space Ly ~ G/TOP
is such that
G/TOP ®Z[1/2] ~ BO ® Z[1/2]
G/TOP® Loy ~ [[K(Zw),45) x [ K(Z2,45 +2)
Jjz1 Jj=0
with Z9) = Z[1/odd] the localization of Z at 2, so that for any space X
HL(X:L)[1/2) = KOL(X)[1/2] = Q.(X) @a. () L+(D)[1/2
H (X;L.)@2) = HH*—4j(X§Z(2)) X HH*—4j—2(X;Z2) :
Jj=1 Jj=0

Wall [180, p. 266] used bordism theory and the surgery product formula to
define the L-theory assembly map away from 2

A: H (X;L)[1/2] — L.(Z[m(X)])[1/2]
by sending the bordism class of an n-dimensional manifold M equipped with
a reference map M——X to the symmetric signature of Mishchenko [115]
A(M) = o"(M) € Ln(Z[m (X)D[1/2] = L™(Z[m(X))[1/2] .
Up to a power of 2 this is a surgery obstruction
86*(M) = (14+T)ou(1 x (f,b): M x Q3—M x S8) € L"(Z[r(X))]) ,
with (f,b): Q®——S® the 8-dimensional normal map determined by the
framed 3-connected 8-dimensional Milnor PL manifold Q® with signature
o*(Q%) = (Z® Es) = 8¢ L*(Z) = 7Z.
The factorization of the surgery map as
0: [M,G/TOP] — QTP (Br x G/TOP, Brr x {x})
— L(Z[) (r = m(M))
is due to Sullivan and Wall [180, 13B.3]| (originally in the PL category), with
[M,G/TOP] — QL9P(Br x G/TOP, Bt x {*}) ;
(: M—G/TOP) = ((f,b): N—M) —

(N 2% (M x GJTOP, M x {+}) — (Br x G/TOP, Br x {+})) .
See Appendix B for an expression of this factorization using the multiplica-
tive properties of the algebraic IL-spectra. The factorization of # through
the assembly map A was first proposed by Quinn [131]: see Mishchenko and
Solovev [118], Nicas [121, §3.3], Levitt and Ranicki [94, §3.2] for the geomet-
ric construction of A in the case when M is a PL manifold. In Ranicki [143]
the factorization of 8 through the algebraic assembly map A was obtained by
means of the theory of normal complexes and geometric Poincaré complexes
due to Quinn [132]: see the Appendix to Hambleton, Milgram, Taylor and
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Williams [69] for an exposition of this approach. The factorization was used
in [69] and Milgram [109] to compute the surgery obstructions of normal
maps of closed manifolds (= the image of A: H,(Bm;LL.)—L.(Z[x])) for
finite groups .

m

REMARK 18.9 (i) A simplicial map f: J— K’ is transversely cellular if J
is an n-dimensional PL manifold and the inverse images of the dual cells
of i-simplexes in 0 € K are (n — i)-dimensional PL balls f~'D(o, K) C J.
Cohen [38], [39] proved that a transversely cellular map of compact PL man-
ifolds is homotopic to a PL homeomorphism, and that for n > 5 a proper
surjective PL map of n-dimensional combinatorial homotopy manifolds with
contractible point inverses is homotopic to a homeomorphism.

(ii) A map f: N— M of ANR spaces (e.g. manifolds) is cell-like if it is
proper, surjective and such that for each x € M and each neighbourhood
U of f~(x) in N there exists a neighbourhood V C U of f~!(z) such that
the inclusion V——U is null-homotopic. A proper surjective map of finite-
dimensional AN R spaces is cell-like if and only if it is a hereditary proper
homotopy equivalence, i.e. such that the restriction f|: f~1(U)—U is a
proper homotopy equivalence for every open subset U C M. A PL map
f: N——M of compact polyhedra is cell-like if and only if the point inverses
/7 1(z) are contractible, in which case 7(f) = 0 € Wh(m;(M)) (as is true for
any cell-like map of compact AN R spaces). Siebenmann [161] proved that
for n > 5 a proper surjective map f: N—— M of n-dimensional manifolds
is cell-like if and only if f is a uniform limit of homeomorphisms. More
generally, Chapman and Ferry [35] showed that for n > 5 any sufficiently
controlled homotopy equivalence of n-dimensional manifolds can be approx-
imated by a homeomorphism. The structure invariant s(f) € S, +1(M) of
a homotopy equivalence f: N——M of compact n-dimensional manifolds
measures the failure of f to be cell-like on the chain level, i.e. for the point
inverses f~!(z) (x € M) to be acyclic, up to the chain level cobordism
relation appropriate for deciding if f is homotopic to a homeomorphism (at
least for n > 5). If f is cell-like then each of the simplicial maps

f(r) = fl: N(1) = (¢f)"'D(r,X) — M(r) = ¢7'D(,X) (1€ X)
in the definition of s(f) can be chosen to be a homotopy equivalence, with
g: M ~ X as in 18.3, so that

S(f) = 0€Spia(M).
Thus for n > 5 a cell-like map f: N—— M of compact n-dimensional mani-
folds is homotopic to a homeomorphism and

(N,f) = (M,1) = 0€STOP(M) = S,11(M) . O
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§19. Geometric Poincaré complexes

The total surgery obstruction of §17 and the structure invariant of §18
are now interpreted in terms of geometric Poincaré bordism theory. The
total surgery obstruction s(X) € S, (X) of a finite n-dimensional geomet-
ric Poincaré complex X is identified with the obstruction to the identity
X —X being bordant to a Poincaré transverse map.

The main source of geometric Poincaré complexes is of course:

ExaMPLE 19.1 A compact n-dimensional topological manifold is a finite
n-dimensional geometric Poincaré complex.
|

EXAMPLE 19.2 Browder [14] showed that finite H-spaces are geometric
Poincaré complexes, providing the first examples of Poincaré spaces other
than manifolds or quotients of finite group actions on manifolds (which
are QQ-coefficient Poincaré complexes). Finite H-spaces are topologically
reducible, with trivial Spivak normal fibration, so that simply-connected
ones are homotopy equivalent to compact topological manifolds.

]

EXAMPLE 19.3 Gitler and Stasheff [61] used the first exotic class e; €
H*(BG;Z2) to show that a certain simply-connected finite 5-dimensional
geometric Poincaré complex X = (S2VS3)Ue’ is not topologically reducible,
and hence not homotopy equivalent to a compact topological manifold. In
fact, X can be chosen to be the total space of a fibration $?— X —53
classified by an element in 73(BG(3)) with image 1 € m3(B(G/TOP)) =
mo(G/TOP) = Zy. See Madsen and Milgram [102, pp. 32-34] for the classi-
fication of all the 5-dimensional geometric Poincaré complexes of the type
(8?2 v §3)Ued. See Frank [55] for non-reducible geometric Poincaré com-
plexes detected by the exotic classes e; € H*(BG;Z,) for odd prime p.

i

EXAMPLE 19.4 Wall [177,5.4.1] constructed for each prime p a reducible
finite 4-dimensional geometric Poincaré complex X with 7 (X) = Z,
X = 60U61UU62U€3U€4
10
such that X and the universal cover X are orientable with signature
o (X) = o*(X) = 8eLYZ) = Z.
Signature is multiplicative for orientable finite covers of orientable compact
manifolds, and o*(X) # po*(X), so X cannot be homotopy equivalent to a

closed manifold; higher-dimensional examples are obtained by considering
the products X x (CP?)* (k > 1). See 22.28 for the systematic construction
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of such examples, which are detected by the multisignature invariant.
|

The realization theorem of Wall [180] for the surgery obstruction groups
L, (Z[r]) (n > 5) provides the following systematic construction of topo-
logically reducible finite geometric Poincaré complexes. Every finitely pre-
sented group 7 is the fundamental group = = 71 (M) of a compact (n — 1)-
dimensional manifold M"~!. Every element x € L,(Z[r]) is the reld
surgery obstruction z = . (f,b) of a normal map

(F:b) (W™ MP=1 MY — M x ([0, 1); {0}, {1})
with
flar = identity : M — M x {0},
fla = homotopy equivalence : M’ — M x {1} .
The topologically reducible n-dimensional geometric Poincaré complex
X = WUsr M x[0,1]
has fundamental group 71(X) = 7 X Z but the extraneous Z-factor can

be ignored (or removed by Poincaré mj-surgery as in Browder [17]). The
normal map of n-dimensional geometric Poincaré complexes

(fLO)Ul: X = WUy M x[0,1] — M xS' = M x[0,1]Us M x [0,1]
has quadratic signature o, ((f,b)Ul) = = € L, (Z[r]). Also, if (g,¢): N—X
is a normal map from a closed n-dimensional manifold N corresponding to
the topological reduction of X then o.(g,c) = —x € L,(Z[r]). See Ran-
icki [145] for the definition and the composition formula for the quadratic
signature of a normal map of geometric Poincaré complexes.

PROPOSITION 19.5 The topologically reducible finite n-dimensional geomet-
ric Poincaré complex X with m(X) = 7 constructed from x € L, (Z|r]) has
total surgery obstruction

s(X) = 0(x) € im(0: L, (Z[r])—S, (X)) = ker(S,(X)—H,—1(X;L.)),
and s(X) =0 € S, (X) if and only if x € im(A: H,(X;L.)— L, (Z[r])).

Proor The Spivak normal fibration vx has a topological reduction such
that the corresponding normal map (g, ¢): N"—— X has surgery obstruction

J*(gvc) = _U*(fa b) = —Trc LH(Z[W]) .
The total surgery obstruction of X is given by 17.7 to be
s(X) = —00.(g,¢c) = 0(x) € Sp(X) .

The equivalence of s(X) = 0 and x € im(A) is immediate from the exact

sequence

Hy(X5L)) =5 Lo(Zm(X)]) — Sa(X) .
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The construction of geometric Poincaré complexes from surgery obstruc-
tions defines a map

Ly (Zmi(K)]) — Q) (K) s 2 — X
for any space K with finitely presented 71 (K) and n > 5.
The exact sequence of Levitt [92], Jones [80], Quinn [132], Hausmann and
Vogel [75] relating geometric Poincaré and normal cobordism
C— OV (K) — Ly(Z[m(K)]) — QY(K) — QY (K) — ...
has the following generalization:
PROPOSITION 19.6 (Ranicki [143])

(i) For any polyhedron K with finitely presented i (K) and n > 5 there is
defined a commutative braid of exact sequences

Sn—i—l(K) Hn(KS QP) Hn(Kv QN)
H,(K; L) Q) (K)
Ho (G O) La(ZIm (K)) S, (K)

with QF = QF ({x}) (resp. QN = QN ({*})) the geometric Poincaré (resp.
normal) bordism spectrum of a point and

s: QP(K) — Sp(K) 5 (i X—K) — f.s(X)

the total surgery obstruction map. The quadratic structure group S, (K) is
the bordism group of maps (f,0f): (X,0X)—K from finite n-dimensional
geometric Poincaré pairs (X,0X) such that 0f: 0X — K is Poincaré trans-
verse.

(ii) A finite n-dimensional geometric Poincaré complex X has total surgery
obstruction s(X) = 0 € S, (X) if (and for n > 5 only if ) there exists an QF -
homology fundamental class [X]|p € H,(X;QF) with assembly the Poincaré
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bordism class of 1: X — X
A([X]p) = (L X—X) € QF(X) .
PROOF (i) The geometric normal complex bordism spectrum of a point is

the Thom spectrum of the universal oriented spherical fibration over the
classifying space BSG

N ={aN{#Hn|neZ} = MSG , QN ({*})n = lim P’ MSG(j —n) .
J
The normal complex assembly maps are isomorphisms
A: H(KQV) — QN(K)
by normal complex transversality (Quinn [132]). The map s is defined by
the total surgery obstruction
s: QF(K) — Sp(K) ; (X—K) — s(X) .
The geometric Poincaré bordism spectrum of a point
D= {9 {#nln ez}
consists of the A-sets with
QF ({«})®) = {(n + k)-dimensional oriented finite geometric Poincaré
k-ads (X;00X,0:1X,...,0,X) such that %X N X N...NKX = 0},
with the empty complexes as base simplexes (). As in §12 assume that K
is a subcomplex of JA™H! for some m > 0. By 12.6 H,(K;QF) is the
cobordism group of n-dimensional Q2 -cycles in K
- {X< Je () Ire Ky
so that (X (7); O, ( ), - |7/ X (7)) is an (n — |7|)-dimensional geomet-
ric Poincaré (m |7'|) ad Wlth

iT) oTe K ,
aix(r) = { KO Ham ek o).

@ if 51'7' ¢ K
The assembly of X is the bordism class (A(X), f) € QF(K) of the union
n-dimensional geometric Poincaré complex

AX) = (J X(n)
TEK
with f: A(X)—— K’ a Poincaré transverse simplicial map such that
f'D(1,K) = X(1) (T€EK).
(ii) Immediate from (i).
m

See Levitt and Ranicki [94] for a geometric interpretation of an QF-
homology fundamental class [X]p € H, (X;QF) such that

A(IX]p) = (LX—X) € QF(X)
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as an ‘intrinsic transversality structure’.

COROLLARY 19.7 If (f,b): Y —X is a normal map of finite n-dimensional
geometric Poincaré complexes then the difference of the total surgery ob-
structions is the image of the quadratic signature o.(f,b) € L, (Z[m1(X)])
s(Y)—s(X) = 00.(f,b) € im(0: L, (Z[m1(X)])—S,(X)) .
PrOOF The mapping cylinder W =Y x I Uy X of f defines an (n + 1)-
dimensional normal pair (W,Y U —X) with boundary the n-dimensional
geometric Poincaré complex Y LI — X, such that
o.(W,YU-X) = o.(f,b) € Q1 (X) = L,(Z[m(X)]) .
i
The symmetric L-groups are not geometrically realizable, in that the sym-
metric signature map
o QV(K) — L"(Z[m(K)]) ; (X—K) — o*(X)
is not onto in general. For example, the (2k — 1)-connected 4k-dimensional
symmetric Poincaré complex (S?*Z[Zs], T) over Z[Zs] is not in the image
of 0*: QL (BZy )—L*(Z[Z3]) for any k > 1 (Ranicki [146, 7.6.8], see also
9.17).
The fibre of the 1/2-connective visible symmetric signature map
o QP (K) — VL' (K) ; (X—K) — o*(X)
is a homology theory:

COROLLARY 19.8 For any polyhedron K with finitely presented m1(K) and
n > 5 there is defined a commutative braid of exact sequences

with QP) the fibre of the simply connected symmetric signature map o*: QF
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—L.
O

REMARK 19.9 The simply connected normal signature map &*: Q¥ — L
is a rational homotopy equivalence, with both spectra having the rational
homotopy type of the Eilenberg-MacLane spectrum K.(Q,0) for rational
homology:
OV eQ ~ MSG®Q ~ K.(Q,0)
by the finiteness of the stable homotopy groups of spheres 7f = 7,11 (BSG)
for x > 1, and
L'®Q = cofibre(1+T:L.—L)®Q ~ K.(Q,0)
by virtue of the symmetrization map 1+ 7" L,(Z)——L*(Z) being an iso-
morphism modulo 8-torsion. The natural map
Q) = fibre (0*: QF — L") — fibre (6%: QN —L)
induces isomorphisms of homotopy groups, except possibly in dimensions
4,5 (in which it at least induces isomorphisms modulo torsion). The 1/2-
connective visible symmetric signature map

o* 1 QF(X) — VLX)
is a rational isomorphism for all n > 0.
|

Given a map f:Y——X there are defined relative S-groups S.(f) to fit
into a commutative diagram

. — H,(Y;L) —— L, (Z[m(Y)]) — Sp(Y)— H,—1(Y;L.) — ...
I+ Je fe I+

. — H,(X;L.) — L,(Z[m(X)]) — Sp(X) — H,—1(X;L.) — ...

. —— H,(f;L) ———— L,(f) ———Su(f) — H,—1(f;L.) — ...

.—H, 1(Y;L.) — L1 (Z[m1(Y)]) — Sp-1(Y) — Hp—o(Y;L.) — . ..
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with exact rows and columns. The total surgery obstruction of a finite
n-dimensional geometric Poincaré pair (X,Y’) is an element
s(X,Y)eS,(X,Y) = S, (Y—X)
of the relative S-group of the inclusion Y — X, with image the total surgery
obstruction of Y
[s(X,Y)] = s(Y)eS,—1(Y) .
As in the absolute case (Y = ()) the image
tHX,Y) = [s(X,Y)] € H,_1(X,Y;L.) = H*Y(T(vx);L.)

is the obstruction to a topological reduction of the Spivak normal fibration
vx: X—BG(k). The total surgery obstruction is such that s(X,Y) =0
if (and for n > 6 only if) (X,Y") is homotopy equivalent to a compact n-
dimensional topological manifold with boundary (M™,0M). For n > 6 the
structure set of (M™,0M) is given by

STOP(M,0M) = Sp41(M,0M) .

REMARK 19.10 The total surgery obstruction of a finite n-dimensional ge-
ometric Poincaré pair (X,Y’) such that

1 (Y) = 1 (X)
is just the topological reducibility obstruction
s(X,)Y) = ¢(X,)Y) eSS, (X,Y) = H, 1(X,Y;L.) .

Thus vx: X—BG is topologically reducible if (and for n > 6 only if)
(X,Y) is homotopy equivalent to a compact n-dimensional topological man-
ifold with boundary — this is the -7 theorem of Wall [180, 3.3] and its trivial
converse.

o
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§20. The simply connected case

We now turn to the simply connected case m1(X) = {1}. The total surgery
obstruction s(X) € S,,(X) of an n-dimensional geometric Poincaré complex
X has image the obstruction ¢(X) € H,,_1(X;L.) to a topological reduction
of the Spivak normal fibration of X. The simply connected case has the
distinctive feature that S, (X)—H,_1(X;L.) is injective, so that s(X) is
determined by #(X). See Browder [16] for a detailed exposition of simply
connected surgery obstruction theory in dimensions > 5, and Freedman and
Quinn [56] for the extension to the 4-dimensional case.
The simply connected surgery obstruction groups are given by

Z 0
L.(Z) = % itn= ; (mod 4) .
2
0 3

The cobordism class of an n-dimensional quadratic Poincaré complex (C, )

over Z is given by
o [ (1/8) signature (Ha(C')/torsion, A, )
(C.¥) = {Arf invariant (Hak+1(C;5Z2 ), \, 1)
Z 4k
€ L,(Z) = {Z2 ifn= {4k+2
with (X, ) the (=)"/?-quadratic form determined by 1. The surgery ob-
struction o, (f,b) € L, (Z) of an n-dimensional normal map (f,b): M— X
with 71 (X) = {1} is the cobordism class of the kernel n-dimensional quad-
ratic Poincaré complex (C, ) over Z, with

H.(C) = K.(M) = ker(fo: H.(M)—H.(X)) ,
K.(M)® H.(X) = H.(M)

so that

signature (Ko (M;R), A\, 1u)/8

ou(ft) = () = { Bt Ha R, S )/
Arxf invariant (Kogy1 (M;Z2 ), A, 1)
7 4k

€ L,(Z) = if n =
(Z) {22 n {4k+2

with (A, i) the (—)"/?-quadratic form on the kernel module

Ky y2(M) = ker(fi: Hyyo(M)—H, /2(X))

defined by geometric intersection and self-intersection numbers.

See Kervaire and Milnor [86] and Levine [91] for the original applications
of simply connected surgery theory to the classification of differentiable ho-
motopy spheres. For ¢ > 3 every element x € Ly;(Z) is the surgery obstruc-
tion x = 0. (g, c) of a normal map (g, c): Q**— 52" with Q a closed framed
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(i—1)-connected 2i-dimensional PL manifold constructed by plumbing. For
i=4andx =1 € Lg(Z) = Z such a manifold Q% may be obtained by coning
off the boundary of a differentiable 8-dimensional manifold with boundary
one of the 7-dimensional exotic spheres of Milnor [111]. For ¢ = 5 and
x =1¢€ L1o(Z) = Z5 this gives the PL manifold Q'° without differentiable
structure of Kervaire [85].

REMARK 20.1 The structure invariant of a homotopy equivalence f: N* —
M™ of closed simply connected n-dimensional manifolds is given modulo
torsion by the difference between the Poincaré duals of the L-genera of M
and N (cf. 18.4)

s(fl@Q = L(IM)N[M]g — f.(L(N)N[N]g)
€ Sn+1(M) ®Q = ker (Hn_4*<M;Q)—>Hn—4*<{pt'};(@))

= Y H,_4(M;Q) .

4k+#n

For a simply connected polyhedron K the assembly maps
A: H,(K;L.) — H,({pt.;;L.) = L,(Z) (n>1)
are onto. It follows that the normal invariant maps
Sh(K) — H, 1 (KGL) 5 res(X) — riet(X)

are injective, with r, s(X) € S,,(K) the image of the total surgery obstruc-
tion s(X) € S,,(X) of an n-dimensional geometric Poincaré complex X with
a reference map rm X— K, and r,.t(X) € H,_1(K;L.) the image of the
topological reducibility obstruction ¢(X) = t(vx) € H,_1(X;L.).

ExAMPLE 20.2 For a simply connected n-dimensional geometric Poincaré
complex X the total surgery obstruction s(X) € S, (X) is such that s(X) =
0 if and only if £(X) = 0. If ¢(X) = 0 there exists a topological reduction
v: X—BSTOP for which the corresponding normal map (f,b): M"— X
has surgery obstruction o, (f,b) =0 € L,(Z), and if also n > 4 then (f,b) is

normal bordant to a homotopy equivalence M’ — X for a manifold M.
|

Thus for n > 4 a simply connected n-dimensional geometric Poincaré
complex X is homotopy equivalent to a topological manifold if and only if
the Spivak normal fibration vx: X — BSG admits a topological reduction
v: X—BSTOP. In the even-dimensional case not every such reduction
corresponds to a normal map (f,b): M™—— X with zero surgery obstruction.
If the corresponding normal map (f,b) has surgery obstruction o, (f,b) =
x € L,(Z) and —z = 04(g,c) for a normal map (g,c): N"—S" then the
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normal map obtained by connected sum
(f,0) = (f;b)#(g,c) s M™ = M"#N" — X = X#S5"
has surgery obstruction
o.(f V) = 0.(f,0) +0x(g,¢c) = v—x = 0€ L,(Z)
and (f’,b’) is normal bordant to a homotopy equivalence M —2—>X )

PROPOSITION 20.3 For n > 4 the structure set of a simply connected n-
dimensional topological manifold M is given by

STOP(M) = Su4a(M)
ker(A: H,(M;L.)—L,(Z)) . 0
= = d2).
{HH(M;]L.) ifn=q (mod2)
ProOOF This is immediate from Ls,41(Z) = 0 and the exact sequence

A
. — H,(M;L.) — L,(Z) — S,(M) — H,_1(M;L.) — ... .
]
EXAMPLE 20.4 The topological manifold structure set of S* x S™~* for
n—k,k>2is
STOP(Sk x Sn—kz) — Sn+1(5k % Sn—k)
= ker(6: [S* x S"7* G/TOP]—L,(7Z))
= Ly(Z)® L,—x(Z) ,
giving concrete examples of homotopy equivalences of manifolds which are

not homotopic to homeomorphisms, as in Novikov [122] (in the smooth
case). In particular, in the stable range 2k + 1 < n a non-zero element

= T (BTOP(n — k +1)—BG(n — k + 1))
(such as ¢ = 1 € Lyo(Z) = Zy for k = 2, n = 6) is realized by a fibre
homotopy trivialized topological block bundle n: S* —BTOP(n — k + 1).

The total space of the sphere bundle
sk S(n) — S*
is an n-dimensional manifold equipped with a homotopy equivalence f: .S(n)™

— §* x 8"k such that the structure invariant is non-zero
s(f) = (x,0) #£0eSTOP(S* x §"7F) = Li(Z)® L,,_w(Z)
so that f is not homotopic to a homeomorphism.
|

The simply connected symmetric signature of a 4k-dimensional geometric
Poincaré complex X is just the ordinary signature

o*(X) = signature (H**(X),$) € L**(Z) = Z .
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The Hirzebruch formula expresses the signature of an oriented 4k-dimension-
al manifold M** in terms of the £-genus £(M) = L(7ar) € H*(M; Q)
o*(M) = signature (M) = (L(M),[M]g) € L*(Z) = Z .

The defect in the signature formula for Poincaré complexes was used by
Browder [15] to detect the failure of a simply connected 4k-dimensional ge-
ometric Poincaré complex X to be homotopy equivalent to a (differentiable)
manifold, just as the defect in the signature formula for manifolds with
boundary had been previously used by Milnor [111] and Kervaire and Mil-
nor [86] in the detection and classification of exotic spheres. A topological
reduction 7: X — BSTOP of the Spivak normal fibration vx: X— BSG
determines a normal map (f,b): M**— X with surgery obstruction given
by the difference between the evaluation of the £-genus £(—7) € H¥*(X;Q)
on [X]g € Hu,(X;Q) and the signature of X

o.(f,b) = signature (Ko (M), A\, 1n)/8
= (signature (M) — signature (X))/8
= ((£(=7), [X]g) —0"(X))/8 € Lar(Z) = Z.
If 0,0/: X—BSTOP are two topological reductions then the surgery ob-

structions of corresponding normal maps (f, b): M** — X, (f',b'): M"*F —
X differ by the assembly of the difference element

t(r, 7)) € Hy(X;L.) = [X,G/TOP],
that is
o (f,b) — o (f, V) = At(p,0")) € Lay(Z) .
For k > 2 a topological reduction v is realized by a 4k—dinr\1Jensiona1 topo-

logical manifold M** with a homotopy equivalence h: M — X such that
vy = h*v: M—— BSTOP if and only if the signature satisfies

o*(X) = (L(-7),[X]o) € L'™(Z) = L.
For a simply connected (4k + 2)-dimensional geometric Poincaré complex

X with a topological reduction 7: X — BST'OP the surgery obstruction of
the corresponding normal map (f,b): M**+2— X is given by

o«(f,b) = Arf invariant (Kogy1(M;Z2), \, 1)
€ Lag42(Z) = Laki2(Ze) = Z2 ,

with (Koki1(M;Zs), A\, 1) the nonsingular quadratic form defined on the
kernel Zs-module

Kopi1(M;Zo) = ker(fo: Hopr (M Zo ) —Hap11(X;Zs))

by geometric intersection and self-intersection numbers, or (equivalently) by
functional Steenrod squares. There exists a (4k+2)-dimensional topological
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manifold M***+2 with a homotopy equivalence h: M — X for which vy; =
h*v: M—— BSTOP if and only if this Arf invariant is 0.

For a simply connected 2:¢-dimensional geometric Poincaré complex X
with a topologically reducible vx: X —BSG there exists a normal map
(f,b): M?*— X with surgery obstruction o,(f,b) = 0 € Ly;(Z), so that
s(X) = 0 € Sy(X) and X is homotopy equivalent to a manifold. This
follows formally from

and 7,.(G/TOP) = L.(Z). For every i > 3 and every x € Lo;(Z) plumb-

ing can be used to construct a differentiable 2i-dimensional manifold with
boundary (W?2!, W) and a normal map

(F,B) : (W,0W) — (D*, 5%~
which restricts to a homotopy equivalence F'|: W = S2i—1 with
o.(F,B) = x € Ly(Z) .
(See Browder [16, V] for details.) By the (2i —i)—dimensional PL Poincaré

conjecture the homotopy equivalence F|: W — S?*~! may be taken to be
a PL homeomorphism. Thus if X is a simply connected 2i-dimensional
geometric Poincaré complex with a topological reduction v: X — BSTOP
for which the corresponding normal map (f,b): M?*— X has surgery ob-
struction o.(f,b) = —x € Lo;(Z) there exists a normal map

(f,b) = (f,b)U(F,B): M™* = cl(M\D*)Us W —X
with surgery obstruction

o.(f,0) = 0u(f,b)+0.(F,B) = —x+x = 0€ Ly(Z) ,

so that (f’,b') is normal bordant to a homotopy equivalence M"?* — X
For a simply connected (2i + 1)-dimensional geometric Poincaré complex

X with ¢ > 2 every topological reduction v: X — BSTOP is such that

there gﬁdsts a topological manifold M?*! with a homotopy equivalence

h: M — X and vy; = h*0: M——BSTOP, since the surgery obstruction
takes values in Lg;+1(Z) = 0.

ExaMPLE 20.5 A finite H-space X is a geometric Poincaré complex (Brow-
der [14]) with fibre homotopy trivial Spivak normal fibration vx, so that in
the simply connected case s(X) = 0 and (at least for n > 4) X is homotopy
equivalent to a topological manifold. See Cappell and Weinberger [30] for
manifold structures on non-simply connected finite H-spaces.

|
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§21. Transfer

The L-theory transfer maps associated to fibrations give generalized product
formulae for the various signatures, and also the total surgery obstructions.
The transfer maps for coverings give the Morita theory isomorphisms in the
projective L-groups, which are used in §22 to describe the rational L-theory
of finite fundamental groups.

See Ranicki [144, §8], [145, §8] for the L-theory products for any rings with
involution R, S

L™(R)® L"(S) — L™™(R® S) ,
Lm(R) ® Ln(S) — Lm+n(R® S)

and for the applications to topology, generalizing the Eilenberg—Zilber the-
orem

AX xY) ~ AX)®A((Y) .
On the chain level the L-theory products are given by the tensor product
pairing
{ R-module chain complexes} x { S-module chain complexes}

— { R ® S-module chain complexes} ; (C,D) — C® D .

geometric Poincaré complex X
normal map (f,b): M—X
n-dimensional geometric Poincaré complex Y is an (m + n)-dimensional
geometric Poincaré complex . symmetric
{ normal map with { quadratic

The product of an m-dimensional { and an

signature

o (X XY) = c*(X)®@c*(Y) € L™ (Z[m (X xY))])
o ((f,0) X 1: M xXY—X xXY)
= 0:(f,0) @0"(Y) € Lynin(Z[m (X x Y)]) .

In the simply connected case m1(X) = m1(Y) = {1} these are the usual
product formulae for the signature and Kervaire—Arf invariant (Browder
[16,II1.5]). See Appendix B for the corresponding product structures on
the algebraic L-spectra. On the cycle level these structures define products
in the 1/2-connective visible symmetric L-groups

VL™(X)xVL"(Y) — VL™ ™(X xY); (C,¢)®(D,0) — (C®D, $x®0)
for any polyhedra X, Y.

PROPOSITION 21.1 The product of a finite m-dimensional geometric Poinc-
aré compler X and a finite n-dimensional geometric Poincaré complexr Y
is a finite (m + n)-dimensional geometric Poincaré complex X x Y with
1/2-connective visible symmetric signature

o (X xY) = o' (X)@0*(Y) e VL"T(X xY)
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and total surgery obstruction
S(XXY) = 00" (X xY) = 906" (X)®7"(Y)) € Sppyn(X xXY) .
]
A fibration F——>EL>B with the fibre F' a finite m-dimensional geo-

metric Poincaré complex induces transfer TRANSF217!!transfer maps in
the quadratic L-groups

p i Ln(Z[mi(B)]) — Linsn(Zlm(E)])

which were described geometrically by Quinn [130] and algebraically in Liick
and Ranicki [99]. An n-dimensional normal map (f,b): M — X and a refer-
ence map X — B lift to an (m-+n)-dimensional normal map (f',b'): M ' —
X' and a reference map X '—FE such that

p'ou(f:b) = 0u(f,0") € Linyn(Zm(E)]) .

From now on, it will be assumed that the fibration is defined by a simplicial
map p: E——B of finite simplicial complexes which is a PL fibration in the
sense of Hatcher [74], with the fibre F' = p~1({x}) a finite m-dimensional ge-
ometric Poincaré complex. In terms of the cycle theory of §14 the quadratic
L-theory transfer maps are given by

p': Ln(Z[m(B)]) = Ln(A(Z, B))

— Linn(Z[mi(E)]) = Linin(AMZ, E)) 5 (Co9) — (C',0%)
with (C;¢) = {C(7),%(7)| T € B} a globally Poincaré cycle of (n — |7|)-
dimensional quadratic complexes over (Z, B) (= n-dimensional quadratic
Poincaré complex in A(Z, B)), and

(CL9') = {(C(0),4'(0)) |0 € B}
the lifted globally Poincaré cycle of (m + n — |7|)-dimensional quadratic
complexes over (Z, F) with

C'(0c) = A(D(0,E),dD(0,E))® C(po) .
The cycle approach extends to define compatible transfer maps in the 1/2-
connective visible symmetric L-groups
p': VL™(B) — VL™ (E); (C,6) — (C',¢")
and also in the normal L-theory ]/I:'—homology groups
p': Hy(B;L) — Hpan(E;L) .

If F' is an m-dimensional homology manifold locally Poincaré cycles lift to
locally Poincaré cycles, so in this case the method also gives transfer maps
in the L.-homology groups

p': Hy(B;L.) — Hyin(E;L)
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and the structure groups
|

' Su(B) = Smin(E) 5 (Co9) — (C,9Y)

with a map of exact sequences

.— H,(B;L') —— VL"(B) —— S,(B) —— H,,_1(B;L") — ...

N

o= Hp o (B;L) = VL™ ™(E) — Span(E) — Hypin1(B;L) — ... .

PROPOSITION 21.2 Let F——)EL>B be a PL fibration with the base B
a finite n-dimensional geometric Poincaré complex and the fibre F' a finite
m-dimensional geometric Poincaré complex, so that the total space E is a
finite (m + n)-dimensional geometric Poincaré complez.

(i) The 1/2-connective visible symmetric signature of E is the transfer

o*(E) = p'o*(B) € VL™ (E)
of the 1/2-connective visible symmetric signature o*(B) € VL™(B), and the
total surgery obstruction is

s(E) = 00*(E) = 0p'0*(B) € Spun(E) .
(ii) If F' is an m-dimensional homology manifold the total surgery obstruc-
tion of E is the transfer

s(E) = p's(B) € Smin(E)
of the total surgery obstruction s(B) € S, (B).
o

REMARK 21.3 For any PL fibration F—E — B with the fibre F a finite
m-~dimensional geometric Poincaré complex the composite
pw' La(Z[r1(B)]) — Linsn(Z[m1(E)]) — Lin+n(Z[m1(B)])

is shown in Liick and Ranicki [100] to depend only the 7 (B)-equivariant
Witt class o*(F,p) € L™(m(B),Z) of the symmetric Poincaré complex
of F' over Z with the chain homotopy m(B)-action by fibre transport.
See [100] for the equivariant L-groups L*(m,Z) and the assembly map
A:H™™(B;L")—L™(m1(B),Z). If B is a compact n-dimensional homol-
ogy manifold and F' is a compact m-dimensional homology manifold then
E is a compact (m + n)-dimensional homology manifold, and the A-map
B——IL~™(Z) sending each simplex 7 € B to the symmetric Poincaré fibre
o*(p~17) over Z represents an element [F,p]p € H ™ (B;LL’) with assembly
A([F,plL) = o*(F,p) € L™(m(B),Z). The canonical L'-homology funda-
mental class [E|L € Hy4n(E; L") has image

p[ElL = [FplLN[BJL € Himin(B;L) .
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This is a generalization of the characteristic class formula of Atiyah [6]
expressing the signature of the total space E of a differentiable fibre bundle
in the case m = 2i, m+n = 0(mod 4) as a higher signature (cf. 24.3 below)
signature (E) = pio*(E) = A(pi[E]L)
= (L(B)Uux,[Blg) € L™™(Z) = Z
with # = ch([[x) € H**(B;Q) the modified Chern character (involving

real

multiplication by powers of 2) of the mple

{KO(B)
KU(B)
with fibres H*(F;R) (z € B) for i = {(1) (mod 2)

N K-theory signature [['|g €

of the flat bundle I' of nonsingular (—)-symmetric forms over B

[Fpl®1 = ch([lx) € H?(B;L)®Q C H*(B;Q) .

In the special case when 71 (B) acts trivially on H*(F;R) this gives the
product formula of Chern, Hirzebruch and Serre [36]

signature (E)) = signature (B) signature (F) € Z .

O

REMARK 21.4 A finite d-sheeted covering is a fibration F—F i>B with
the fibre F' a 0-dimensional manifold consisting of d points. It is convenient
to write B = X, F = X. The covering is classified by the subgroup

7T =mX)cr = m(X)
of finite index d. The transfer maps in the quadratic L-groups
p': La(Zlr)) — La(Z[F)
are given algebraically by the functor
p': {Z[r]-modules } — {Z[7]-modules} ; M — M"

sending a Z[r]-module M to the Z[7]-module M ' obtained by restricting the
action to Z[w] C Z[r]. The transfer maps define a map of exact sequences

. —H,(X;L) — VL (X) — S, (X) — Hp—1

>

L) —— ...

!

<_
)B_

-
=
’6_
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=
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Also, there are defined commutative diagrams

Ho(X;L) —A . 17(z) A Tvw)
A l |
Hy(X:L) —2 - 1z) JXGD) —A Tz

with A the simply connected assembly, and d- multiplication by
o*(p~tpt.) = de LY(Z) =17 .

If X is a finite n-dimensional geometric Poincaré complex then so is X, with

total surgery obstruction given by 21.2 (ii) to be

s(X) = p's(X) € Sp(X) .
The normal L-theory fundamental class [X]~ € H,, (X L") of X lifts to the
normal L-theory fundamental class of X
p'Xle = [Xr € Ho(XGL),
so that for n = 4k the mod 8 signature is multiplicative
signature (X) = d - signature (X) € L*(Z) = Zs .
If s(X) = 0 then s(X) = 0 and there exists a symmetric L-theory funda-
mental class [X|p, € H,(X;L") such that
PXN = (Xl € Ha(X5L)
is a symmetric L-theory fundamental class for X. Thus for n = 4k the
actual signature is multiplicative for finite geometric Poincaré complexes X
with s(X) =0
signature (X) = d - signature (X) € L*(Z) = Z .
See §22 for further discussion of the multiplicativity of signature for finite

coverings.
]

Next, we consider the Morita theory for projective K- and L-groups.

Given a ring R and an integer d > 1 let My(R) ring of d X d matrices with
entries in R. Regard R? = Z R as an (R, M4(R))-bimodule by

R x R* x Mg(R) — R (@, (v:), (z1)) nyjzjk ,
and as an (My(R), R)-bimodule by

Ma(R) x R x B — R*5 ((z15), (), 2) — (Q_wi552)
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The Morita equivalence of categories
w: {f.g. projective M,(R)-modules } = {f.g. projective R-modules } ;
P— P' = R'®u,n) P
has inverse
=t {fg. projective R-modules } =
{f.g. projective My(R)-modules} ; @ — R‘®r Q .

The Morita isomorphism of the projective class groups

~

p: Ko(My(R)) — Ko(R) ; [P] — [P"]
is such that

u[Ma(R)] = d[R] , p[R’] = [R] € Ko(R) .
For any ring with involution R and ¢ = +1 let {L*(R’ €) be the
L.(R,¢€)
{Z:Z}S:gzzféc L-groups of R (Ranicki [144]), such that
L*(R,1) = L*(R)
{L*(RJ) = L.(R) .
L°(R,¢)

Lo(R, €) is the Witt group of nonsingular

The 0-dimensional L-group {

. tri .
{ COVIBRCMC ¢ rms over R. The e-symmetrization maps

e-quadratic
1+T.: LiR,e) — L*(R,¢)
are isomorphisms modulo 8-torsion, so that
L.(R,e)[1/2] = L*(R,¢)[1/2] .
The e-quadratic L-groups are 4-periodic
L.(R,e) = L.ia(R,—€) = Li.ta(Rje) .
The e-symmetric L-groups are 4-periodic for a Dedekind ring with involution

R, and are 4-periodic modulo 2-primary torsion for any R.

DEFINITION 21.5 Given a ring with involution R and a nonsingular e-
symmetric form (RY, ¢) over R let My(R)? denote the d x d matrix ring
Mq(R)

My(R)®* = Homp(R¢, RY)
with the involution
My(R)? — My(R)?; f— ¢ ' f*¢.
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PROPOSITION 21.6 The projective L-groups of R and My(R)? are related
n-symmetric

n-quadratic L-groups

by Morita isomorphisms of projective

p Ly(Rym) — Ly(Ma(R)?, en)

p LE(R,m) — LE(Ma(R)?, en)
with 1 = £1. The Morita isomorphism p: L)(Mg(R)?) — L)(R, €) sends
the unit element 1 = (My(R)?,1) € LY(My(R)?) to

p(l) = [(Ma(R)?)1'] = (R%,¢) € Ly(R,e) .
Proor The Morita equivalence of additive categories with involution
p: {f.g. projective My(R)?-modules} —
{f.g. projective R-modules} ; P —» P"
induces an isomorphism of the projective £1-quadratic L-groups
po LE(My(R)?,m) — LE(R,en) ; [P,0] — [P',0'] .

Similarly for the projective £1-symmetric L-groups L.

O

REMARK 21.7 Let p: X——X be a finite d-sheeted covering as in 21.4, so
that the fibre F' = p~1({*}) is the discrete space with d points and

pr:7 = m(X) — 71 = m(X)
is the inclusion of a subgroup of finite index d. The algebraic K-theory
transfer maps associated to p are the composites

~

pt = pir: Ku(Zlr)) — K.(Ma(Z[7])) — K.(Z[7))
with ¢, induced by the inclusion of rings
i+ Z[r) — Homgm (i'Z[n],i'Z[x]) = Ma(Z[7])
and p the Morita isomorphisms, such that p'Z[r] = Z[7]¢ . The projective
L-theory transfer maps associated to p are the composites
p' = piyv: LE(Z[x]) — LY(Ma(Z[T))?) — LEY(Z[7])
with p the Morita isomorphisms of 21.6 for the nonsingular symmetric form
o*(F) = (p'Z[r], ¢) over Z[7], with ¢ = 191®...®1. For the free L-groups
actually considered in 21.4 the transfer maps are
p' = piv: Lu(Z[r]) — Ly(Ma(Z[7))*) — L.(Z[7])
with
I = im(Ky(Z)) = dZ C Ko(My(Z[7))) = Z .
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§22. Finite fundamental group

The computation of the structure groups S, (X) of a space X requires the
calculation of the generalized homology groups H.(X;L.), the L-groups
L.(Z[r]) (m = m (X)) and the assembly map A: H.(X;L.)—L.(Z[r]).
The classical methods of algebraic topology can deal with H,(X;L.), but the
more recent methods of algebraic K- and L-theory are required for L. (Z[r])
and A. In fact, it is quite difficult to obtain S, (X) in general, but for finite 7
there is a highly evolved computational technique fulfilling the programme
set out by Wall [176, 4.9] for using localization and completion to determine
the L-theory of Z[r] from the classification of quadratic forms over algebraic
number fields and rings of algebraic integers. Apart from Wall himself, this
has involved the work (in alphabetic order) of Bak, Carlsson, Connolly,
Hambleton, Kolster, Milgram, Pardon, Taylor, Williams and others.

The topological spherical space form problem is the study of free actions
of finite groups on spheres, or equivalently of compact manifolds with finite
fundamental group and the sphere S™ as universal cover. A finite group
7 acts freely on a C'W complex X homotopy equivalent to S™ with trivial
action on H,(X) if and only if the cohomology of 7 is periodic of order g
dividing n + 1, with g necessarily even and n necessarily odd. The quotient
X/ is a finitely dominated n-dimensional geometric Poincaré complex with
fundamental group 7 and universal cover X. There exists such an action of 7w
on X with X /7 homotopy equivalent to a compact n-dimensional manifold if
(and for n > 5 only if) 7 acts freely on S™. Swan [172] applied algebraic K-
theory to the spherical space form problem. The subsequent investigation
of the spherical space form problem was one of the motivations for the
development of non-simply-connected surgery theory in general, and the
computation of L.(Z[r]) for finite 7 in particular. Madsen, Thomas and
Wall [103] used surgery theory to classify the finite groups which act freely
on spheres. Madsen and Milgram then classified the actions in dimensions
> 5. See Davis and Milgram [44] for a survey.

The computations of L. (Z[r]) have included the determination of the as-
sembly map A: H,(Bm;L.)— L.(Z[r]) for finite 7 by Hambleton, Milgram,
Taylor and Williams [69] and Milgram [109]. The multisignature, Arf invari-
ants, various semi-invariants and Whitehead torsion are used there to detect
the surgery obstructions in im(A) C L, (Z[r]) of normal maps of closed man-
ifolds with finite fundamental group 7. It appears that such invariants also
suffice to detect the surgery obstructions in L, (Z[r]) of normal maps of
finite geometric Poincaré complexes with finite fundamental group 7. Such
a detection should allow the total surgery obstruction s(X) € S, (X) of
a finite geometric Poincaré complex X with finite 7;(X) to be expressed
in terms of the underlying homotopy type and these surgery invariants.
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See Hambleton and Madsen [67] for the detection of the projective surgery
obstructions in LY (Z[r]) of normal maps of finitely dominated geometric
Poincaré complexes with finite fundamental group 7 in terms of the mul-
tisignature, Arf invariants and various semi-invariants as well as the Wall
finiteness obstruction, which together with the underlying homotopy type
can be used to at least express the projective total surgery obstruction
sP(X) € SP(X) (Appendix C) in terms of computable invariants.

The multisignature is the fundamental invariant of surgery obstruction
theory with finite fundamental group 7. It is a collection of integers indexed
by the irreducible real representations of 7, generalizing the signature in the
simply connected case. The multisignature suffices for the computation of
the projective L-groups L (R[n]) = Ly (R[x]), and for the determination of
the quadratic L-groups L. (Z[r]) and the quadratic structure groups S, (B)
modulo torsion. In 22.36 below it is explicitly verified that for an oriented
finite n-dimensional geometric Poincaré complex X with a map 71 (X)—7
to a finite group 7 the multisignature determines the image of the total
surgery obstruction s(X) € S,,(X) in S,,(Bm) modulo torsion. For the sake
of brevity only the oriented case is considered in §22.

There are two distinct approaches to the multisignature, both of which
were applied to the L-theory of finite groups by Wall [180, 13A Bj:

(i) The K-theoretic G-signature method of Atiyah and Singer [7] and
Petrie [128], which depends on the character theory of finite-dimensional F-
representations of a compact Lie group GG, with F' = R or C. Only the case
of a discrete finite group is considered here, with G = 7. The ‘K-theory F-
multisignature’ for L2*(F[r]) consists of the rank invariants of the algebraic
K-group Ko(F[n]) giving a natural isomorphism L}*(F[r]) = Ko(F[r]),
with the complex conjugation involution if ' = C. There is a similar (but
more complicated) result for L)*™2(F[x]).

(ii) The L-theoretic method of Wall [176],[180], Frohlich and McEvett
[57] and Lewis [95], which depends on the algebraic properties of the ring
F[r] for a finite group 7, with F' any field of characteristic 0. The ‘L-theory
F-multisignature’ for L2*(F[r]) consists of the signature invariants of the
L-groups of the division rings appearing in the Wedderburn decomposition
of F[r] as a product of matrix algebras over division rings.

The K- and L-theory F-multisignatures coincide whenever both are de-
fined. The Q-multisignature coincides with the R-multisignature.

DEFINITION 22.1 (i) Given a commutative ring with involution F' and a
group 7 let the group ring F[r] have the involution

~: Flr] — Fn]; Zagg—% nggfl (ag € F) .

gem gem
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The involution on F'[r] is real if it is the identity on F.
The involution on F'[r] is hermitian if it is not the identity on F.
(ii) For F = Clet C* (resp. C ™) denote C with the identity (resp. complex
conjugation) involution, so that C*[x] (resp. C~[x]) is C [r] with the real
(resp. hermitian) involution.

m

For a finite group = and any field F' of characteristic not divisible by ||
the ring F'[r] is semi-simple, by Maschke’s theorem, so every F[r]-module
is projective. For any involution on F' the F[r]-dual of a f.g. F[r]-module
M is a f.g. F[r]-module M* = Hompp, (M, F[r]), with F[r] acting by

F[r] x M* — M* ; (ag, f) — (x — f(z)ag™') (a€ F,g € ).
The F-module isomorphism

Homp(M.F) = M": [ —> (x — Y f(gz)g™)
ge™
is an F'[r]-module isomorphism, with F'[r]| acting by
F[r] x Homp(M,F) — Homp (M, F) ; (ag, f) — (x — f(gx)a) .
For ¢ = +1 the e-symmetric forms (M, ¢) over F[r| are in one—one cor-
respondence with the e-symmetric forms (M, ¢') over F which are m-equi
variant, that is

¢'(g,9y) = ¢'(z,y) €R (r,y € M,gem).
The forms (M, ¢), (M, ¢") correspond if

¢(x,y) = > _¢'(gz,y)g € Flx]
gem
or equivalently

¢'(x,y) = coefficient of 1 in ¢(z,y) € F C Flx] .

LEMMA 22.2 Let F =R or C~. A f.g. F[r]-module M supports a nonsin-
gular symmetric form (M,0) over F[r] which is positive definite:
0'(x,x) >0 (x € M\{0}).
Any two such forms 0(0), (1) are homotopic, i.e. related by a continuous
map 0: [ —Homp. (M, M*) with each (M,0(t)) (t € I) positive definite.
PROOF The underlying F-module of M supports a positive definite symmet-
ric form (M, 0y) over F', which is unique up to homotopy. The symmetric
form (M, 0 !) over F' obtained by averaging
0'(z,y) = (1/|7)> Oolgz.gy) € F (z,y € M)
gem

is positive definite and m-equivariant, corresponding to a nonsingular sym-
metric form (M, 6) over Fr].

o
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Let FF = R or C~, as before. Given a f.g. F[r]-module M and an
endomorphism f: M—— M let
fl=0"0: M—M
be the endomorphism adjoint with respect to the nonsingular symmetric
form (M, 0) over F[r] with the form (M, ') over F positive definite.

The following definition of the multisignature is just a translation into
the language of algebraic K-theory of the definition of the G-signature due
to Atiyah and Singer [7,pp.578-579] in the case of a discrete finite group
G=m.

DEFINITION 22.3 Let F' = R or C~. The K-theory F-multisignature of a
projective nonsingular e-symmetric form (M, ¢) over F[r] is the element
[Ma ¢] € KO(F[T(]’E)
defined as follows:
(i) If e = +1 then Ko(F[r],e) = Ko(F[r]) (by definition). The F[r]-module
morphism f = 0~ '¢: M—— M is self-adjoint, that is f* = f, and may be
diagonalized by the spectral theorem with real eigenvalues. The positive
and negative eigenspaces M, M_ are m-invariant, so that they are f.g.
projective F'[r]-modules, and
(M, ¢] = [My]—[M_] € Ko(Flr]) .
(ii) If F = C~ and € = —1 then Ky(F[r],e) = Ko(C|[rn]) (by definition).
The K-theory F-multisignature of (M, ¢) is defined to be the K-theory F-
multisignature (as in (i)) of the nonsingular symmetric form (M,i¢) over
C~[n]
(M, ¢] = [M,i¢] = [My]—[M_]e Ko(Clr]) .
(iii) If F =R and € = —1 then
Ko(F[r),e) = {x—a"|x € Ko(C|n]) } C Ko(C|n])
(by definition). The R[r]-module morphism f = 0~ 1¢: M— M is skew-
adjoint, that is f* = —f. If (ff*)*/2 denotes the positive square root of f f*
the automorphism
J = [/ M — M

is such that J?2 = —1 and commutes with the action of 7. Let (M, J),
(M, —J) be the f.g. projective C [r]-modules defined by the two w-invariant
complex structures J, —J on M. The K-theory R-multisignature of (M, ¢)
is given by

(M, ¢] = [M,J] = [M,-J] € Ko(R[x], =1) C Ko(Cr]) .
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This is the K-theory C-multisignature (as in (i)) of the nonsingular sym-
metric form (C ®gr M,i ® ¢) over C ~[n], with
(CeorM)y = {l@zFixJr|lzeM} = (M,+J).
O

ProOPOSITION 22.4 The K-theory F-multisignature defines isomorphisms
Ly(Fn],e) — Ko(Fln],e); (M,¢) — [M,¢] (F=RorC~).
PROOF For € = 1 the inverse isomorphism is defined by sending a projective
class [M] € Ko(F[r]) to the Witt class [M,6] € L)(F[x]) of the positive
definite nonsingular symmetric form (M, @) over F[rn] given by 22.2. Simi-
larly for (F,e) = (C~,—1), with [M] sent to (M,if). For (F,e¢) = (R, —1)

see 22.19 below.
]

Let F' be a field of characteristic 0, and let m be a finite group. The
L-theory multisignature for Ly (F[r]) is an analogue of ‘multirank’ for the
projective class group Ko(F[r]). Both the multirank and the multisignature
are collections of integer-valued rank invariants indexed by the irreducible
F-representations of the finite group 7, obtained as follows.

By Wedderburn’s theorem F[7] is a finite product of simple rings
Flr] = Si(F,m) x So(F,7) X ... X Sopmy(F,70)
starting with Sq(F,m) = F. Each of the factors is a matrix algebra
Sj(F,m) = Ma,(rx)(D;(F,))
over a simple finite-dimensional F-algebra
D;(F,m) = Endp(FP;),

which is the endomorphism ring of the corresponding simple f.g. projective
Flr]-module P; = D;(F,7)% (™) with centre F. Let G be the Galois
group of the field extension of F' obtained by adjoining the |r|th roots of 1.
G is a subgroup of Z° |, the multiplicative group of units in Z,\{0}. Two

||
elements z,y € m are F'-conjugate if

29 = hlyhen
for some g € G, h € m. The number of simple factors in F[r] is given by
alF, )
= no. of isomorphism classes of irreducible F-representations of 7

= no. of F-conjugacy classes in 7 .

See Serre [157,12.4] or Curtis and Reiner [42,21.5] for the details. For
each isomorphism class of simple finite-dimensional algebras D over F' let
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ap(F,m) be the number of factors S;(F,n) in F[r| with D;(F,7) = D, so
that

alF,7) = ZaD(F,W).

For a division ring R f.g. projective R-modules are f.g. free, and rank
defines an isomorphism

Ko(R) — Z; [R"]—[R"] — m —n..
The algebraic K-groups of a product of rings R = Ry X Rs are given by
K*(Rl X RQ) = K*(Rl) @K*(Rg) .

For any finite group 7

a(F,m) a(F,m) a(F,m)
Ko(Fln]) = > Ko(Sj(F,m) = > KoDj(Fr) = Y Z.
j=1 j=1 j=1

The F-multirank MULRAN228!!multirank r, (P) of a f.g. projective F[r]-
module P is the collection of a(F, ) rank invariants
r;(P) = [S;(F,7) ®px Pl € Ko(S;(F, 7)) = Ko(Dj(F,7)) = Z,
one for each simple factor S;(F,7) in F[r]. The F-multirank defines an
isomorphism
. alFm
r«(P) : Ko(F[r]) — Z Z; [P] — (ri(P),r2(P),....7a(r,m)(P)) ,
j=1

with r.((D;)%) = (0,...,0,1,0,...,0) and r.(S;) = (0,...,0,d;,0,...,0)
(dj = d;(F,m)). The inclusion i: F— F[r] induces a rudimentary algebraic
K-theory assembly map

dy
. ds
1y = )
da(F,ﬂ)
a(F,m)
Hy(BmK(F)) = Ko(F) = Z — Ko(F[r]) = Y Zj
j=1

[F] =1— T*(F[Tr]) = (dl,dQ, ce ,da(pﬂr))
with K(F') the algebraic K-theory spectrum of F'. The transfer map is given

a(F,m)
i' = (c1dy cads ... Co(pmyda(pm): Ko(Flr]) = Y Z— Ko(F) = Z

Jj=1
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with ¢; = dimp(D;(F, 7)), and
a(F,m)
ity = Y ¢i(dy)? = |n|: Ko(F) = Z— Ko(F) = Z.
j=1
The reduced projective class group Ko (Z[~]) is finite for a finite group 7

by a theorem of Swan, and every f.g. projective Z[r]-module P induces a
f.g. free Q[r]-module Q[r] ®z[~ P, so that

im(Ko(Z[r])— Ko(Q[x])) = {0}
and the Q-multirank is not useful for detecting Ko (Z[r]|). The F-multitorsion
is defined for any field F' of characteristic 0 by means of the identification

a(F,m)
Ki(Flz]) = ) Ki(D;(F,m)) .
j=1
By a theorem of Bass the torsion group Ki(Z[r]) and the Whitehead group
Wh(m) are finitely generated for finite 7, with the same rank
dimg Q ® K1 (Z[r]) = dimgQ ® Wh(r) = a(R,7) — «(Q, )
detected by the Q-multitorsion subject to the restrictions given by the
Dirichlet unit theorem: each of the «(Q,n) simple factors S = My(D)
in Q[r] contributes (R, S) — 1, with (R, S) the number of simple factors
in R®qg S.
The character of an F-representation p: m——GLg4(F') is the (conjugacy)

class function

x(p): m— F; g — tr(p(g)) -
Let R () be the F-coefficient character group of 7, the free abelian group of
Z-linear combinations of the characters of the irreducible F-representations.
The F-multirank also defines an isomorphism
~ o F,m)
Ko(F[r]) = Rp(m); [P] — Y r;(P)x(p))
j=1
with p; the irreducible F-representation
pj+ ™ — Autp(Dj(F,m)%) = GLcq,(F)
of degree c;d; defined by the composite
T — Flr] — S;(F,7) = EndDj(FﬂT)(Dj(F,W)dj) .

EXAMPLE 22.5 (i) The element [F| = [F[r]|] € Ko(F[r]) corresponds to
the character
g=1

T — F; g — 7l if{
X g {0 g#1
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of the regular F-representation F[r] of m with degree ||.

(ii) Regarded as a character, the K-theory F-multisignature (22.3) of a
nonsingular e-symmetric form (M, ¢) over F[r] (F =R or C ™) is the class
function

(glar+) — tr(glar-)
(glv,)) — tx(gl(ar,)

)

_ [ (R,1) or (C7,&£1)
if (Fye) = {(R;—l) .

In particular, for (M, ¢) = (F[n],1) this is the character of the regular F-
representation, as in (i).

(M, 6] : 1 — {F

tr
C ;g —o0(g,(M,9)) = {tr

O

If {p1,p2,...,Pa(Fx) ) is a complete set of irreducible F-representations

of m with characters {x1, X2, ..., Xa(F,) } then the central idempotent
ej(F,m) = e;(F,7)* € F[n]
IDEM230!!xxhfilxxbreak idempotent e;(F, zzpi) with
ej(F,m)Fr] = S;(F,m), ej(F,mep(F,m) = 0 (j #k)
is given by
e;(F,m) = (f3/11) Y x;(9)g™" € Fln]
gem

for some f; € F.

As a purely algebraic invariant the multisignature is a generalization of
the signatures used by Hasse [73] and Landherr [89] to classify quadratic

and hermitian forms over algebraic number fields. The total signature map
on the symmetric Witt group L°(F) of a field F with the identity involution

o = Zo—j : LY(F) — ZLO(R) = ZZ

has one component for each embedding ¢;: F C R (Milnor and Husemoller
[113,3.3.10], Scharlau [156,3.6]). The kernel of o is the torsion subgroup of
L°(F), with 2-primary torsion only. The image of ¢ is constrained by the
congruences

0j(M,¢) =dimp(M) (mod2) (1<j<a)

for any nonsingular symmetric form (M, ¢) over F'. For an algebraic number
field F' the image of ¢ is such that

Q(Z Z) Cim(o) C Z Z

and ¢ is an isomorphism modulo 2-primary torsion [113,p.65]. For any
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field F' of characteristic # 2 L.(F) = L*(F') and every nonsingular skew-
symmetric form over F is hyperbolic, so that Lo(F) = L*(F) = 0.
The product decomposition

a(F,m)
Flr] = H Mg, () (Dj(F,T))
j=1

reduces the computation of L, (F[r]) for finite 7 to that of L, (D) for division
rings with involution D which are finite-dimensional algebras over F. By
assumption F' has characteristic 0, so that 1/2 € F and there is no difference
between the quadratic and symmetric L-groups

L.(F[r]) = L*(F[r]) .

The calculations are particularly easy for projective L-theory Ly, since this
has better categorical properties than the free L-theory L*, while differing
from it in at most 2-primary torsion:

PROPOSITION 22.6 For any ring with involution A the forgetful maps L*(A)
—>L;;(A) from the free to the projective L-groups are isomorphisms modulo
2-primary torsion, so that

LH(A)[/2] = Ly,(A)[1/2] .
PROOF Immediate from the exact sequence of Ranicki [139]
. — L"(A) — LI (A) — H"(Zs; Ko(A)) — LY (A) — ...,

since the Tate Zs -cohomology groups H* are of exponent 2.
]

PROPOSITION 22.7 (i) The odd-dimensional projective L-groups of a semi-
simple ring A with involution vanish:
2%x+1 _
Ly (A) = 0.
(ii) For a finite group m and any field F with |7| J char(F)
2%+1 o
Ly (Flx]) = 0.
PROOF (i) The proof of L}, | (A) = 0 in Ranicki [141] extends to symmetric
L-theory.
(ii) Immediate from (i), since F'[r] is semi-simple.
m
A division ring D is such that Ko(D) = 0, and so L*(D) = Ly (D) for any
involution on D. Also, D is simple, so that L***1(D) = 0. Let D* = D\{0},
and for e = £1 let

D? = {zxeD*|z=cex}.
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Every nonsingular e-symmetric form over D is equivalent in the Witt group
n

to a diagonal form > (D,x,,) with z,, € D?, so that the morphism

m=1

Z[D?] — L%(D,¢) ; [x] — (D, x)

€

1s onto.

PROPOSITION 22.8 The e-symmetric Witt group L°(D,€) of a division ring
with involution D 1is given in terms of generators and relations by
L°(D,e) = Z[D?]/N.

with N the subgroup of Z[D?] generated by elements of the type

(2] = [aza] , [2]+[~a] , [2] + [y] = [&+y] = [z(z +y)7"Y]
for any a € D*, x,y € D? with x +y # 0.
PROOF See Scharlau [156,2.9] and Cibils [37]. (For a field F' of character-
istic # 2 with the identity involution such a presentation of L°(F,1) was
originally obtained by Witt himself).

]

The projective L-theory of products is given by:

PROPOSITION 22.9 Let R be a ring which is a product
R = R xRy .
For an involution on R which preserves the factors (}_%Z- =R;)
L (R) = L,(R1)® Ly(Rs) ,
while for an involution which interchanges the factors (Ry = Ry)
Ly(R) = 0.
Similarly for the quadratic L-groups L.
PrROOF The central idempotents
e1 = (1,0) , e = (0,1) e R = Ry X Ry
are such that
e, R = R; (ei)2 =€ ,e1+e =1,ee =0€R (i=12).

An involution on R preserves the factors if and only if €; = e; in which case
there are defined isomorphisms

Ly(R) = Ly(R1) @ Ly(Rz) 5 (C,¢) — (e1C,e10) @ (e2C, e20) -

An involution on R interchanges the factors if and only if €; = e5, in which
case for every projective symmetric Poincaré complex (C,¢) over R there
is defined a null-cobordism (C—e1C, (0, ¢)), and so Ly(R) = 0.

]
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A simple factor S;(F, ) of F[r] is preserved by the involution

S;(F,m) = S;(F,)
if and only if the idempotent e;(F,7) € F[r] is such that
e;j(F,m) = e;(F,m) € Fn] .

PROPOSITION 22.10 The projective L-groups of F[r| are such that

Ly(F[r]) = > Ly(S;(F,m)
JjEJ(F,m)
with
JF,m) = {j]5; =5} C{1,2,...,a(F,m)}
the indexing set for the simple factors S; = S;(F, ) preserved by the invo-
lution on F[r], depending on the choice of involution on the ground field F.
(In fact, LZ*t1(F[x]) =0, by 22.7.)
PRrROOF Immediate from 22.9, since the simple factors S;(F, ) of F[r] not
preserved by the involution come in pairs S;(F,m) x S;(F,m)° with the
hyperbolic involution (z,y)—(y, x).
i

From now on, only the ground fields F' = C,R, Q will be considered.

PROPOSITION 22.11 Let D be a division ring such that Mg(D) is a simple
factor of F[r] for some finite group 7. For any involution on D and e = £1
the e-symmetric Witt group L°(D,€) is a countable abelian group of finite
rank, with 2-primary torsion only.
PROOF See Wall [181].

]

The 2-primary torsion in L(D, ¢) may well be infinitely generated in the
case F' = Q (Hasse-Witt invariants), e.g. if D = Q, e = +1

Q1) = L°Q) = L'R)e @@ L°F,) = Z& (Z2)® & (Z4)™

q prime
with [F, the finite field of ¢ elements and
iy ifg=2
LO(F,) = { Zo®Zy if ¢ = 1(mod4)
Zy if ¢ = 3(mod 4)

(Milnor and Husemoller [113,1IV §§1,2]).

TERMINOLOGY 22.12 Given a division ring with involution D as in 22.11
let 7*(D) > 0 be the rank of the (—)*-symmetric Witt group of D, so that

LD, (-)")[1/2] = ) Z[1/2].

rk (D)
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|

The rank of the Witt group L?*(D) = L°(D, (—)*) of a division ring with

involution D is the number of the signatures given by the embeddings of D
in R, H and C ~, whose L-theory is tabulated in 22.16 below.

The following definition of the multisignature is just a translation into
the language of algebraic L-theory of the definition due to Wall [176,4.9],
[180, p. 164].

DEFINITION 22.13 The L-theory F-multisignature of a nonsingular (—1)*-

symmetric form (M, ¢) over F[r| for a finite group = is the collection of
of(F, ) signature invariants

05(M,6) = [S;(F,7) @pm (M, 0)] € im(LH(S5(F,m)— > Z)

rk(D; (F,m))
with o®(F,7r) = > r*(D;(F,m)).
JEJ(F,m)
|
PROPOSITION 22.14 The L-theory F-multisignature map
o = Z oj : L*(F[r]) — Z Z 7 = Z Z
JEJ(F,m) jeJ(F,m) rk(D,;(F,x)) ok (F,m)
1s an isomorphism modulo 2-primary torsion, with
L*(F)/2] = ) LMDy(Fx)/2] — Y Z[1/2].
JEJ(F,m) ok (F,m)
PROOF Immediate from 21.6 and 22.10.
|

The («, 8)-quaternion algebra over a field F' is the division F-algebra with
centre F' defined for any «, 8 € F'® by

(a—’Fﬁ) = {w+zi+yj+zk|w,z,y,z€F}
with
P =a, P =8,4 =—ji =k, kK = —ab.
Now specialize to the case F' = R. The ring R[n] is a product of simple
finite-dimensional algebras over R. Such an algebra is a matrix ring M4(D)
with D one of R, H, C.

The quaternion ring

1,1
H = ( R > = {w+zi+yj+zk|w,z,y,z€R}

is given the quaternion conjugation involution

H—H;v =wt+zit+yj+zk— 0 = w—ot—yj — 2k .
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DEFINITION 22.15 Let D be one of the rings with involution R, H, C ~. The
signature of a nonsingular symmetric form (M, ¢) SIG234!!xxhfilxxbreak
signature over D is defined by

signature (M, ¢) = Z signz,, € Z
m=1
using any diagonalization (M, ¢) = > (D, ), with =, € D}, = R\{0}.
m=1
Equivalently,
signature (M, ¢) = [Mi]—[M_] € Ko(D) = Z
for any decomposition (M, ¢) = (M4, ¢4+) @ (M_, ¢_) into positive definite

and negative definite parts.
]

PROPOSITION 22.16 (i) The L-groups of R are given by

L"(R) = {f ifn{zg(mole)

with isomorphisms
signature : L¥*(R) — Ko(R) = Z,

so that r°(R) = 1, r}(R) = 0.
(ii) The L-groups of H are given by

V) 0
L"(H) = ¢ Zy ifn=<2 (mod4)
0 1,3

with isomorphisms
signature : L*(H) — KoH) = Z,
so that r°(H) = 1, r'(H) = 0. The generator 1 € LY¥*2(H) = Zo is
represented by the nonsingular skew-symmetric form (H,1).
(iii) The L-groups of C~ are given by

L"(C™) = {OZ ifn= {(1) (mod 2)
with 1somorphisms
signature : L**(C~) — Ko(C) = Z,
so that r°(C~) =r(C~) = 1.
(iv) The L-groups of CT are given by
L(Cc*) = {?2 ifn{
so that r°(C*) = r}(C*) = 0.

£ (mod 4)
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The number of simple factors S; = S;(R,m) = My, (D;(R, 7)) in R[x] is
a(R,7) = no. of irreducible R-representations of 7
= no. of conjugacy classes of unordered pairs {g,¢g"'} in 7

= ar(R,7) + ac(R,7) + ag(R, 7)
with ap(R,7) the number of simple factors S; such that D;(R,n) = D.
The projective class group of R[x] is given by
a(R,m) a(R,m)

KoR[r]) = > Ko(Si(R,m) = > Ko(D;(R,m))
= Y K®e Y KMo Y K©) = Y z.
a(R,m)

ag (R,m) ag(R,T) ac(R,m)
Every simple factor S;(R, 7) in R[x] is preserved by the involution, and the
duality involution *: Ko (R[7])— Ko (R[7]) is the identity.

In order to obtain the corresponding computation of L2*(R[x]) it is nec-
essary to consider the action of the involution on R[r] on the simple factors
Sj (R, 7T) .

Let A be a central simple algebra over a field K of characteristic # 2,
with dimg (A) = d?. Involutions

I1:A = A, a—a

are classified by the dimensions of the [-invariant subspaces

AT = H°(Zy;A) = {ac Ala=a},

A~ = HY(Z9;A) = {ac A|la= —a}
with A = AT @ A~ as follows:

(I) (first kind, orthogonal type)
dimg (AT) = d(d+1)/2, dimg(A™) = d(d—1)/2,
in which case I|: K— K is the identity,
(IT) (first kind, symplectic type)
dimg(AT) = d(d—1)/2, dimg(A~) = d(d+1)/2,
in which case I|: K—— K is the identity,
(ITI) (second kind, unitary type) d is even and
dlmK(A+) = dlmK(A_) == d2 y
in which case I|: K—— K is not the identity.
See Scharlau [156, §8.7] for further details.

ExXAMPLE 22.17 Let (V, ¢) be a nonsingular e-symmetric form over a field
with involution K of characteristic # 2, and let dimg (V) = d. Define an
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involution on the d?-dimensional central simple K-algebra A = Homg (V, V)
by
T:A— A f—s¢ .

Let M4(K)? be the matrix ring with involution defined in 21.5. A choice of
basis for V determines an identification A = My(K)?. Use the isomorphism
A = Hom(V,V) —> Homg(V,V*); f —» of

to identify I with the e-duality involution
I: Homg(V, V™) = Homg (V,V*); f —> ef” .
The I-invariant subspaces
A% = {f e Homg (V,V*)|ef* = £f}

are the spaces of +e-symmetric forms on V. The involution I: A— A cor-
responds to the e-transposition involution x ® y—ey ® x on V* @ V*
under the isomorphism

Vi oK V= Homk(V,VY) s [ @9 — (2 — (y — T@)g)))
allowing the identifications
A = Sym(V*@g V") , A7 = AWV * @k V™).
For the identity involution on F' and € = +1 (resp. —1) the involution on A
is of the first kind and the orthogonal (resp. symplectic) type (I) (resp. (II)).

If (V,¢) admits a complex structure, an automorphism J: (V, ¢)—(V, @)
such that J? = —1, there is defined an isomorphism

At = A0 — T8

and the involution on A is of the second kind and unitary type.

O

The round free quadratic L-groups L”(R) are the quadratic L-groups of
a ring with involution R defined using f.g. free R-modules of even rank,
which differ from the projective and free L-groups by the exact sequences

. — H"™(Zy: Ko(R)) — L' (R) —» L”(R)
— H"(Zy: Ko(R)) —> ... |
. — H"™ ' (Zy ;im(Ko(Z)—Ko(R))) — L(R) — LI(R)
— H™(Zy;im(Ko(Z)—Ko(R))) —> ... .

Similarly for the round free symmetric L-groups L:(R). See Hambleton,
Ranicki and Taylor [70] for further details.

THEOREM 22.18 Let 7 be a finite group.
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(i) The projective L-groups of R[w| are given by

D/ 0

a(R,m)

Ly (R[x]) = S Zo® Y Z ifn=4q2 (mod4),
ap(R,m) ac(R,m)
0 L3

with the Z-components detected by the R-multisignature.
(ii) The round free L-groups of R[n] are given by

(> 2Z (0
a(R,m)
> Zs 1
LY (R[r]) = { or(®,m) if n= (mod 4) ,
S 27Z 2
ac(R,m)
L0 \ 3

with 27 denoting the corresponding subgroup of Z C Ly (R[x]).
(iii) The free L-groups of R[w| are given by

(Z& >, 27 (0
a(R,m)—1
> Zo 1
L"(R[r]) = { ez(®m)-1 ifn= (mod 4) .
S 27 2
ac(R,m)
L0 {3

PROOF (i) Each of the idempotents e; = e;(R, 7) € R[n] is such that &; = e},

so that the involution on R[r] preserves each simple factor
Si(R,m) = My;(D;(R, 7)) (dj = d;(R, ),
and as a ring with involution

R[r] = S1(R,m) x So(R, ) X ... X Sqm,n (R, 7).

Each D;(R,7) is one of R, H, C with the standard involution, respectively
the identity, quaternion conjugation, and complex conjugation. The three
types are distinguished by the type of the involution on S;(R, ), or by the

ring structure of C ®r S;(R, ), as follows:

(I) (orthogonal) D;(R, ) = R if the involution on S;(R, ) is of the or-

thogonal type, with
C g S;(R,m) = My (C) .

(IT) (symplectic) D;(R,7) = H if the involution on S;(R, 7) is of the sym-

plectic type, with
C ®r Sj(R, T) = M2dj (C) .
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(III) (unitary) D;(R,m) = C if the involution on S;(RR, ) is of the unitary
type, with
C ®r Sj(R,ﬂ') Mdj (C) X Mdj ((C) .
By the Morita isomorphisms of 21.6
a® (R,m)
Ly (R[x]) Y. LR, )
j=1
_ Z LQk(R)@ Z LQk(H>@ Z LQk(C—)
ar(R,) ap(R,m) ac(R,7)
and by 22.16
r(D;(R,m) = 1,
"R, 7) = ag

(R, 7) + ag(R,7) + ac(R,7) = a(R,7),
P{(D;(R, 7)) = {é it D;(R,7) = {EorH
o' (R, ) ac(R,7) .

(ii) Immediate from (i) and the exact sequence
— LY (R[]) — Lp(R[x]) — H™(Zs; Ko(R[x]))
— L Y(R[x]) — ...
with
(2 R = ol 2R
(iii) Immediate from (i) and the exact sequence
— L"(R[x]) — Lj(R[x]) — H"(Z2: Ko(R[r]))

— L" Y (R[n]) —

ifnz{?(mod?).

O
ProrosIiTiION 22.19 Let FF = R or C

The K-theory F-multisignature
(22.3) coincides with the L-theory F-multisignature o (22.13), defining iso-
morphisms

: L2 (R[r]) =5 Ko(R[x)) = Y Z,

a(R,m)
L LI (Rln)) — Ko(R]

Z Z
with

ac(R,m)

KoRlx],-1) = {x—xIx€ Y, Z} CKC

= ) Z
ac(R,m)

a(C,m)
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indexed by the conjugate pairs of irreducible C-representations of ™ of the
unitary type (III).
PrROOF Immediate from 22.18.

i

The only simple finite-dimensional algebra over C is C itself, so that the
simple factors in the Wedderburn decomposition
a(C,m)

Clr] = H S;(C, )

are matrix algebras S;(C,m) = My, (C), one for each degree d; irreducible
C-representation of w. The type of an irreducible C-representation p of
degree d is distinguished by the Frobenius—Schur number associated to its
character y
c(p) = (1/|x)) Y _x(¢*) eC.
gem

This is the coefficient of the trivial representation C in the C-representation
of degree d(d +1)/2
Sym(VecV) = H%(Zy;V&cV)
of symmetric forms on V* = Homc(V, C) over C*, with V = C¢ the repre-
sentation space of p (cf. 22.17). Equivalently, the type of the representation
is determined by the type of form supported by V over C *[r], as follows:

(I) (orthogonal) ¢(p) = 1 if and only if x = x is real and p is equivalent
to an R-representation of degree d, i.e. if there exists a C[r|-module
isomorphism V' = C[r] ®gx] Vo for some f.g. R[r]-module Vs which is
a d-dimensional real vector space. This is the case if and only if there
exists a nonsingular symmetric form (V,¢) over C*[r]. The simple
factor M4(R) of R[r] induces the simple factor C @r My(R) = My(C)
of C[ml].

(IT) (symplectic) ¢(p) = —1 if and only if x = x is real but p is not
equivalent to an R-representation, in which case d is eve